
A Fine-grained Complex Question Translation
for KBQA

Guangxi Ji, Shujun Wang, Ding Zhang, Xiaowang Zhang*, and Zhiyong Feng

College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
{guangxiji, shujunwang, zhangdingTJU, xiaowangzhang, zyfeng}@tju.edu.cn

Abstract. Translating natural language questions into SPARQL queries
is a significant challenge of semantic parsing based KBQA due to the gap
between their representations. In this paper, we designed a fine-grained
complex question answering framework for KBQA, including a semantic
similarity model and a neural machine translation model. Based on the
above two models, we present a complex question processing algorithm
to transform questions into subqueries and then process them parallelly.
The experiments evaluated on benchmark datasets show that our ap-
proach is significantly effective.

Keywords: Question Answering · Question Decomposition · Semantic
Textual Similarity · Neural Machine Translation

1 Introduction

Knowledge Base Question/Answering(KBQA) system can automatically answer
questions asked in natural language over the knowledge base. A widely used
approach is to translate natural language questions into SPARQL queries so that
the question can be answered by executing its corresponding query. However, it
has become a challenge as there is a gap in their representation. The existing
methods based on semantic parsing or templates require a large number of high-
quality rules or templates constructed manually or automatically. The matching
restrictions based on strings and structures are relatively strict [1][2]. Other
methods using neural machine translation models fail to identify and link unseen
entities to corresponding knowledge base entities [3].

In this paper, we propose a semantic similarity model to decompose a com-
plex question into several simple subquestions to achieve fine-grained transla-
tion. Here we find the question pattern similar to subquestion on the semantic
level. Next, we translate these subquestions in parallel using our neural ma-
chine translation(NMT) model and finally assemble the subqueries to obtain the
corresponding complete SPARQL query.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Approach

Our approach for complex question answering, shown in Fig.1, can be divided
into 5 steps.

q: Where was the wife of

Donald Trump born?

q1: the wife of _Person_

Donald Trump

q2: Where was _Person_ born?

Complex Question Decomposition

p1: Who is the spouse of _Person_

Donald Trump

p2: Where was _Person_ born?

semantic

similarity

comparison

s1: ?person spouse Donald_Trump

s2: ?person birthPlace ?city

neural

machine

translation

SELECT ?city WHERE

{ ?person spouse Donald_Trump .

?person birthPlace ?city .}

query formulation

SS

Model

Knowledge

Graph

Novo_Mesto

Question

Pattern

Corpus

qty: Where was the wife of

Person born?

Donald Trump

entity replacement

Fig. 1. An example of complex question process.

Step(1) Named Entity Replacement. We focus on the structure informa-
tion of natural language questions. Specifically, we use the named entity linking
tools to identify and replace the entities in the question with their corresponding
entity classes in the knowledge base to get the question pattern, which represents
a kind of question.

Step(2) Semantic Similarity-based Question Decomposition. The de-
composed subquestions may be incomplete, that is, some components are miss-
ing. It may be wrong to translate them directly into SPARQL queries. Therefore,
we present a semantic similarity model based on the siamese network architec-
ture to find the most semantically similar standard question. Specifically, given a
question q, we transform it into a fixed-size embedding by adding a pooling layer
after BERT. Having these embeddings, we can use cosine-similarity to calculate
the semantic similarity between questions. Finally, we use mean squared-error
loss as the objective function, making the semantic similarity question closer.

Similar to Zheng et al[4], the underlying principle of our decomposition algo-
rithm is to try each subquestion of question q and complete its similarity with
patterns in T , where T is our question pattern corpus. Algorithm 1 presents the
detail of our question decomposition algorithm. Lines 5 to 8 deal with parallel
complex questions, while lines 9 to 18 show the decomposition method of nested
complex questions.

Step(3) Neural Machine Translation. Translation methods based on
templates or rules require accurate matching, while neural machine translation
has better generalization. We use the Transformer-based neural machine transla-
tion model, which is mainly composed of two parts: question & query encoding
and translation. The former models the semantics of question and query into
the embedding representation so that the transformer model could transfer se-
mantic information between different expressions. Here, we follow the encoding

approach suggested by Soru et al.[8]. Note that, unlike Sour et al.[8], which input
a complete natural language question and output the corresponding SPARQL
query, our model inputs the simple question pattern and output its correspond-
ing triple pattern, which effectively solves the linking problem of entities that
have never appeared before and improves the accuracy of translation.

Step(4) Query Construction. After parsing all simple subquestions of a
complex question, we need to assemble their corresponding triple patterns to-
gether to form a complete SPARQL query to obtain the answer. Algorithm 1
shows that the decomposition of complex questions is orderly. The first subques-
tion can be operated independently, and the others need to use the previous
results as part of its facts. Here we assemble all the triple patterns into a com-
plete query in the order of decomposition. The variable of the last pattern is
taken as the variable of the SPARQL query. Note that we need to unify the join
variables for triple patterns that have join relationships and replace the entity
class with the real entity.

Step(5) Query Evaluation. Evaluating the query to get the final answer.

Algorithm 1: QD(qty, Ten, M, τ)

Input: Question pattern qty ={w1, · · · ,wn}, Encoded pattern set Ten,
Semantic Similarity model M and the similarity threshold τ ;

Output: The decomposed subquestion patterns P(q)
1 qen ← M.encode(qty)
2 (γ, t)← the maximum similarity between qen and Ten

3 if γ ≥ τ then
4 return P (q)← t

5 if “and”,“or”,“but”, etc. in qty then
6 for qsub in GetSubQuestion(qty) do
7 P (q)← P (q)∪ QD(qsub, Ten, M, τ)

8 return P (q)

9 for i ∈ [1,|qty|] do
10 ei ← the position of the first entity class after wi

11 for k ∈ [ei,|qty|] do
12 qsub ← GetSubstring(qty,i,k)
13 qen′ ← M.encode(qsub)
14 (γ, t)← the maximum similarity between qen′ and Ten

15 if γ ≥ τ then
16 qty′ ← replace qsub in qty with the answer type of t
17 if |qty′ |=1 or QD(qty′ , Ten, M, τ) 6= NULL then
18 return P (q)← P (q) ∪ t

19 return NULL

3 Experiments and Results

The evaluation of our method is performed on three datasets(i.e., LC-QuAD[5],
QALD-9[6], and ComplexQuestions[2]), using F1 measure as the metric. We use
a large number of simple questions to construct training data. Specifically, our
training data consists of two parts: the SimpleDBpediaQA[9] dataset and some
common simple questions collected from WikiAnswers. The former is a bench-
mark dataset for simple question answering over knowledge base, which contains
43086 questions and the entities contained in each question. WikiAnswers[10] is
a large corpus of natural languae questions. For each question, the corresponding
question pattern can be obtained through Step(1).

For the semantic similarity model, we construct many training data in the
form of {p1, p2, s}, where p1 and p2 are two question pattern, here p2 may be a
transformation of p1 (such as changing structure, omitting compoents, replacing
synonyms), the similarity score s is obtained by considering their structure,
words, semantic, etc. For instance, {“who is the spouse of Person ”,“the wife
of Person ”,1.0 }. Besides, using the existing KBQA system, we can obtain the
sparql query corresponding to each question, and filter out the correct (question
pattern, query pattern) pairs as training data for the neural machine translation
model.

0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

QALD-9

LC-QuAD

ComplexQuestions

Fig. 2. Effect of the threshold τ

F1 Score

Bast and Haussmann++ [7] 0.47
QUINT [2] 0.49

TemplateQA [4] 0.71
Our Approach 0.74

Table 1. Results on ComplexQuestions

As shown in Table 1, our method achieves better results because we decom-
pose the question at the semantic level and can obtain each subquestion and its
standard form more accurately. Our method is based on the DBpedia knowledge
base, and others have not been tested on the QALD-9 and LC-QuAD datasets,
so there is no comparison here. From the data shown in Fig 2, our method works
best on the LC-QuAD dataset because templates generate it, so the question
structure is similar and can capture subqueries better. The QALD-9 dataset is
more complex, and its effect is somewhat different from the others. We also study
the influence of semantic similarity threshold τ . When τ is small, some subse-
quences are mistakenly considered simple subquestions, resulting in the wrong
decomposition. While τ is large, some subquestions can not find the correspond-
ing question pattern, so the transformation fails. A large number of experiments
show that 0.8 is a better threshold.

4 Conclusion

In this paper, we propose a method to decompose complex questions into mul-
tiple simple subquestions to achieve fine-grained translation using a semantic
similarity model. Here we find the question pattern similar to subquestion on
the semantic level. In addition, we translate these subquestions in parallel using
the neural machine translation model. We hope that our work can inspire other
applications of deep learning methods in KBQA.

5 Acknowledgments

This work is supported by the National Key Research and Development Program
of China (2017YFC0908401) and the National Natural Science Foundation of
China (61972455). Xiaowang Zhang is supported by the Peiyang Young Scholars
in Tianjin University (2019XRX-0032).

References

1. W. Zheng and M. Zhang, “Question Answering over Knowledge Graphs via Struc-
tural Query Patterns”, arXiv:1910.09760, 2019.

2. A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum, “Automated template
generation for question answering over knowledge graphs”, in Proceedings of the
26th International Conference on World Wide Web (WWW),2017, pp. 1191–1200.

3. X. Yin, D. Gormann and S. Rudolph, “Neural Machine Translating from Natural
Language to SPARQL”, in arXiv:1906.09302, 2019.

4. W. Zheng, J. X. Yu, L. Zou, and H. Cheng, “Question answering over knowledge
graphs: Question understanding via template decomposition”, in Proceedings of
the VLDB Endowment, vol. 11, no. 11, pp. 1373–1386, 2018.

5. P. Trivedi, G. Maheshwari, M. Dubey and J. Lehmann, “LC-QuAD: A Corpus
for Complex Question Answering over Knowledge Graphs”, in 16th International
Semantic Web Conference, pp. 210–218, 2017.

6. R. Usbeck, R. H. Gusmita, A. C. N. Ngomo and M. Saleem, “9th Challenge on
Question Answering over Linked Data (QALD-9)”, in 17th International Semantic
Web Conference, pp. 58–64, 2018.

7. H. Bast, E. Haussmann,“Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, 2015,
pp.1431–1440.

8. T. Soru, E. Marx, D. Moussallem and G. Publio, A. Valdestilhas, D. Esteves,
C. Baron Neto, “SPARQL as a Foreign Language,” in SEMANTiCS, 2017.

9. M. Azmy, P. Shi, J. Lin and I. F. Ilyas, “Farewell Freebase: Migrating the Simple-
Questions Dataset to DBpedia,” in Proceedings of the 27th International Confer-
ence on Computational Linguistics, pp. 2093–2103, 2018.

10. A. Fader, L. S. Zettlemoyer, and O. Etzioni. “Paraphrase-Driven Learning for Open
Question Answering”, in ACL, 2013.

