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Abstract. This work investigates how the combination of different tree
representations with different Tree Kernel functions influences the results
of the classifications in two specific case studies. One case study is related
to the classification of argumentative stances of support, the other one
is related to the classification of stances of opposition. Results show that
some Tree Kernels achieves not only higher results but also a higher
level of generalization. Moreover, it seems that also the kind of tree
representation influences the performances of classifiers. In this study,
we thus explore this relation between tree representation and different
Tree Kernels, considering also compositional trees.
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1 Introduction

This study is related to the field of Argument Mining (AM), a relatively new
research field focused on the analysis, detection and classification of argumen-
tative structures, substructures and units from natural argumentation. On the
one side, AM is a field which employs Natural Language Processing techniques.
On the other side, AM is also connected to the field of Argumentation, which
involves a wide range of logical and philosophical aspects. The aspects related to
natural language and those related to Argumentation are both crucial when deal-
ing with legal data, because legal texts contain several argumentative structures
which are encoded in natural language, e.g. inferential logical-ontological rules
or even stereotypical patterns of inference (known as Argumentation Schemes).
These rules and argumentative patterns are composed of premises (evidences)
and conclusions (claims) which can be classified using Machine Learning al-
gorithms, facilitating the automatic detection of argumentative structures and
rules in legal texts.

Due to the complexity of human language, AM scholars often need to cre-
ate classifiers employing highly-engineered features capable of describing the
complexity of argumentative structures in natural language. As suggested in
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Lippi and Torroni 2015 [13], the problem of having to engineer features to catch
complex structures can be solved by employing classifiers that works directly on
structures, such as Tree Kernel classifiers. Following this suggestion, recent stud-
ies have shown how Tree Kernels classifiers can discriminate between different
kinds of argumentative stances of support [10] and opposition [11].

For example, Liga 2019 [10] described a first attempt to use Tree Kernel
classifiers to discriminate argumentative stances of support in the context of a
binary classification. On the other side, Liga and Palmirani 2019 [11] showed
that a similar approach can be applied also to opposition stances and to a multi-
class classification problem. The present work takes inspiration from these two
studies and reproduces their settings by using different tree representations and
tree kernel functions, to assess whether or not there is a specific combination
that better suits the task of classifying/discriminating argumentative stances.

In Section 2, Tree Kernels classifiers will be introduced along with a descrip-
tion of different tree representations and Tree Kernel functions. In the Section
3, we will briefly describe the related works in the domain of AM, considering
the studies which employed Tree Kernels in AM and describing the two above-
mentioned studies, [10] and [11], from a general perspective. In Section 4, we
will reproduce the settings of Liga 2019 [10] applying different tree representa-
tions and different Tree Kernel functions to the same scenario and analyzing the
results of each classifier. In Section 5, we will do the same process, employing
different tree representations and different Tree Kernel functions in the setting
of the experiment in Liga and Palmirani 2019 [11]. Lastly, in Section 6 we will
open a short discussion and conclude the work.

2 Tree Kernels and tree representations

A Tree Kernel is simply a similarity measure. It works by comparing the similar-
ity between tree-structured pieces of data. Supposing that we want to use Tree
Kernel classifiers for textual data, there are two main elements to consider.

The first element is the kind of tree-structure to employ, namely the kind
of tree representation we want to use. The second element is defining which
fragments of the tree structures should be involved into the calculation of the
similarity. The following sections briefly describe these two aspects.

2.1 TREE REPRESENTATIONS

The idea is that our data (e.g. textual data such as sentences) must be rep-
resented into a specific tree-structured shape to allow a Tree Kernel function
to calculate the similarity between different pieces of tree-structured data. For
example, a sentence can be converted into some kind of tree representation such
as a dependency tree or constituency tree.

In the following part, we will shortly describe some of the most famous tree
representations for the conversion of textual data into tree structures. They can
be considered as particular kinds of Dependency Trees which combine grammat-
ical functions, lexical elements and Part-of-Speech tags in different ways [7].
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GRCT The Grammatical Relation Centered Tree (GRCT) representation is a
very rich data representation [6]. It involves grammatical, syntactical, lexical
elements together with Part-of-Speech and lemmatized words. In this represen-
tation, after the root there are syntactical nodes (grammatical relations), then
Part-of-Speech nodes and finally lexical nodes. In other words, a tree of this kind
is balanced around the grammatical nodes, which determines the structure of
dependencies.

LCT Also Lexical Centered Tree (LCT) representations involve grammatical,
lexical and syntactical element, along with Part-of-Speech tags. However, the
structure of the tree is different. In fact, it is “centered” over Lexical nodes,
which are at the second level, immediately after the root. Part-of-Speech nodes
and grammatical functions nodes are equally children of the lexical elements.

LOCT The Lexical Only Centered Tree (LOCT) representation contains just
the lexical elements. Intuitively, the contribution of LOCT representation can
be particularly determinant whenever the tasks to be achieved mostly depend
on lexical elements.

cGRCT and cLCT The compositional Grammatical Relation Centered Tree
(cGRCT) and the compositional Lexical Centered Tree (cLCT) representations
are very similar to the the Grammatical Relation Centered Tree (GRCT) and
the Lexical Centered Tree (LTC) representation. The difference here is that
the representations allow compositional operators. This aspect will be explained
more in depth in the section related to CSPTKs. In fact, cGRCTs and cLCT can
be used with Compositionally-Smoothed Partial Tree Kernels (CSPTKs) which
are designed specifically for the purpose of considering compositionality [3].

2.2 TREE KERNELS

A kernel function can be considered as a similarity measure that perform an
implicit mapping ϕ : X → V where X is a input vector space and V is a high-
dimensional space. A general kernel function can be represented as follows:

k(x,x′) = 〈ϕ(x), ϕ(x′)〉V (1)

Importantly, the 〈., .〉V in the above formula must necessarily be considered
an inner product, while x and x′ belong to X and represent the labelled and
unlabelled input respectively. If we consider, for example, a binary classification
task with a training dataset D = {(xi, yi)}ni=1 composed of n examples, where y ∈
{c1, c2} (with c1 and c2 being the two possible outputs of a binary classification),
the final classifier ŷ ∈ {c1, c2} can be calculated in the following way:

ŷ =

n∑
i=1

wiyik(xi,x
′) =

n∑
i=1

wiyiϕ(x).ϕ(x′) (2)

Where the weights wi are learned by the trained algorithm.
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When using Tree Kernels, the function must be adapted to allow the calcu-
lations over tree nodes. In this regards, a general Tree Kernel function can be
calculated as follows [16]:

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (3)

In the above equation, T1 and T2 are the two trees involved in the calcula-
tion of the similarity, while NT1

and NT2
are their respective sets of nodes and

∆(n1, n2) is the number of common fragments in node n1 and node n2.

Importantly, ∆(n1, n2) can be seen as a function considering common frag-
ments between trees. Depending on how this function is configured (i.e., which
fragments are considered involved into the calculation of the similarity), different
Tree Kernels can be obtained.

Given that our data is tree-structured, the second important element is the
definition of the which fragments must be involved when calculating the similar-
ity between trees. Defining which fragments to involve also means defining the
Tree Kernel function, because the names of the Tree Kernel functions usually
derives from the fragment definition.

In the following part, some famous Tree Kernel functions will be shortly
described; each of them defines, in a different way, which fragments should be
involved into the calculation of the similarity.

STK In a SubTree Kernel (STK) [18], a fragment is any subtree, i.e. any node
of the tree along with all its descendants.

SSTK A SubSetTree Kernel (SSTK) [5] considers as fragments the so-called
subset-trees, i.e. it considers any node along with its partial descendancy. Since
in SSTKs the only constraint of not breaking grammar production rules, and
since fragments’ leaves can be also non-terminal symbols, they can be considered
a more general representation compared the previously mentioned STKs.

PTK A Partial Tree Kernel [16] is a convolution kernel that considers partial
trees as fragments. Similarly to SSTKs, a partial tree is a fragment of a tree
which considers a node and its partial descendancy. However, partial trees allow
also partial grammar production rules. The fact that production rules can be
broken (i.e. partial), makes PTs even more general than SSTs. This is the reason
why PTKs should provide a higher ability to generalize.

SPTK A PTK can be also “Smoothed” PTK (SPTK) [6], which adds a further
semantic layer into the calculation of node similarity. SPTKs allows to calculate
similarities between dependency structures whose surfaces (i.e. the lexical nodes,
or words) are partially or totally different. They introduce a lexical similarity
which allows the generalization of tree structures through the semantic layer by
representing words not just as mere symbols, but as semantic entities.



Combining tree kernels and tree representations to classify argument. stances 5

CSPTK The scenario can be further expanded considering Compositionally-
Smoothed Partial Tree Kernels (CSPTK) [4], which apply a composition function
between nodes to better represent contextual relations between words.

We have previously showed how compositional trees look like (i.e. cGRCTs
and cLCTs), but we did not explain how compositionality works.

The key point of CSPTKs is that they can compute compositional trees
integrating Distributional Compositional Semantics (DCS) operators into the
kernel evaluation acting on both lexical leaves and non-terminal nodes. On the
one side, SPTK already offer a modeling of lexical information, since they extend
the similarity between tree structures allowing a smoothed function of node
similarity, which makes them able to compare better trees which are semantically
related even if their nodes and leaves differ.

However, SPTKs have an major limitation: they cannot consider composi-
tional interactions between the lexical elements of the trees (i.e. between the
words of the trees).

The meaning of the verb “to save” can be better captured only if we con-
sider the verb in composition with the words it is refered to, namely “files” and
“people”. In this sense, CSPTK can better capture the role of more complex
syntagmatic structures and compositions. Regarding the calculation of ∆, it is
similar to SPTK, but the smoothing function is adapted according to [3, 4].

3 Related works

So far, only few studies have employed Tree Kernels in the field of AM. One of
the first studies that mentioned the use of Tree Kernels in this field is Rooney
2012 [17], where kernels are used with Part-of-Speech tags and with sequences
of words with the aim of detecting whether or not a sentence is related to an
argumentative element (i.e. premise, conclusion, or both).

In 2015, Lippi and Torroni wrote an important study in which Tree Kernels
are employed in a context-independent scenario, with the aim to detect argumen-
tative claims [13]. In this case, the authors employed PTKs using constituency
trees as tree representations. Similar approaches have been applied also in spe-
cific domains like the legal domain [14, 12] and the medical domain [15], where
SSTK have been applied over constituency trees.

Outside the field of AM, Croce et Al. [7] focused on the combination of differ-
ent Tree Kernels and tree representations. However, no study has proposed yet a
comparison of this kind in AM, particularly in the classification of argumentative
stances of support and opposition.

As already stated, this work is based on two previous studies, Liga 2019
[10] and Liga and Palmirani 2019 [11]. Interestingly, the two above-mentioned
studies try to discriminate among stances of support and opposition that can
be related to specific Argumentation Schemes [20]. While the first paper focused
on the stances of support potentially related to the Argumentation Scheme from
Expert Opinion (which is a specific kind of source-based Argumentation Scheme
[9]), the second study has a particular focus on the argumentative stances related
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to the Argumentation Schemes from Negative Consequences and the Slippery
Slope argument [19]. In Liga 2019, Tree Kernels have been used in combination
with TFIDF vectors to automatically discriminate between different kinds of
argumentative support, while in Liga and Palmirani 2019 a similar methodology
was employed to detect argumentative stances of opposition.

Importantly, these two studies explore the ability of different kinds of Tree
Kernel to perform the tasks of classifying argumentative stances (the first study
employs PTK [16], while the second study employs SPTK [6]) However, both
studies employ the same kind of tree representation: namely, they only employ
Grammatical Relation Centered Tree (GRCT representations). However, as al-
ready stated, there are other kinds of tree representation that may be employed
in the same settings. For this reason, the present study reproduce the same sce-
narios of these two works by employing different kinds of tree representation to
assess whether or not a particular kind of tree representation can be more suit-
able for the task of classifying argumentative stances of support and opposition.

To the best of our knowledge, no study of argumentative stance classification
has so far presented a comparative analysis of the use of different kinds of tree
representations and Tree Kernels. In particular, this study will compare the
performance of the 5 tree representations described in Section 2.1 At the same
time, we will combine these representations with the 5 Tree Kernels described
in Section 2.2.

We will now describe the two settings of the present paper. The first one,
related to the first study [10], will be defined Setting One; the second one, related
to the second study [11], will be defined Setting Two. The experiments have been
performed using the JAVA framework KeLP [8], and a 70/30 train-test split ratio.

4 Setting One

The first study combined two famous AM datasets in the same setting ([1] and
[2], namely). We will refer to these datasets as DataOne [2] and DataTwo [1]. The
aim of the study was to develop a series of classifiers able to differentiate between
argumentative support coming from the opinion of an expert and argumentative
support coming from studies or statistics.

Importantly, in this study, the ability of Tree Kernels to generalize over dif-
ferent data was explored by training the classifiers on one dataset and testing
them on both datasets [10]. For this reason, we will consider Setting One as
divided into two scenarios.

In the first scenario, all classifiers are trained on the training subset of
DataOne (and tested not only on the testing subset of the same dataset, but
also on the whole DataTwo dataset). In the second scenario, all classifiers are
trained on the training subset of DataTwo (and tested not only on the testing
subset of the same dataset, but also on the whole DataOne dataset).

As shown in the left side of Table 1, which reports the number of instances
per class per dataset, the two datasets are quite balanced. The label expert has
372 and 311 instances in DataOne and DataTwo respectively; while the label
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Study/statistics has 281 and 258 instances in DataOne and DataTwo respec-
tively.

Table 1. Number of sentences in the two datasets, grouped by category group (left).
Configuration of the kernel parameters for Setting One (right).

DataOne n.

Expert 372
Study/statistics 281
Total 653

DataTwo n.

Expert 311
Study/statistics 258
Total 569

Kernels Decay factors

STK λ = .3
SSTK λ = .2
PTK λ = .4 µ = .4

SPTK λ = .4 µ = .4
CSPTK λ = .4 µ = .4

4.1 Results for Setting One

The top part of Table 2 is referred to the first scenario, while bottom part is
referred to the second scenario. For reason of space, compositional trees are
reported jointly with their non-compositional counterpart: compositional tree
representations (cGRCT and cLCT) should be thus considered related only with
CSPTKs.

The experiments were performed using the configurations of the decay factors
reported in the right side of Table 13.

Setting One - Scenario A Results of the top part of Table 2 related to
GRCT/cGRCT (left sub-table, on the top), show a similar performance on the
dataset DataOne (ranging from .85 to .87), but above all they show a growing
degree of generalization over DataTwo: from a minimum of .72 (STK) to a max-
imum of .77 (CSPTK and SPTK). This shows that the degree of generalization
increases when using PTKs and SPTKs compared to STKs and SSTKs.

A similar trend can be seen also with regard to LCT/cLCT (central sub-
table), where the degree of generalization increase similarly from .72 (STK)
to .77 (SPTK). However, performances are sliglty more polarized on DataOne
(ranging from .84 to .88).

An even more polarized trend is reported on the sub-table on the right,
related to LOCT. In this case, performance on the dataset DataOne range from
.80 to .87 and this is the only case in which PTK outperform SPTK. Also the
performances on DataTwo are more polarized compared to the other two sub-
tables: for the LOCT sub-table scores range from .63 (STK) to .75 (SPTK).

3 Decay factors are meant to penalise long tree fragments, in order to mitigate the
risk that their size might excessively affect similarity scores. In this paper, λ is the
vertical decay factor, while µ is the horizontal decay factor.
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Setting One - Scenario B Results of bottom part of Table 2 related to
GRCT/cGRCT (left sub-table), show that PTKs performed better than the
other kernels: they reach a mean F1 score of .74 on DataTwo (which is the
dataset on which the classifiers of this scenario have been trained) while all the
other kernels range from .71 to .72. Also in this case, results over the other dataset
(which in this scenario is DataOne) show a growing capability of generalization
ranging from .79 (STK) to .84 (CSPTK and SPTK).

The trend over LCT/cLCT representations (central sub-table) show a similar
picture: PTK is the kernel with the best performance over DataTwo (with a
Mean F1 score of .72) while the other kernels range between .68 and .71. Also
in this case, performances over DataOne show a growing trend ranging from .80
to .84.

Also in this scenario, the sub-table on the right, related to LOCT, is the
most polarized one: results on DataTwo range from .64 to .69, with PTK out-
performing SPTK; while results on DataOne range from .71 to .83, with SPTK
showing again the best ability to generalize over the other dataset.

Table 2. Results for Scenario A (top) and Scenario B (bottom) of Setting One. Results
report the mean F1 score of the binary classification (“Expert” vs “Study/Statistics”).

SCENARIO A:
GRCT/cGRCT

Kernel DataOne DataTwo

STK .86 .72
SSTK .86 .74
PTK .85 .76
SPTK .86 .77
CSPTK .87 .77

LCT/cLCT
DataOne DataTwo

.84 .72

.84 .73

.86 .75
.88 .77
.87 .76

LOCT
DataOne DataTwo

.80 .63

.80 .66
.87 .73
.83 .75

SCENARIO B:
GRCT/cGRCT

Kernel DataOne DataTwo

STK .79 .71
SSTK .81 .71
PTK .83 .74
SPTK .84 .72
CSPTK .84 .72

LCT/cLCT
DataOne DataTwo

.80 .69

.81 .68

.81 .72

.83 .70
.84 .71

LOCT
DataOne DataTwo

.71 .64

.71 .64

.79 .69
.83 .67

5 Setting Two

In the second study [11], a similar approach has been employed on a dataset cre-
ated ad hoc for the analysis of argumentative stances of opposition. The dataset
has been created by extracting the comments of opposition that citizens wrote
on the public website of Nevada Legislature against a bill aiming at regulating
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euthanasia. The limitation of this study is that the annotation has not been
accomplished yet and the number of instances per class is still unbalanced. How-
ever, an interesting aspect of this dataset is that a granular labelling system has
been proposed in order to assess the ability of Tree Kernel classifiers to detect
different kinds of argumentative opposition in a multi-class setting. The original
setting presents four levels of granularity in which the dataset can be divided.
In the present paper, we are going to select just the granularities with the best
balance in the number of instances, namely granularity 2 and granularity 3.

For this reason, similarly to what has been done with Setting One, also Set-
ting Two has been divided into two scenarios. In the first scenario, all classifiers
are trained and tested considering three labels (“Slippery Slope”, “Other” and
“Testimony”). In the second one, all classifiers are trained and tested considering
four labels (“Slippery Slope”, “Other”, “Judgements” and “Testimony”). The
number of sentences grouped by class is listed on the left in Table 3, while the
configurations of the decay factors used in the experiment are reported on the
right in Table 3.

Table 3. Number of sentences depending on class and granularity (Left). Configuration
of the kernel parameters for Setting Two (right).

Classes Granularity 2 Granularity 3

Slippery Slope 82 82
Testimony 133 133
Judgements part of Other 140
Other 423 283

Total 638

Kernels Decay factors

STK λ = [.1− .4]
SSTK λ = [.1− .4]
PTK λ = [.3− .4] µ = [.3− .4]

SPTK λ = [.3− .4] µ = [.3− .4]
CSPTK λ = [.3− .4] µ = [.3− .4]

5.1 Results for Setting Two

The top part of Table 4 is referred to the first scenario, while bottom part is re-
ferred to the second scenario. It is important to underline that this results should
be observed by watching not only at the F1 scores (which can be misleading,
since they are trained upwards by the results of the class “Other”).

To partially overcome this problem, we should instead focus on the F1 scores
of the single classes, as described in the following subsections.

Also in this case, compositional trees are reported jointly with their non-
compositional counterpart and should be considered related only with CSPTKs.

Setting Two - Scenario A Results of the top part of Table 4 related to
GRCT/cGRCT (left sub-table), show that the the Mean F1 score is achieved by
the PTK classifier (.76). However, it should be remarked that STK and CSPTK
seem to perform better on the class “Testimony” (reaching a F1 score of .71).

In the central sub-table, related to LCT/cLCT, the SPTK and the CSPTK
are the best ones both in terms of Mean F1 score (.73-.74) and in terms of balance
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between the scores for the “Slippery Slope” and “Testimony” classes (which is
.59-.60 and .70-.71, respectively). Conversely, the STK, SSTK and PTK show
nearly one decimal point less (floating between the values .50-.51).

Regarding the sub-table related to the LOCT representation, there is a clear
superiority of the SPTK over the other kernels not only in terms of Mean F1 score
(.75), but also in terms of balance between “Slippery Slope” and “Testimony”
scores (.67 and .69, respectively). In fact, although PTK reaches .68 on the class
“Slippery Slope”, it stops at .58 on the class “Testimony”.

Setting Two - Scenario B Regarding the second scenario of the Setting Two
(the one considering four labels), results can be seen in the bottom part of Table
4. The sub-table on the left, related to GRCT/cGRCT, shows that performances
of PTK and CSPTK classifiers are slightly better in terms of mean F1 score
(.69). However, when one considers the results of the classes separately, one
can see that the SSTK classifier shows better results in the classification of the
“Slippery Slope” class (.67), while the CSPTK over the cGRCT representation
shows better results in the classification of “Judgements” (.66) and “Testimony”
(.74).

Regarding the central sub-table (LCT/cLCT), it seems that the CSPTK
classifier is the one that has the best performance in terms of mean F1 (.68). It is
also the classifier that reach the best performance in the classification of the class
“Testimony” (.77). Regarding the class “Judgements”, the best performances
are achieved by the SSTK (.64) and the CSPTK (.63), while the class “Slippery
Slope” is the one with the worst performances, with SPTK and CSPTK as best
classifiers (stopping at .52).

Regarding the sub-table on the right (related to the LOCT representation),
all mean F1 show a similar performance ranging from .60 to .63. Moreover, it can
be seen that the performances for the class “Judgements” are the worst ones,
where the best score is achieved by the STK (.54). On the other side, SSTK and
SPTK achieve the best scores with the class “Slippery Slope” (.65), while the
“Testimony” class has the SPTK as most performing classifier (reaching .66).

6 Discussion and Conclusions

From the results, some clear patterns can be observed. In general, it seems that
PTKs and above all (C)SPTKs collect the best performances. This appears
particularly evident in Setting One, when watching the numbers of Table 2 from
the top to the bottom.

Another trend that can be seen from Setting One is the growing degree of
generalization (always watching from the top to the bottom of the tables).

Finally, another interesting trend can be observed on Setting One, namely
the growing degree of polarization, watching from the left (GRCT/cGRCT) to
the right (LOCT), related to the scores between the most and less performing
kernels in each column. It seems that the last table (LOCT) is the most polarized
one, reaching up to .13 points of difference between the most and less performing
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Table 4. Results for Scenario A (top) and B (bottom) of Setting Two. SS = “Slippery
Slope”, O = “Other”, J = “Judgements”, T = “Testimony”. In bold the maximum F1
scores for SS, J and T.

SCENARIO A:
GRCT/cGRCT

Kernel SS O T F1

STK .61 .90 .71 .74
SSTK .62 .91 .67 .73
PTK .67 .91 .69 .76
SPTK .58 .87 .68 .71
CSPTK .63 .90 .71 .75

LCT/cLCT

SS O T F1

.51 .90 .68 .70

.50 .92 .71 .71

.51 .90 .68 .70

.60 .89 .70 .73

.59 .91 .71 .74

LOCT

SS O T F1

.60 .87 .61 .70

.62 .89 .63 .71

.68 .86 .58 .71

.67 .89 .69 .75

SCENARIO B:
GRCT/cGRCT

Kernel SS O J T F1

STK .62 .76 .55 .71 .66
SSTK .67 .80 .60 .63 .67
PTK .64 .79 .61 .71 .69
SPTK .55 .79 .63 .68 .67
CSPTK .57 .79 .66 .74 .69

LCT/cLCT

SS O J T F1

.51 .76 .62 .69 .65

.50 .79 .64 .71 .66

.49 .80 .61 .75 .65

.52 .78 .58 .71 .65

.52 .79 .63 .77 .68

LOCT

SS O J T F1

.62 .76 .54 .61 .63

.65 .77 .51 .60 .63

.59 .72 .47 .62 .60

.65 .75 .47 .66 .63

score (i.e. in the column DataTwo, Scenario A; and in the column DataOne, in
Scenario B).

To the best of our knowledge, this study is the first attempt to offer a com-
parative analysis of the combination of five tree representations and five tree
kernels in the classification of argumentative stances of opposition and support.

A limitation of this work is that of being related to the specific data em-
ployed. The contribution of different tree representation should be assessed also
in different scenarios and with different kinds of argumentative data.

Moreover, it is important to investigate the relation between the type of tree
representation, the tree kernel function employed and the targeted argument to
be classified. In other words, are there tree representation that can express better
specific kinds of argument? Are there tree kernel functions that better calculate
the similarities between these argumentative representations? This study sug-
gests that the answer to these questions is positive, showing a first attempt of
investigation in this direction.
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