
Generating Knowledge Graphs from
Unstructured Texts: Experiences in the

E-commerce Field for Question Answering

Diogo Teles Sant’Anna1, Rodrigo Oliveira Caus1, Lucas dos Santos Ramos2,
Victor Hochgreb2, and Julio Cesar dos Reis1

1 Institute of Computing, University of Campinas, Campinas - SP, Brazil
diogoteles08@gmail.com, rodrigo.caus@students.ic.unicamp.br,

jreis@ic.unicamp.br
2 GoBots, Campinas, SP, Brazil

lrsantostw@gmail.com, victor@gobots.com.br

Abstract. Nowadays, there is a growing number of sales occurring over
the Web in e-commerce stores. Customers often have questions about a
product before they buy it. By answering them instantly, online stores
can improve user experience, customer’s satisfaction and sales conversion
rate. Effective and automated customer service via computer systems
requires the handling of large amounts of unstructured information like
product specifications. In this paper, we define and evaluate a technique
to generate knowledge graphs (KGs) by extracting relevant product infor-
mation from unstructured natural language questions and answers. The
knowledge encoded in the KG is used to answer new clients’ questions via
SPARQL requests. Our solution is evaluated in a real world, using data
from online stores in the GoBots, a leading e-commerce chatbot business
in Latin America. Obtained results show the benefits of exploring KGs
for responding a higher spectrum of questions in real-world settings.

Keywords: natural language processing; knowledge graphs; e-commerce; auto-
matic question answering

1 Introduction

E-commerce stores have a keen interest in automatically understanding questions
asked about their products. This can help in generating immediate and accurate
answers for their customers to quickly and efficiently serve them, and also lower
the cost of a large team to answer questions manually.

The answer to e-commerce questions must be highly accurate, because pro-
viding the wrong information to the customer can have unintended consequences.
For example, if the customer asks if the tire works in their car and the system

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



Sant’Anna et al.

mistakenly answers yes, the customer will buy the product, but will have to re-
turn it later. Moreover, if the system erroneously replies that it does not work,
the customer will stop buying a product they might have purchased. To answer
this question automatically, the system requires specific knowledge of whether
the product is or not compatible with the car. Usually, there is a great volume
of questions concerning compatibility of products in e-commerce sales.

Currently, GoBots3 performs automatic processing of natural language (NL)
questions through techniques that need to fulfill several requirements including:
1) understanding sentence intent and entities; 2) constructing vocabularies to
handle synonymous terms; and 3) generating structured rules to address similar
cases. However, several questions cannot be automatically answered due to lack
of specific knowledge about products, specially questions regarding compatibility.
Our purpose is to create a solution based on knowledge graphs to answer those
type of questions and therefore complement the existent system.

In this paper, we investigate a solution to extract and structure knowledge
about compatibility of products. We assume that the knowledge needed to an-
swer untreated questions is found in pairs of questions and answers already
answered by human attendants. In this sense, our solution explores as source of
knowledge existing pairs of customer’s questions and attendant’s answers. Both
components of the Q&A (question and answer) pair are in natural language and
present unstructured information. Our solution extracts knowledge and structure
it into a knowledge graph (KG) based on a defined domain ontology. The con-
struction of KG adds great value because it structures information and enables
further reuse and query over it.

Our approach explores the detection of entities and intentions from input
questions and answers to create Resource Description Framework (RDF) triples.
Our solution generates a triple store, which is used in the GoBots computational
environment to help automatically answering new clients’ questions. The existing
GoBots solution searches for specific product information on the generated KG
via API connections.

The evaluation assessed the quality of the generation of the KG for a specific
domain of products and the usability of the structured knowledge to answer new
questions. We use real-world data from e-commerce businesses and applied the
solution to answer real-time questions to understand the benefits of the proposal.
Obtained results with quality measurements indicate the promising effectiveness
of our methods. Our experimental results were focused in the automotive domain,
but our solution is applicable and extensible for other domains.

The remainder of this article is organized as follows: Section 2 presents the
related work. Section 3 reports on our approach to generate a KG from pairs of
questions and answers in NL texts and its use in the deployed KG services for
obtaining answers from the KG. Section 4 shows the experimental evaluation
with the results obtained. Section 5 discusses the findings whereas Section 6
draws conclusions and future work.

3 Official website: https://gobots.ai

https://gobots.ai


Generating Knowledge Graphs from Unstructured Texts

2 Related Work

Automated answering solutions for e-commerce is an area with a lot of research
due to the high relevance of this type of solution to the market. Shiqian et
al. [2] proposed a new framework for automatic response generation consider-
ing product-related questions through user reviews. In this framework, called
RAGE, the relevant revisions made about a product are extracted based on
machine learning techniques. The information is incorporated to guide response
generation. Results obtained from the solution were applied to real data from
online stores. Although this work proposed the generation of answers automati-
cally, they did not investigate the structuring of knowledge about the products.

Research on the construction and use of KGs has intensified. Hoffner et al. [6]
conducted an extensive investigation into the advances and challenges of using
KGs for creation of Q&A systems. KG queries have been studied to answer ques-
tions considering structured facts expressed in the knowledge base. They com-
plement existing work with 72 publications about 62 systems developed from
2010 to 2015. Then they identified challenges faced by those approaches and
collected solutions for them from the 72 publications. Finally, they provided rec-
ommendations on how to develop future Semantic Question Answering systems.

Kertkeidkachorn and Ichise [7] introduced a framework called T2KG to create
a KG automatically from natural language texts. In the T2KG, entities from
natural language context are mapped to the corresponding uniform resource
identifier (URI) in the KG, which are usually the subject or object of triples.
In a new approach, a rule-based and a similarity-based technique are combined
for mapping the predicate of a triple generated from text to its corresponding
predicate in an existing KG. The experimental results demonstrated that T2KG
can successfully generate a KG and populate an existing one with new knowledge
from text. However, the framework performs poorly when mapping predicates
containing many composite words.

Along these lines, Hao et al. [4] explored neural network-based classifiers to
represent questions and their candidate answers retrieved from knowledge bases.
In their work, difficulties of using current query languages, such as SPARQL, are
presented. They argue that users need not only to be familiar with the particular
language grammars, but also to be aware of the architectures of the knowledge
base they are querying. By contrast, they present a question answering system
relying on knowledge, which takes NL as query language, being a more user-
friendly solution.

Our literature analysis indicates that there are improvements and contribu-
tions on both the fields of automatic question answering, and the usability and
construction of KGs. Our work contributes with a technique to generate KGs
from unstructured NL sentences organized in Q&A pairs on a e-commerce con-
text. The method is able to extract specific information about products of a
given domain, and then uses it to answer new questions with a high precision.



Sant’Anna et al.

3 Developed approach and software tool

3.1 System overview

Figure 1 presents the KG service deployed to update and query a RDF triple
store for question answering. GoBots Service (a in Figure 1) stands for the
system responsible to manage the automatic question answering for e-commerce
stores.

Fig. 1: Knowledge Graph Service Overview. (b) illustrates the knowledge query
process to generate automatic responses on GoBots service (a). (g) illustrates
the knowledge generation process [build time], regardless of (b). Its source of
information is a list of questions and their respective answers from store human
attendants (e). (h) is our Natural Language Understanding (NLU) process for
extracting entities and intents from pairs of questions and answers. (j) is the
ontology, which defines the classes and predicates to store knowledge in the
RDF Store.

Formally, a KG, G = (V,E), is a labeled directed graph with nodes represent-
ing entities such as “Barack Obama” and edges representing relations between
entities, e.g., “Barack Obama“ “isPresidentOf” “United States” [8]. KGs often
assume the form of RDF triples in a way that G = {t1, t2, ..., tn}. A triple is
defined as t = (s, p, o) where “s”, “p” and “o” are called respectively subject,
predicate and object of the triple. The predicate connects the subject to the
object. In the example, “Barack Obama” is the subject, “isPresidentOf” is the
predicate and “United States” is the object of the triple t = (Barack Obama,
isPresidentOf, United States). The meaning of resources in subject, predicate and
object is encoded in a predefined ontology (cf. Subsection 3.2).

The GoBots Service is capable of querying the KG Service to automati-
cally answer questions (b in Figure 1) that rely on specific knowledge stored in
the RDF Store. For this purpose, the KG Service is responsible to formulate
SPARQL Queries [5] (c in Figure 1) to retrieve knowledge from the RDF Store.



Generating Knowledge Graphs from Unstructured Texts

The found knowledge is sent back to the GoBots Service to formulate the proper
answer for the e-commerce question.

The query requested by the GoBots Service consists of a structured rep-
resentation of the components of the question asked by a customer. The key
knowledge encoded in our KG refers to compatibility knowledge between prod-
ucts and consumer item. Then, the request contains all needed information to
identify the product and a consumer item (cf. Subsection 3.2). The following
information is sent to the KG service:

– the ID of the product;
– set of attributes that characterizes the consumer item;
– the intent of the question.

The SPARQL Query formulation is managed in the Query Construction
component (c in Figure 1). It encodes entry data in the structure of subjects,
predicates and objects, based on the ontology created for supporting question
answering in the e-commerce domain (j in Figure 1) (cf. Subsection 3.2). The
component manages the SPARQL result and the KG Service returns as follows:

– An indicative signalizing whether was found the knowledge of a compatibility
between the given product and the consumer item as input.

– Which kind of compatibility was found relating the product and the con-
sumer item (cf. Subsection 3.2).

– The complete attendant’s answer given to the question which originated the
knowledge retrieved.

In an independent and asynchronous process, the KG is updated based on
a set of questions and answers handled by human attendants. A question may
not be automatically answered by any of the GoBots services (d in Figure 1),
so the answer manually provided by a human attendant for such question, along
with the product information (e and f in Figure 1), are stored in a database for
future processing.

In the process of triple creation (g in Figure 1) (cf. Subsection 3.3), the KG
Service is responsible to process the stored set of questions answered manually
by human attendants. This is a key source of knowledge to update the KG and
answer similar new incoming questions. This knowledge extraction process relies
on the extraction of intentions and entities (h in Figure 1) from each Q&A pair
to structure the knowledge via RDF triples (i in Figure 1). SPARQL Updates
are used to insert RDF triples into the KG, implemented using a RDF Store.

3.2 Ontology for products compatibility representation

At this stage, we present the defined ontology used to explicitly handle meaning
in our KG. The ontology was created based on the e-commerce domain motivated
by compatibility issues between products.

An ontology specifies a conceptualization of a domain in terms of attributes,
relationships and concepts[3], the latter referred in this work as classes. Figure 2



Sant’Anna et al.

Fig. 2: Defined ontology for product compatibility representation.

presents an overview of the key classes and relationship in our ontology defined
to address product compatibility issues.

The Product class represents a product on e-commerce. The ID is an identifier
of the product. The ontology has different attributes to represent different kinds
of IDs, such as EAN, which universally identifies products. The universal factor of
the ID enables the knowledge to be reused for products of different e-commerces.

ConsumerItem is an abstract class with the purpose to identify items (owned
by costumers) that may have some integration with products of the e-commerce.
A subclass of ConsumerItem must have proper attributes that identify them.
More specifically, a subclass must present a subset of attributes that uniquely
identifies an Item. The importance of this subset is detailed in subsection 3.3
(concerns on minimum entities required). As an example, we present the Con-
sumerItem subclass named Car, representing the automotive domain, which has
the attributes model, brand and year. The subset of attributes that uniquely
identifies a car is model and year.

The concept of compatibility is stored through relations involving the class
Compatibility. The usage of the compatibility as a class makes easier to store
metadata about the relation between the product and the ConsumerItem. For
example, the date the knowledge was retrieved, the e-commerce store selling the
product, the question it was retrieved from and the complete answer given by
the attendant.

Besides considering metadata from the relation between the product and
the ConsumerItem, our ontology also differentiates the compatibilities between
themselves throught the concept we call compatibility type. The compatibility
type indicates whether the compatibility is affirmative, negative or conditional
for example, which are represented on the ontology as FullCompatibility, No-
Compatibility and ConditionalCompatibility. More specifically, those types are
disjoint subclasses of the class Compatibility, which actually is used as an ab-



Generating Knowledge Graphs from Unstructured Texts

stract class. So every object of Compatibility must be object of some of the
compatibility types.

3.3 Automatic KG Generation

Formally, let P be a product of an e-commerce store; id a unique identifier of
P . Let S = {(id1, q1, a1), ..., (idn, qn, an)} be a set of question and answer pairs
about a product, in which qi is the question, and ai the answer number i about
the product with idi. Also, let O be an ontology about the domain in which
product P is inserted. We aim to automatically generate a KG G, represented
by a set of (s, p, o) triples, which expresses knowledge about the product P
according to the ontology O.

For example, let P be an armrest with a unique identifier id = 108093. Con-
sider a set of question and answer pairs about P , such that, S = { (108093,“Good
Morning. Does this armrest fit in Ford Fiesta Sedan year 2012 Rocam model?”,
“The advertised product is compatible”)}. Figure 3 presents this example in-
stantiating the ontology (cf. subsection 3.2) to generate RDF triples. In this
example, 17 triples were inserted in the KG (12 of them are shown in Figure 3).

Fig. 3: Triples inserted for a question about an automotive armrest: ”Good Morn-
ing. Does this armrest fit in Ford Fiesta Sedan year 2012 Rocam model?”.

Our solution for KG generation recognizes entities and intents (h and i in
Figure 1) in sentences from questions and answers (e in Figure 1). This recog-
nition is based on a machine learning model trained with examples of numerous
entities and intents from existing sentences in the GoBots data environment.

On the NLU context, an intent represents the purpose of a user’s input, which
is always a sentence in natural language. Intents are a given name, often a verb or
a noun, that best describes the user’s intention. For example, the sentence “Is this
product compatible with the car Ford Fusion 2019?”, the intent ”Compatibility”
is identified. Our solution explores a classifier trained with several manually
assigned examples of sentences with its corresponding intent.



Sant’Anna et al.

An entity represents a term or expression with a known meaning relevant
for the comprehension of the sentence. Entities have names and values. The
values are the words themselves, and names represent the meaning of the word.
For example, the sentence “Is this product compatible with the car Ford Fusion
2019?” encompasses the entities brand, model and year to identify the car. These
attributes receive the values “Ford”, “Fusion” and “2019”, respectively. Our
solution explores an entity extractor trained with names and values of entities
relevant on the domain of interest.

Our solution defines intents and entities for extraction from text based on
the information used to build our KG. More specifically, our technique explores
question intents (from the question answer pair) to identify whether the question
refers to compatibility, so an intent “Compatibility” is used. In the compatibility
question, the client usually exposes the consumer item, with which the product
might or not have compatibility. The question entities aim at identifying the
attributes of the consumer item. In the running example, assuming a car as a
consumer item, the entities “brand”, “model” and “year” are used to identify
attributes of the car.

For the attendant answer from the question answer pair, the technique ex-
plores the intent to evaluate the type of compatibility between the product and
the consumer item. In particular, the intents used are FullCompatibility, NoCom-
patibility and ConditionalCompatibility, modeled in the ontology. Let us call this
set of intents Ivalid.

The KG generation relies on the following functions:

1. extractEntity(F) that for a given sentence F , returns a set E = {(e1, v1, c1),
(e2, v2, c2), ..., (ep, vp, cp) } where p is the number of entities found in the
sentence; ei is the name of the i-th entity found in the sentence (e.g. “year”);
vi is the value of the i-th entity found (e.g. “2010”); ci is the confidence about
the correctness of the i-th extraction [ranging from 0 to 1].

2. extractIntent(F) that given a sentence F , returns a pair (I, c), in which I
is the intent of the sentence F , and c is the confidence of the extraction.

The solution requires the definition of a set Emin as the minimal entities set
for a given domain. It is defined as Emin = {e1, e2, ..., en} where each ei element
refers to an entity. These entities are the minimal ones required in a sentence
(as an expected pattern). The generation of triples relies on it by assuming
that such sentence carries meaningful knowledge. For our solution, let Emin =
{model, year} be the set of minimal entities. In this sense, if the model and year
of the car are not provided, it is not possible to identify the car properly and
therefore it is not possible to generate knowledge about it.

At this point, we define a minimum acceptable confidence threshold. The
extraction of entities or intents requires adequate confidence level to avoid er-
rors. Therefore, consider minConfidence the value of the threshold confidence.
Results with a confidence value below such value are ignored. For our solution,
let minConfidence = 0.8.

Algorithm 1 automatically generates the KG G having as input a set of ques-
tions and answers made about products as S = {(id1, q1, a1), ..., (idn, qn, an)}.



Generating Knowledge Graphs from Unstructured Texts

Triples are generated whether intent represents valid relation with a certain
confidence, and entities match the expected elements from the Emin set with a
certain confidence.

Algorithm 1 Knowledge Graph Generation

Require: O, Emin, Ivalid, S,minConfidence
1: for all input ∈ S do
2: E ← extractEntity(input.question)
3: Ique ← extractIntent(input.question)
4: Ians ← extractIntent(input.answer)
5: if Emin ⊆ E .names and Ique = Compatibility and Ians ∈ Ivalid and

Ique.confidence ≥ minConfidence and Ians.confidence ≥ minConfidence
and each E .confidence ≥ minConfidence then

6: c← instance(O.getClassWithEntities(E))
7: for all e ∈ E do
8: G.newTriple(c, e.name, e.value)
9: end for

10: P ← instance(O.getClass(product))
11: C ← instance(O.getClass(compatibility))
12: G.newTriple(C, a, Ians)
13: G.newTriple(P, hasCompatibility, C)
14: G.newTriple(C, compatibleWith, c)
15: end if
16: end for
17: return G

We present a full example to illustrate the KG generation procedure. Assum-
ing the following example as input instances, S = [[ID01, Does this tire fits the
palio 2014?, “Yes the product fits your car”], [ID02, “I have a ford ka 2013 sedan
can I buy the product?”, “Unfortunately this product doesn’t fit in your car”]].
The execution of Algorithm 1 works as follows:

1. The algorithm takes the first input of S, that is, input = [ID01, “Does this
tire fits the palio 2014?”, “Yes the product fits your car”];

2. E receives the entities found by the entities extractor in the sentence in-
put.question. In this case, input.question = “Does this tire fits the palio
2014?”. For this sentence, E = (model,“palio”, 0.85), (year,“2014”, 0.92);

3. Ique receives the intent found by the extractor of intents from the sentence
input.question. In this case, input.question = “Does this tire fits the palio
2014” obtains Ique = (Compatibility, 0.96);

4. Ians receives the intent found by the extractor of intents from the sentence
input.answer. In this case, input.answer = “Yes the product fits your car”
obtains Ians = (FullCompatibility, 0.94);

5. At this stage, if Emin ⊆ E .names where both are {model, year}; Ique =
Compatibility; Ians ∈ Ivalid where Ivalid = { FullCompatibility, NoCompat-
ibility, ConditionalCompatibility }; Ique.confidence = 0.96 ≥ minConfi-



Sant’Anna et al.

dence; Ians.confidence = 0.94 ≥minConfidence; and each E .confidence ≥
minConfidence, that is, 0.85 ≥ minConfidence and 0.92 ≥ minConfi-
dence, where minConfidence = 0.8;

6. Among the classes in our Ontology (Figure 2), it finds the class that has
attributes with the same names as the entities in E .names. In this case, the
class found is Car ;

7. The solution instantiates a car and uses an unique identifier. Instances of
the same car (i.e., same “model” and “year” pair) would be assigned to the
same identifier. For example, let a instance have the identifier “car1”;

8. Afterwards, the solution adds the attributes of that instance in G creating
triples. In our example, the triples (car1, model, “palio”) and (car1, year,
2010) were created;

9. Algorithm also instantiates the class product and the class compatibility,
specifying their identifier and attributes according to the modeling in the
ontology. For example, let the instances have respectively the identifiers
“product1” and “compatibility1-1”, the latter representing a compatibility
between “car1” and “product1”;

10. The final stage creates the basic triples used to represent the compatibility in
the KG and adds it to G. It obtains: (compatibility1-1, type, FullCompatibil-
ity), (product1, hasCompatibility, compatibility1-1) and (compatibility1-1,
compatibleWith, car1);

11. Finally, it results in the following triples from our example: G = (car1, model,
“palio”), (car1, year, 2014), (product1, hasCompatibility, compatibility1-
1), (compatibility1-1, type, FullCompatibility), (compatibility1-1, compat-
ibleWith, car1), (car2, brand, “ford”), (car2, model, “ka”), (product2, has-
Compatibility, compatibility2-2), (compatibility2-2, type, NoCompatibility),
(compatibility2-2, compatibleWith, car2);

4 Experimental Evaluation

4.1 Quality of the generated KG evaluated with question and
answer in the automotive e-commerce domain

This analysis evaluates the processing of pairs of question and answers for the
generation of triples to populate the KG. The questions processed were about
compatibility between automotive products and customers’ cars, and they were
all manually answered by store attendants. The triples are inserted according
to Algorithm 1 and structured based on the ontology defined in Figure 2. Our
objective is to assess the capability of Algorithm 1 to generate KGs and the
quality of such result.

In the experiments, we used the RASA NLU [1] to extract intents and entities
from a given NL sentence through models previously trained. This framework
uses a word embedding model based on StarSpace [9] to classify intents and
conditional random fields model to extract entities. For training RASA, data
from automotive e-commerce stores were collected from real-world operations in
the GoBots software environment, as follows:



Generating Knowledge Graphs from Unstructured Texts

– List of 1,147 questions manually annotated with their respective intents for
training purpose. It was divided into 28 intents, where 407 questions were
classified as compatibility intent. The other intents were not considered to
the KG generation;

– Sets of 2,054 car models, 132 car brands and 106 car years and some of their
respective synonyms to be extracted from customer’s question as entities.

– List of 274 real-world human attendant answers manually annotated with
the respective intents. It was divided into 13 intents, where 74 were classified
as FullCompatibility intent, 64 as NoCompatibility intent, and 43 as Condi-
tionalCompatibility intent. Other intents were used to classify answers, but
only Full Compatibility was used to generate knowledge at this stage of the
research.

The solution was evaluated over a filtered range of questions to avoid pro-
cessing questions that certainly cannot contribute with knowledge in our current
solution. The complete input set S presented 25,383 pairs of question and an-
swers. Our evaluation used all input questions that were received by one specific
automotive e-commerce store between January/2020 and April/2020 that match
with the following conditions:

1. The question was evaluated with the intent Compatibility with a confidence
higher than 0.8.

2. The question was answered by an attendant from the e-commerce store.

The Algorithm 1 populated the KG with the following configuration:

– The complete input set of question and answer pairs S.
– The question intent Ique = Compatibility.
– The minimal question entities set Emin = {model, year}.
– The answer valid intent set Ivalid = {FullCompatibility}.
– Confidence threshold minConfidence = 0.84.

Considering the whole data set S as input, 1,744 Q&A pairs generated knowl-
edge encoded in the KG5. In total, 20,289 new triples were added, composed by
1,534 compatibilities between products and car.

In order to understand the quality of KG generation over the whole data set
S, we applied a manual evaluation on 600 Q&A pairs randomly selected from
S. Three researchers (co-authors in this paper) participated on the evaluation,
evaluating 200 pairs each. We inspected Algorithm 1 execution log to evaluate
the correctness of the KG generation. For this, we determined two measures:

– among the Q&A pairs that generated triples, which ones generated correct
triples;

4 This minimal value of confidence was defined based on internal assessments of the
solution that presented better results.

5 A sample of the produced KG can be accessed at https://rodrigocaus.github.io/
ecommerce-kgqa.

https://rodrigocaus.github.io/ecommerce-kgqa
https://rodrigocaus.github.io/ecommerce-kgqa


Sant’Anna et al.

– among the Q&A pairs that did not generate triples, which ones actually had
enough information to generate triples, and so should have been used to do
so.

In order to obtain those measures, we made a manual evaluation inferring
which Q&A pairs ideally should generate knowledge about FullCompatibility and
which knowledge should be generated. This judgment was made without consid-
ering the NLU results. We considered the question and answer texts, judged if
the question describes a Car with a valid model and year, and if the attendants’
answer implies that the product is compatible. Let a relevant Q&A pair be that
in which it is possible to determine both valid Car and FullCompatibility intent.

This evaluation enables to determine two metrics: Precision and Miss Rate.
Precision is defined as the relation between question and answer pairs that gen-
erated correct triples by all those pairs that generated triples (cf. Formula 1).
This metric signalizes the reliability of our solution.

Precision =
#Q&AGeneratedCorrectTriples

#Q&AGeneratedTriples
(1)

Miss Rate is the relation between relevant Q&A pairs that did not generate
any triples, and all relevant Q&A pairs (cf. Formula 2). This metric represents
the amount of knowledge that should be added to the KG, but it was not.

MissRate =
#RelevantQ&ADidNotGenerateTriples

#RelevantQ&A
(2)

Table 1 shows the evaluation results, from which the defined metrics were
computed. The number of pairs that generated correct triples was 34 and of
relevant Q&A pairs was 54. Precision was 0.971; and Miss Rate was 0.352. We
understand that a high Precision and a low Miss Rate indicate good quality of
the generated KG, although a lower Miss Rate is desirable.

Table 1: Results of manual evaluation of sampled Q&A pairs on KG Generation.
Q&A pair generated triples?

Yes No
Are the generated

triples correct?
Is there enough information

to generate triples?
Yes No Yes No

#Q&A pairs 34 1 19 546

In order to evaluate the reasons that led to the generation of incorrect knowl-
edge and missing of relevant knowledge added to KG, we classified errors on the
NLP in our aforementioned manual evaluation. Figure 4 shows the most frequent
RASA classification errors in the evaluated question and answer pairs. Note that
an incorrect pair may contain more than one classification error. A wrong ques-
tion entity (model or year) classification led to the generation of incorrect triples;



Generating Knowledge Graphs from Unstructured Texts

failure to correctly detect question entities and answer intents led Q&A pairs to
not generate triples.

Fig. 4: Frequency of RASA NLU classification errors. Incorrectly included triples
stands for RASA classification errors that led to the generation of incorrect
knowledge. Incorrectly non-included triples stands for RASA classification errors
that led to missing of relevant knowledge added to KG.

Table 1 presents 546 Q&A pairs that did not have enough information to gen-
erate triples according to our solution. The understanding of this value requires
an analysis of our exigences to a Q&A pair be able to generate triples. One of
our exigences, the Ivalid, determines that the pair can generate knowledge only
if the answer intent is FullCompatibility. Figure 5 exposes the distribution of
answer intents along the pairs of S and shows that pairs with FullCompatibility
correspond only to 17.6% the evaluation input. This refers to the highest bound
of Q&A pairs that would generate RDF triples. This shows that addressing other
types of compatibility might provide ways of enhancing our KG.

Fig. 5: Distribution of detected answer intents among the 25,383 Q&A pairs
processed in S.



Sant’Anna et al.

4.2 Evaluation of querying the KG in the automotive e-commerce
domain

We deployed the KG to answer incoming questions about compatibility between
automotive products and cars. The aim was to evaluate the capability of the KG
Service to answer new customer questions coming from the GoBots service.

In addition to the knowledge encoded in the KG by the processing of ques-
tion answer pairs, an additional set of triples was inserted in the KG from a
compatibility list between cars and products provided by an automotive store
working with GoBots. In total, for answering new incoming questions, the KG
Service counted with a KG containing 1,923,053 triples, composed by 347,482
compatibilities between products and cars.

The evaluation was conducted on the real-world operation of the GoBots
service. This receives a huge number of real-time questions to answer automat-
ically every day. When the service is not capable to answer a given question,
it queries the KG Service in an attempt to build an answer if the question fits
on the criteria: the intent is Compatibility with confidence threshold of 0.8; and
extracted entities are at least Emin = {model, year}.

The service was evaluated over a period of 12 days. 2,667 questions fit on
the restrictions and were queried in the KG service for evaluation purpose con-
cerning an automotive e-commerce store. It was found knowledge to successfully
answer 103 of 2,667 questions posed to the KG service in the evaluated period,
corresponding to 3.9%.

5 Discussion

This paper addressed the problem of extracting and structuring knowledge from
questions and answers in NL on products in e-commerce. The generated KG was
deployed in the GoBots systems environment and helped addressing the quality
of automated answers to enhance customer services. The solution has the poten-
tial to complement the customer service that requires specialized attendants.

The solution is scalable in the sense that e-commerce stores contain a large
number of Q&A pairs. The more pairs are processed, the more knowledge will
be available for answering questions. Also, if universal identifier for products is
applicable, knowledge from a single product can be useful and reused on different
stores, given that most of the time there are intersections on items sold. Aiming
to enhance the amount of knowledge available, we plan to improve the solution
to process new Q&A pairs as soon as a new untreated question is answered by
an human attendant.

The performance of the generation of triples is highly linked to the effec-
tiveness of the entity and intent extraction. Figure 4 presented only one entity
extraction error that led to generation of incorrect triples, which determined a
satisfactory precision level. Most errors on NLU extraction led to missing of rel-
evant knowledge. To decrease the miss rate, we should expand the training data
sets and better distribute the sentences between different intentions, in order



Generating Knowledge Graphs from Unstructured Texts

to decrease NLU extraction errors. The production of large and balanced data
sets is a major research challenge for the future development to reach further
domains other than automotive.

Figure 5 presented a low number of Q&A pairs with FullCompatibility. To
increase the number of questions answered with the retrieved knowledge from
KG, we shall include NoCompatibility and ConditionalCompatibility to the valid
intents to encode additional knowledge in our KG. This represents the most
clear research path to follow for short-range improvements on the solution. The
solution is already prepared to support such knowledge. For both Compatibility
classes, the solution would work on an analogue way. Further improvements are
necessary to encode the conditional aspect in our KG.

The proposed solution aims to work with knowledge regarding compatibility
between products and generic ConsumerItems. Although it was evaluated using
the domain of cars (automotive), our proposal is naturally and easily expansible
to other domains, considering a new ConsumerItem CI, related to the selected
domain, and the following steps:

1. Updating the ontology by adding CI and its attributes. There must be a
subset of them able to uniquely identify an instance of CI.

2. Adding attributes of CI as entities on the NLU processor and training it
with examples.

3. Generating knowledge using Algorithm 1 with Emin according to the at-
tributes uniquely identifying CI, shown in item 1.

4. Updating GoBots Service to query KG Service when the question has Com-
patibility intent and the given Emin entities.

The knowledge generated by the presented solution can be valuable on dif-
ferent future case uses other than answering questions. For example, improving
products descriptions and delivering valuable recommendations. Given the case
when we find a knowledge of NoCompatibility for a question, our KG could be
used to find another product with the same category that might have a Full-
Compatibility with the ConsumerItem of the question. The solution could point
this other product as a recommendation.

Further improvements on the KG are also related to its potential regarding
semantics. As future work, we plan to study how to take benefit of using reasoners
for inconsistency detection, for instance.

6 Conclusion

Advanced solutions for customer services concerning automated question answer-
ing can benefit customer’s experience and sales conversion. This work aimed to
increase the effectiveness of automatic answering systems to consumer questions
about products in e-commerce platforms. We investigated ways of generating a
knowledge base encoded in a RDF triple store produced from non-structured
existing data about products. The extracted knowledge has been used by the
automated response system in the GoBots company to answer specific questions



Sant’Anna et al.

without the direct assistance of human attendants. We showed the feasibility
of our solution in KG construction via automatic generation of RDF triples ex-
tracted from NL messages. Experiments evaluated the effectiveness of the KG
generation and asserted the high reliability of the solution applied in real-world
data. We demonstrated that our solution is feasible for answering new questions
based on the constructed KG. The structured knowledge was used to answer
real-time questions on e-commerce store indicating its practical and direct util-
ity. Future work involves the extension and application of the solution in a wider
range of domains and with higher volume of data.

Acknowledgements

This research was supported by GoBots and the São Paulo Research Foundation
(FAPESP) (Grant #2019/08609-0)6.

References

1. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: Open source language
understanding and dialogue management. arXiv preprint arXiv:1712.05181 (2017)

2. Chen, S., Li, C., Ji, F., Zhou, W., Chen, H.: Driven answer generation for product-
related questions in e-commerce. In: Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining. pp. 411–419 (2019)

3. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (Jun 1993)

4. Hao, Y., Zhang, Y., Liu, K., He, S., Liu, Z., Wu, H., Zhao, J.: An end-to-end
model for question answering over knowledge base with cross-attention combining
global knowledge. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). pp. 221–231 (01 2017)

5. Harris, S., Seaborne, A.: Sparql 1.1 query language. https://www.w3.org/TR/
sparql11-query (2013), accessed in 2020-04-04

6. Hoffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.:
Survey on challenges of question answering in the semantic. Semantic Web Journal
8, 1–26 (01 2017)

7. Kertkeidkachorn, N., Ichise, R.: An automatic knowledge graph creation frame-
work from natural language text. IEICE Transactions on Information and Systems.
E101.D pp. 90–98 (01 2018). https://doi.org/10.1587/transinf.2017SWP0006

8. Su, Y., Yang, S., Sun, H., Srivatsa, M., Kase, S., Vanni, M., Yan, X.: Exploiting
relevance feedback in knowledge graph search. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp.
1135–1144 (2015)

9. Wu, L., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: Starspace: Embed
all the things! arXiv eprint arXiv:1709.03856 (2017)

6 The opinions expressed in this work do not necessarily reflect those of the funding
agencies.

https://www.w3.org/TR/sparql11-query
https://www.w3.org/TR/sparql11-query
https://doi.org/10.1587/transinf.2017SWP0006

	Generating Knowledge Graphs from Unstructured Texts: Experiences in the E-commerce Field for Question Answering

