
Abstract.

Towards Querying in Decentralized Environments
with Privacy-Preserving Aggregation

Ruben Taelman1 , Simon Steyskal2 , Sabrina Kirrane3

1IDLab, Ghent University – imec, Belgium, ruben.taelman@ugent.be
2Siemens AG Austria, Austria, simon.steyskal@siemens.com
3Vienna University of Economics and Business, Austria, sabrina.kirrane@wu.ac.at

The Web is a ubiquitous economic, educational, and collaborative
space, however, it also serves as a haven for personal information harvesting. Ex-
isting decentralised Web-based ecosystems, such as Solid, aim to combat personal
data exploitation on the Web by enabling individuals to manage their data in the
personal data store of their choice. Since personal data in these decentralised
ecosystems are distributed across many sources, there is a need for techniques to
support efficient privacy-preserving query execution over personal data stores.
Towards this end, in this position paper we present a framework for efficient pri-
vacy preserving federated querying, and highlight open research challenges and
opportunities. The overarching goal being to provide a means to position future
research into privacy-preserving querying within decentralised environments.

1. Introduction

The Web was originally envisaged as a free, non-discriminatory decentralised infor-
mation space built upon standards and technical specifications. Although the Web
brings major benefits as an economic, educational, and collaborative space, it also
serves as a means for personal information harvesting. One potential solution to exist-
ing personal data harvesting practices is to enable individuals to take more control
over who has access to their data in the form of personal data stores. One of the lead-
ing efforts in this space is Solid [1], which is a decentralised Web based ecosystem
that gives people more control over their data by enabling everyone to have a personal
data pod, and by providing app developers with the infrastructure needed to develop
applications that work over distributed data sources. By decoupling data from ap-
plications, individuals are afforded more control over how their personal data are pro-
cessed. In such a setting, the number of pods that need to be queried could potentially
become very large, for instance in the case of a large social network.
Existing research into data aggregators [2, 3] (i.e., third parties responsible for main-
taining indexes that could be used to optimise source selection) could be used to im-
prove query performance by reducing the number of sources that need to be consulted
for any given query. However, one of the major limitations of current aggregation
techniques, is the fact that they assume that all data is public, which is not realistic in
many scenarios (e.g., in a social network context individuals may wish to share a lim-
ited amount of data with acquaintances and more data with friends). As such, query
execution and aggregation techniques need to be extended to cater for different access

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

http://www.rubensworks.net/
http://www.steyskal.info/
http://sabrinakirrane.com/

policies. Concretely, data providers need to be able to associate access policies with
data, and query engines need to be able to authenticate themselves to sources such
that only authorised data is returned. Furthermore, since aggregators may be untrusted
third-parties, there is a need for privacy-preserving aggregation techniques, such that
data aggregators are not able to access unauthorised data, but authorised query en-
gines are still able to exploit indexing.
In this position paper, we propose a high-level framework that can be used to: (i) opti-
mise querying through privacy-preserving aggregation; and (ii) enable federated
querying with access control. In addition, we present an instantiation of the proposed
framework, and discuss open research challenges and opportunities.
The remainder of this article is structured as follows: In Section 2 we present the nec-
essary background and related work. In Section 3 we introduce a motivating use case
scenario. Following on from this our framework is introduced in Section 4 and the
challenges and opportunities of possible instantiations are presented in Section 5. Fi-
nally we conclude the article and discuss future work in Section 6.

2. Background and Related Work

We start by presenting background and related work on the Solid platform, federated
query processing, approximate membership functions, and access control.

Social Linked Data. Solid [1] is a decentralised Web-based ecosystem that decouples
data from applications. With Solid, everyone has their own personal data pod, in
which any kind of data can be stored. Concretely, Solid makes use of a collection of
Web standards and technical specifications, including the Resource Description
Framework (RDF) [4], the Linked Data stack [5], the Linked Data Platform
(LDP) [6], Linked Data Notifications (LDN) [7], WebID [8], and Web Access Control
(WAC) [9]. The RDF data model together with the Linked Data principles are used to
give data a universal meaning, and to allow data to be linked across multiple data
pods. Solid data pods implement the LDP specification which caters for RDF read-
write operations via RESTful Web Application Programming Interfaces (APIs). The
LDN specification is used to enable pods to communicate with each other. Using We-
bID, everyone has a personal online identifier that they can use to authenticate against
a data pod. While, in turn WAC is used to specify rules that determine if agents and
applications are authorised to read, write, append, or control RDF files. The frame-
work described in this paper discusses how Solid could be extended to enable effi-
cient privacy-preserving federated query evaluation over many Solid data pods.

Federated Query Processing. In a truly decentralised Web, data is spread over multi-
ple sources, which means that there is no single endpoint through which all data can
be retrieved. For this, federated query processing is an active area of research in
which techniques are investigated to intelligently delegate the execution of parts of a
SPARQL query to specific sources. In order to enable federations over many sources
to scale more efficiently aggregation techniques whereby one or more independent
aggregators continously crawl sources (i.e., dereference Uniform Resource Identi-

https://www.w3.org/DesignIssues/LinkedData.html
https://github.com/solid/web-access-control-spec

fiers) and maintain data summaries [2, 3], could be used to reduce the number of
sources that need to be consulted. Query engines could use these summaries as an in-
dex structure that enables them to identify the sources that are needed to answer spe-
cific queries, which reduces the range of sources that need to be queried. In the con-
text of this work, we extend existing query optimisation approaches by introducing an
framework for efficient privacy-preserving federated query execution.

Approximate Membership Functions. Approximate Membership Functions (AMFs)
are probabilistic data structures used to efficiently determine whether or not elements
are part of a collection. Given that AMFs are probabilistic, they may produce false
positives, but they always produce true negatives. Since AMFs are typically much
smaller than a full dataset, they are a valuable method for pre-filtering when querying.
Bloom filters [10] are one example of an AMF technique. A Bloom filter consists of a
bitmap, and a predetermined set of hash functions. AMFs have been used in various
of RDF querying scenarios, such as reducing the number of expensive I/O
operations [11] during triple pattern query evaluation, improving the performance of
join operations [12], and reducing the number of HTTP requests for Triple Pattern
Fragments [13]. In the context of federated querying, the SPARQL ASK response has
been enhanced with Bloom filters to share a summary of the matching results [14],
which allows overlaps between different sources to be identified. Herein, we use
Bloom filters to encode encrypted triple components that are available within each
source, and aggregators are responsible for aggregating privacy-preserving summaries
for several Solid data pods.

Secure Indexes. Secure Indexes [15] are data structures whereby membership can be
tested in constant time without revealing any information about the contents of the in-
dex. The proposed secure indexes, which are build using pseudo-random functions
and bloom filters, can be used to facilitate searches on encrypted data. The proposed
scheme is secure against adaptive chosen keyword attacks, i.e., given two documents
containing an unequal number of words and an index it is not possible for an adver-
sary to determine which document is encoded in the index with a probability greater
than random guessing. Tekin and Sahin [16] further demonstrate how counting bloom
filters can be used to cater for dynamic updates. In this paper we demonstrate how se-
cure indexes can be used to generate privacy-preserving index for data contained in
data pods.

Access Control. Web Access Control (WAC) [9] is an RDF vocabulary and an access
control framework, which demonstrates how together WebID and access control poli-
cies specified using the WAC vocabulary, can be used to enforce distributed access
control. Villata et al. [17] and Sacco and Passant [18] extend the WAC vocabulary to
cater for context based access control policies and privacy preferences respectively.
Alternatively, Encryption-Based Access Control [19] involves encrypting RDF frag-
ments (i.e. subjects, predicates, objects, graphs or some combination thereof) with an
encryption key, such that only those that have the key are permitted to access the data,
thus serving as both an authentication and an authorisation mechanism. Existing pro-

https://github.com/solid/web-access-control-spec

posals involve using symmetric encryption [20], public-key encryption [21], or func-
tional encryption [19] to generate RDF ciphers. In this paper, encryption mechanisms
are used to create privacy-preserving aggregations, whereas access control policies
are used to restrict access to data at query time.

3. Motivating Use Case Scenario

Following the Solid design principles, in the personalised address book use case sce-
nario used to guide our work, address books are merely lists of WebIDs, and the actu-
al contact details are stored in the respective contacts’ pod. To keep this use case sim-
ple, we assume an address book of Alice that contains two contacts: Bob and Carol. In
practise, such an address book could contain many more contacts. Alice has chosen to
make this address book public, so that everyone is able to see everyone she knows,
albeit without necessarily having access to everyone’s private contact details as these
are controlled via separate access control policies. We also consider Dave as a fourth
person that has no relationship with anyone else.
For the sake of simplicity, we consider three hierarchical subject access groups (i.e.,
Everyone, Acquaintances, Friends) per pod (identified by a unique id), where the
members of each group can be configured for each pod. An assertion, of the following
form, could be used to indicate that Carol considers Alice to be an acquaintance:

<https://alice.pods.org/profile#me> S S
An assertion, of the following form, could be used to indicate that Bob considers Al-
ice as a friend:

<https://alice.pods.org/profile#me> S S S
The data stored in pods maintained by Alice, Bob and Carol, and the various access
control rules are depicted in Fig. 1.

Alice uses the /contacts file in her pod to list everyone that she knows using Web-
IDs that point to the profiles of the respective people. The profiles of Bob and Carol
both contain their name, email and telephone number, which are readable for select

∈ A
Carol ⊆

E
Carol

∈ F
Bob ⊆

A
Bob ⊆

E
Bob

Alice Da ve

P od Alice https://alice .pods .org/

Address Book /contacts

</profile#me> :kno ws
<https://bob .pods .org/profile#me>,
<https://carol.org/#i>,

. . .

P od Bob https://bob .pods .org/

Profile /profile

</profile#me> :name ”Bob”.
</profile#me> :email <bob@mail.org>.

</profile#me> :telephone ”0499 12 34 56”.

r1

r1

r2

P od Carol https://carol.org/

Profile /

</#i> :name ”Carol”.
</#i> :email <i@carol.org>.

</#i> :telephone ”0499 11 22 33”.

r3

r4

r5

Fig. 1: An overview of the proposed personalised address book use case scenario.

people.
Generally speaking, an access control policy is composed of one or more authorisa-
tions that are used to state that a given subject (e.g. a user, role, group) is permitted to
perform an action (e.g. read, write, share) on a certain object (e.g. dataset, file, graph).
Policies are often composed of sets of positive authorisations (permissions) of the
form <subject, action, object>. Authorisations of this form could be used by Bob and
Carol to restrict access to data stored in their respective pods:

Bob is quite liberal, and allows everyone (S) to read both his name and email, how-

ever his telephone number can only be accessed by friends (S):

r1 = ⟨{s | s ∈ S }, read, {q | q ∈ ProfileBob ∧ q.predicate ∈ {:name,:email}}⟩

r2 = ⟨{s | s ∈ S }, read, {q | q ∈ ProfileBob ∧ q.predicate ∈ {:telephone}}⟩

Carol only allows her name to be read by the public (S), her email can be read by

acquaintance (S), however her telephone number can only be accessed by friends

(S):

r3 = ⟨{ s | s ∈ S }, read, {q | q ∈ ProfileCarol ∧ q.predicate ∈ {:name}}⟩

r4 = ⟨{ s | s ∈ S }, read, {q | q ∈ ProfileCarol ∧ q.predicate ∈ {:email}}⟩

r5 = ⟨{ s | s ∈ S }, read, { q | q ∈ ProfileCarol ∧ q.predicate ∈ {:telephone}}⟩

4. Efficient Privacy-Preserving Federated Querying

The goal of the proposed efficient privacy-preserving federated query execution
framework, depicted in Fig. 2, is to provide a high level overview of the components
needed to support privacy-preserving querying within decentralised environments.

4.1. Using Data Summaries for Efficient Querying

Based on the use case scenario presented in Section 3, we assume that many data pods
exist, each potentially containing multiple privacy-constrained files and, clients need
to authenticate themselves to the respective data pod servers. Depending on each file’s

E
Bob

F
Bob

E
Bob
F
Bob

E
Carol

A
Carol

F
Carol

E
Carol
A
Carol
F
Carol

Fig. 2: Our efficient privacy-preserving federated query execution framework.

access control policy, the client may be authorised to read the full file contents, parts
of it, or not at all. Since realistic decentralised environments could easily contain hun-
dreds or thousands of files, it would be inefficient for the client to query each of them.
For this reason, we make use of the data summaries [2] concept in order to reduce the
number of sources that need to be queried by the client. We assume that each data pod
exposes a data summary for each separate file, which is subsequently aggregated by
third-party aggregators, as depicted in Fig. 2. The figure provides an overview of a
privacy-preserving federation with six access restricted sources and privacy-preserv-
ing summaries, and a third-party aggregator that combines these summaries in a pri-
vacy-preserving manner, together with a list of all sources it summarises. Client-side
query engines can use this combined summary to derive which sources are relevant
for any given query. Since files may contain private data, these data summaries must
be privacy-preserving, i.e., they must not allow access restricted data to be leaked to
unauthorised individuals. In the proposed framework, access policies are represented
as access keys that are taken into account by the summary generation algorithm. Pods
could generate these summaries lazily on demand, periodically or upon file changes.
Following the approach from Vander Sande et al. [13], each summary consists of 4
parts, corresponding to the 4 components in RDF quads (subjects, predicates, objects
and graphs). Using the summaries of these files, third-party aggregators can create
combined summaries. Since the separate summaries are expected to be privacy-pre-
serving, the combined summaries will also be privacy-preserving, which means that
third-party aggregators need not necessarily be trusted parties. In addition to exposing
the combined summary, an aggregator also needs to maintain and expose the list of
sources it aggregates over, such that clients know which pods could potentially con-
tribute query results. Although in our example we consider one aggregator, in practice
multiple aggregators can exist with different source ranges. A client-side query engine
can make use of the combined summary provided by the aggregator to perform source
selection before query execution, i.e., reduce the number of sources to be queried.
Thus the combined summaries serve to determine the pods that contain relevant and
accessible data. While, the pods take care of the access control enforcement at query
time, by taking into account permissions specified in terms of authorisation rules.

4.2. Technical Requirements

The main technical requirements are derived from the fact that our architecture needs
to support efficient privacy-preserving query execution over personal data that is dis-
tributed across many sources.

No data leaking. Access restricted data must not be available to those who are
not authorised to access it.
Privacy-preserving summary creation. It must be possible to add values to
summaries by access key and file URI.
Summary combinations. It must be possible to combine two summaries, where
the combined summary is identical to a summary where all of the entries were
added directly.

Access Key Creation Algorithm.

Summary Creation Algorithm.

Authorised membership checking. Probabilistic membership checking must be
possible for a given value, access key and file URI. False positives are allowed,
but true negatives are required.
Query Execution with Access control. It must be possible for the pod to limit
query results based on a set of access policies.

4.3. Core Functions of the Framework

We also propose a set of abstract algorithms that are needed in order to realise the pro-
posed privacy-preserving federation framework. The proposed abstraction is benefical
as each algorithm could be implemented in a variety of ways.

As a prerequisite for encoding access into sum-
maries, the first step is to create a map of access keys to quads based on existing ac-
cess policies, using the algorithm outlined in Listing 1. Here we assume that pod own-
ers already have a set of access control policies that govern access to quads stored in
theirs pods. Although there is a many to many mapping between quads and policies,
there is a one to one mapping between access policies that are used for policy enforce-
ment at query time, and access keys that are used to create privacy-preserving sum-
maries that are needed to optimise federated querying.

In the proposed framework, data pods expose a
separate summary for each file, and aggregators create combined summaries using
these separate summaries; and maintain a list of all source URIs that they aggregate
over. We assume that pods expose summaries that are created according to the algo-
rithm presented in Listing 2. In this algorithm, a file summary is created for each quad
component, where we iterate over all the file’s quads, and the access key that are ap-
plicable for each quad. For each of these combinations, we add the quad component
to the summary, for the given key and file source URI. The SummaryInitialize
and SummaryAdd functions that are used in the algorithm depend on the type of
summary that is being used. A high-level example of this summarisation algorithm
can be seen in Fig. 3.

FUNCTION CreateAccessKeys(Q, P)
 INPUT:
 Q: set of quads, P: set of policies
 OUTPUT:
 QPK: hashmap of quads to policies and keys
QPK = new Map()
FOREACH q in Q
 FOREACH p in P
 k = GenerateKey(q,p)
 QPK = AddKey(QPK, q, p, k)
RETURN QPK

Listing 1: Algorithm for generating keys for quads based on existing access policies.

Summary Combination Algorithm.

Client-side Source Selection Algorithm.

Based on the resulting file summaries, the ag-
gregator can create a combined summary using the algorithm from Listing 3. As be-
fore, the SummaryInitialize and SummaryCombine functions that are used in
these algorithms depend on the type of summary that is being used. shows a high-lev-
el example of how this aggregation could be performed. It is worth noting that both
summaries and combined summaries require some bookkeeping. Each file summary
must remain up-to-date with respect to the file’s contents. This could be done by ei-
ther immediately invalidating the summary upon file changes, or by periodically re-
generating the summary. The combined summary requires similar actions to avoid go-
ing stale. This can be achieved through immediate notifications from the pod to the
aggregator upon file changes, or the aggregator can periodically scan the files or its
summaries for changes.

Assuming we have an aggregator expos-
ing a summary over a set of sources, we introduce the algorithm in Listing 4 where a

FUNCTION CreatePrivacyPreservingSummary(Q, u, QPK)
 INPUT:
 Q: set of quads, u: URI of the file, QPK: hashmap relating quads to policies and
 OUTPUT:
 Σ: summary containing: Σ.subject, Σ.predicate, Σ.object, Σ.graph
FOREACH c in [subject, predicate, object, graph]
 Σ.c = SummaryInitialize()
FOREACH q in Q
 k = QPK(q).k
 FOREACH c in [subject, predicate, object, graph]
 Σ.c = SummaryAdd(Σ.c, q.c, k, u)
RETURN Σ

Listing 2: Algorithm for creating a summary over a file within a data pod.

Fig. 3: Privacy-preserving summarisation of all RDF quads within a file.

FUNCTION CreateAggregatedSummary(U)
 INPUT:
 U: set of sources
 OUTPUT:
 Σ: combined summary containing: Σ.subject, Σ.predicate, Σ.object, Σ.graph
FOREACH c in [subject, predicate, object, graph]
 Σ.c = SummaryInitialize()
FOREACH u in U
 Σ' = get summaries from u
 FOREACH c in [subject, predicate, object, graph]
 Σ.c = SummaryCombine(Σ.c, Σ'.c)
RETURN Σ

Listing 3: Algorithm for creating a combined summary over a set of sources.

Client-side Query Execution Algorithm.

client-side query engine can make use of an aggregator’s summary to reduce the num-
ber of sources the client should query over, i.e., to perform source selection. In this
case, we only consider quad pattern queries, because they form the foundation of
more expressive SPARQL queries, and query engines typically decompose SPARQL
query into several smaller quad pattern queries through a query planner [22]. As input,
our algorithm assumes a quad pattern query, the list of access keys provided by the
user, and the summary and list of sources it obtained from an aggregator. Based on
these inputs, the client will iterate over all non-variable quad components and all
available keys. For each combination, it will first do a pre-filtering step before locally
iterating over all sources. It will check whether or not the quad component value is
present in the summary for the current key and quad component, with source URI set
to ε to match with all sources. If it is not present, then we return an empty array, as
none of the sources will contain the given component value. If it is present, some of
the sources may contain the component value, because we consider summaries as be-
ing probabilistic. After that, we iterate over each source URI, and check its presence
in the summary of the current quad component, combined with the component value
and key. When a true negative is found for a source, this source is removed from the
list of sources. Finally, the remaining list of sources is returned, which can be used by
the query engine to execute the quad pattern query over. In this algorithm, the
SummaryContains also depends on the type of summary that is being used.

Once the client has obtained the list of
sources that it needs to query for a given quad pattern, the next step is to execute the
query against each source. The client uses the sources returned by the aggregator to
execute queries against the various pods using the algorithm outlined in Listing 5. The
algorithm takes as input a client identification (e.g., WebID), a quad pattern query,
and the set of sources returned by the source selection algorithm. Individual queries
are executed against each of the sources and the aggregated results are returned to the client.

FUNCTION SelectSources(q, K, Σ, U)
 INPUT:
 q: quad pattern query, K: access keys, Σ: summary containing: Σ.subject, Σ.pred
 OUTPUT:
 U': list of selected sources
U' = []
FOREACH c in [subject, predicate, object, graph]
 IF q.c not variable
 FOREACH k in K
 IF ! SummaryContains(Σ.c, q.c, k, ε)
 RETURN []
 FOREACH u in U
 IF ! SummaryContains(Σ.c, q.c, k, u)
 add u to U'
RETURN U'

Listing 4: Client-side algorithm for selecting query-relevant sources.

Server-side Query Execution Algorithm. On receipt of a query the server uses the
algorithm outlined in Listing 6 to ensure that only authorised query results are re-
turned to the client. In the proposed algorithm a map relating quads to policies and
keys is used to identify access policies that govern a particular query. We assume that
there may be multiple policies that govern a particular quad and thus envisage a sim-
ple conflict resolution strategy whereby either prohibitions override permissions or
visa versa. The algorithm stops as soon as it finds a policy that permits the given
query to be executed and returns the results of the query execution.

4.4. Query Execution Over Privacy-Preserving Summaries

Fig. 4 shows an example of how our privacy preserving summaries can be used in
client-side query engines. The presented high level architecture should be seen as a
basis for federated querying over decentralised environments with private data, where
there is a single aggregator, and all sources we want to query over are considered by
the aggregator. In practice, multiple aggregators can exist, they may apply to overlap-
ping sources, and some sources may not be aggregated at all. For these cases, exten-
sions to this algorithm will be needed, which we consider out-of-scope for this work.

FUNCTION QuerySources(i, q, U)
 INPUT:
 i: client identification, q: quad pattern query, U: list of sources
 OUTPUT:
 R: query results
R = {}
FOREACH u in U
 R = R ∪ ExecuteQuery(i, q, u)
RETURN R

Listing 5: Client-side algorithm for querying query-relevant sources.

FUNCTION ExecuteQuery(i, q, QPK)
 INPUT:
 i: client identification, q: quad pattern query, QPK: hashmap relating quads to
 OUTPUT:
 R: query results
R = {}
IF i not verified
 RETURN {}
p = QPK(q).p
IF ! AllowedAccess(p, i, q)
 RETURN {}
ELSE
 R = ExecuteQueryWithAccessControl(i, q, p)
RETURN R

Listing 6: Querying with access control algorithm.

5. Challenges and Opportunities

When it comes to efficient privacy-preserving federated query evaluation over many
Solid data pods there are several open challenges and opportunities.

Access Policy Specification. We assume that pod owners need to be able to specify
access control policies that can be enforced both from an indexing and also a query
processing perspective, taking into consideration the no data leaking requirement.
Considering our use case scenario, in order to support privacy-preserving summaries,
there is a need to generate access keys for both the acquaintances and the friends
files, such that the summary generation process does not work with plain text attribut-
es but rather cipher text. In the case where data is public by default, for instance in the
case of the everybody file, no key is needed. We assume that there is a many to many
mapping between quads and policies and a one to one mapping between authorisa-
tions (enforced at query time) and access keys (used to create privacy preserving data
summaries). Our initial proposal makes use of simple symmetric keys, however for
more complex scenarios both attribute-based encryption and/or key derivation algo-
rithms could be use to provide support for more complex access policies. When to
comes to policy management, there is a need to ensure that (i) access keys are tightly
bound to access policies, and (ii) said keys are distributed to authorised individuals
(i.e. acquaintances and friends). In order to revoke access to a particular individual
one would need to regenerate the keys and redistribute them to authorised individuals.

Summary Generation and Maintenance. The requirements for enabling federated
querying in an efficient manner through privacy-preserving aggregators are mainly
driven by the summarisation technology. In this context symmetric keys are used to
create privacy-preserving summaries that do not leak access restricted data. We con-
sider AMFs, such as Bloom filters, as being one possible candidate for such sum-
maries that meet the privacy-preserving summary creation and summary combi-
nations requirements. The main advantage of using AMFs is that all of the perfor-
mance-critical operations on summaries (adding, combining, membership checking)
can happen very efficiently, as these are essentially just bitwise operations. However,

Client

Planner

Ex ecutor

query Q, sources U , k e ys K

query results R

Agg regator

Agg regated Summar y

S1
S2
. . .

P1
P2
. . .

O1
O2
. . .

G1
G2
. . .

GET agg regated summar y

Repeated f or each q in Q

SelectSources

quad patter n q, sources U , k e ys K

selected sources

P od Alice

File 1 File 2

Access Control P olicies

P od Bob

File 1 File 2

Access Control P olicies

P od Carol

File 1 File 2

Access Control P olicies

ex ecute q ex ecute q
ex ecute q

Fig. 4: Federated query execution using a privacy-preserving summary.

it is important to highlight that certain parameters need to be configured, and that all
operations must be known before they can be operationalised. For example, for
Bloom filters the parameters are the number of hashes and bits. These parameters and
the number of entries all impact the false positive error rate. Concretely, the parame-
ters used to setup individual summaries need to be identical such that they can be
combined by an aggregator. In a decentralised environment, it is however difficult to
reach a consensus with respect to fixed parameters. This means that a parameter deter-
mination mechanism is needed for aggregators that want to combine multiple AMFs.
Also, since the creation of an AMF for a file can become expensive, sources may de-
cide to adopt different maintenance strategies.

Source Selection. In the proposed framework, a client-side query engine can make
use of the aggregator’s summary to perform source selection, in order to reduce the
number of sources that are being consulted by this engine. From a source selection
perspective, we address the authorised membership checking requirement. As these
summaries allow source selection based on quad patterns instead of full SPARQL
queries, source selection can be pushed down into the query plan, which allows quad
patterns in the query to be executed over a different range of sources. Furthermore,
instead of applying source selection before query execution, this allows source selec-
tion to optionally happen adaptively during query execution, following the federation
algorithm of Triple Pattern Fragments [23]. A hybrid approach where source selection
happens both before and during query execution could be investigated. Open chal-
lenges include investigating how file-based source selection could be combined and
enhanced by existing source selection methods for SPARQL endpoints, and the auto-
matic discovery of applicable aggregators by clients.

Query Execution with Access control. Since file-based APIs are the basis for data
retrieval on the Web as prescribed by the HTTP protocol, we assume this as a starting
point for federated querying in decentralised environments. Furthermore, we consider
quad pattern-based access to file sources instead of more complex SPARQL queries.
This is because triple and quad patterns are the fundamental elements of SPARQL
queries, and any SPARQL query can be decomposed into multiple smaller quad pat-
tern queries. For example, client-side query engines such as Comunica [22] decom-
pose any SPARQL query into a sequence of quad pattern queries for evaluation
against heterogeneous sources, where the results of these queries are joined together
locally. More complex SPARQL features such as FILTER and aggregates are handled
client-side. Once the query engine has identified the data sources that could potential-
ly contribute results to their query, the query engine needs to authenticate the user to
the server(s) and execute the query or parts thereof. The server is responsible for en-
forcing access control, and executing the query or parts thereof. Here, we address the
query execution with access control requirements. One of the key challenges with
respect to access and usage Control relates to the enforcement of authorisations, i.e.,
policies (cf.,) which govern who can do what with which resources under what condi-
tions. Here, we envision a mechanism that translates access policies (i.e. sets of autho-
risations) into constraints (e.g., data shapes like SHACL [24]) which requests and re-

spective query results can then be validated against. However, the trade-off between
granularity of policies (e.g., file-based, pattern-based, quad-based, …) and associated
computational overhead needs to be thoroughly investigated.

6. Conclusions

In this paper, we propose a framework for efficent privacy-preserving querying within
decentralised environments where distributed data sources are governed by one or
more access control policies. The proposed framework, which is built around the no-
tion of privacy-preserving summaries, serves as a basis for exploring and comparing
alternative strategies for efficient querying with access control. As a first step, we dis-
cuss a possible instantiation of this framework which uses Bloom filters for creating
privacy-preserving summaries over encrypted data, and highlight several open re-
search challenges and opportunities. In future work, we will evaluate the use of
Bloom filters for privacy-preserving federated querying both in terms of performance
and privacy preservation. Additionally, we will investigate how access control poli-
cies and access keys can be managed effectively and efficiently in a decentralised
Web based ecosystem such as Solid.

Acknowledgements

Ruben Taelman is funded by the Research Foundation – Flanders and Sabrina Kirrane
is supported by the Austrian Science Fund (FWF) and netIdee SCIENCE under grant
V 759.

References

1. Mansour, E., Sambra, A.V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A.,
Aboulnaga, A., Berners-Lee, T.: A demonstration of the solid platform for social
web applications. In: The 25th International Conference Companion on World
Wide Web (2016).

2. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data
summaries for processing live queries over linked data. World Wide Web. 14,
(2011).

3. Vander Sande, M., de Valk, S., Meijers, E., Taelman, R., Van de Sompel, H., Ver-
borgh, R.: Discovering Data Sources in a Distributed Network of Heritage Infor-
mation. The 15th International Conference on Semantic Systems. (2019).

4. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1: Concepts and Abstract Syntax.
W3C (2014).

5. Berners-Lee, T.: Linked Data. https:/ / www.w3.org/DesignIssues/LinkedData.html
(2009).

6. Speicher, J.A., Steve, Malhotra, A.: Linked Data Platform 1.0. W3C (2015).
7. Capadisli, S., Guy, A.: Linked Data Notifications. W3C (2017).

https://www.w3.org/DesignIssues/LinkedData.html

8. Sporny, M., Inkster, T., Story, H., Harbulot, B., Bachmann-Gmür, R.: WebID 1.0
Web Identity and Discovery. W3C (2014).

9. Web Access Control (WAC). https:/ / github.com/solid/web-access-control-spec
(2019).

10. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM. 13, (1970).

11. Pu, X., Wang, J., Luo, P., Wang, M.: AWETO: efficient incremental update and
querying in RDF storage system. In: The 20th ACM international conference on
Information and knowledge management (2011).

12. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In:
The ACM SIGMOD International Conference on Management of data (2009).

13. Vander Sande, M., Verborgh, R., Van Herwegen, J., Mannens, E., Van de Walle,
R.: Opportunistic Linked Data querying through approximate membership meta-
data. In: International Semantic Web Conference (2015).

14. Hose, K., Schenkel, R.: Towards benefit-based RDF source selection for SPARQL
queries. In: The 4th International Workshop on Semantic Web Information Man-
agement (2012).

15. Goh, E.-J.: Secure indexes. IACR Cryptol. ePrint Arch. 2003, 216 (2003).
16. Tekin, L., Sahin, S.: Implementation and evaluation of improved secure index

scheme using standard and counting bloom filters. International Journal of Infor-
mation Security Science. 6, 46–56 (2017).

17. Villata, S., Delaforge, N., Gandon, F., Gyrard, A.: An Access Control Model for
Linked Data. In: On the Move to Meaningful Internet Systems: OTM 2011 Work-
shops (2011).

18. Sacco, O., Passant, A.: A Privacy Preference Manager for the Social Semantic
Web. In: Semantic Personalized Information Management: Retrieval and Recom-
mendation (2011).

19. Fernández, J.D., Kirrane, S., Polleres, A., Steyskal, S.: Self-Enforcing Access
Control for Encrypted RDF. In: European Semantic Web Conference (2017).

20. Kasten, A., Scherp, A., Armknecht, F., Krause, M.: Towards search on encrypted
graph data. In: Proc. of the International Conference on Society, Privacy and the
Semantic Web-Policy and Technology (2013).

21. Giereth, M.: On Partial Encryption of RDF-Graphs. In: Proc. of International Se-
mantic Web Conference (2005).

22. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
Modular SPARQL Query Engine for the Web. In: The 17th International Semantic
Web Conference (2018).

23. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a Low-cost
Knowledge Graph Interface for the Web. Journal of Web Semantics. (2016).

24. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C
(2017).

https://github.com/solid/web-access-control-spec

