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Abstract. Knowledge graphs (KGs) are a useful source of background
knowledge to (dis)prove facts of the form (s, p, o). The goal of this paper
is to present the Fact checking via path Embedding and Aggregation
(FEA) system. FEA starts by carefully collecting the paths between s
and o that are most semantically related to the domain of p. It learns
vectorized path representations, aggregates them according to different
strategies, and use them to finally (dis)prove a fact. Our experiments
show that our hybrid solution brings benefits in terms of performance.

1 Introduction

1 We live in a digital era, where both false and true rumors spread at an un-
precedented speed. In this open context, having a way to assess the reliability
of individual facts is of utmost importance. How could one quickly verify the
reliability of statements like (Dune, directed, D. Lynch)?
Related Work. Existing approaches, can roughly been categorized in three main
categories. First, text-based approaches based on a variety of learning models;
these can use probability and logics (e.g., [2]), deep-learning (e.g., [12]), and
also include multi-modal (e.g., text and video) information (e.g., [5]). While
these approaches can rely on large amounts of text and/or mutimedia sources
like audio and video, there are difficulties in automatically understanding such
pieces of information to (dis)prove a fact. This makes it difficult to give precise
semantics to the fact being checked and contextualize it. On one hand, giving
semantics boils down to understanding the fact itself rather than relying on
statistical indicators like the popularity of a tweet about the fact. For instance,
to (dis)prove the fact (Dune, director, D. Lynch), it is crucial to understand that
the predicate director relates a Film and a Director and that Director is a subclass
of Person. On the other hand, contextualizing facts and gaining insights from
(chains of) related facts can represent a valuable source of knowledge [20]. As
an example, the fact (Jaguar, owner, Tata Motors) provides more insights when
understanding that it is about the car brand instead of the animal; the additional
fact (Tata Motors, type, Company) can help in shedding light on this aspect.

1 Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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Second, approaches that leverage structured knowledge (e.g., knowledge graphs)
instead of unstructured text (e.g., [16, 7, 14, 18]). In this case, structured back-
ground knowledge allows for more precise forms of reasoning for fact-checking.
For instance, it has been shown that the paths between the subject and object
of a targeted fact, that include other entities and predicates, form a valuable
body of semantic evidence (see e.g., [15, 7]). These approaches offer advantages
in terms of semantic interpretation and contextualization of a statement. For
instance, the statement (Dune, director, D. Lynch) can be given both a semantic
characterization and put into context by retrieving information from KGs like
DBpedia. For instance, we understand that the domain of the fact is that of
movies and that there are frequently occurring semantic relations between D.
Lynch and actors (e.g., K. Mclaughlin) that also acted in Dune. Moreover, the
usage of paths or entire portions of a KG of interest for the target statement can
provide (visual) evidence about why the fact is true or false. Nevertheless, KG-
based approaches lack mechanisms to automatically differentiate the importance
of the collected paths. Third, a more recent strand of research has considered the
usage of entity and predicate embeddings for fact-checking (e.g., [17, 3]). The idea
of these approaches is to treat fact-checking as a link prediction problem. While
these approaches have the advantage of working with vectorized representations
of entities and predicates to automatically identify and extract salient features,
they are sub-optimal as they do not directly tackle the problem of vectorizing
entire facts, paths, and their aggregation.
Contributions. The goal of this paper is to present the Fact checking via path
Embedding and Aggregation (FEA) system. FEA carefully collects paths from
a KG between the subject and object of a fact to be checked that are most
semantically relevant to it. However, instead of directly working with this subset
of all paths, it learns vectorized path representations, aggregates them according
to different strategies, and use them to finally (dis)prove a fact. To the best of
our knowledge, this is the first work combining triple and path embedding and
aggregation for fact checking.

2 Preliminaries

A Knowledge Graph (KG) contains facts (aka statements) that can be divided
into an ABox and a TBox. We see the ABox as a node and edge-labeled di-
rected multi-graph G=(V,E, T ) where V is a set of uniquely identified vertices
representing entities (e.g., D. Lynch), E a set of predicates or properties (e.g.,
director) and T a set of facts of the form (s, p, o), where s, o ∈ V and p ∈ E.
The TBox is another multi-graph defined as T = (Ct, Pt, Lt, Tt), where Ct is
the set of all class names, Pt is the set of all property names, Lt is a set of
properties defined in some ontological language, and Tf is a set of triples of
the form (u, p, v) where u, v ∈ Ct ∪ Pt and p ∈ Lt. In this paper, we con-
sider Lt to be the subset of the RDFS ontological language defined as follows:
Lt={rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range}. We use the no-
tation domain(p) (resp., range(p)) to indicate the domains (resp., ranges) of a
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property. After applying the RDFS inference on the TBox Tf , we construct the
corresponding TBox graph defined as GS=(Vs, Es, Ts), where each vi ∈ Vs is a
class name belonging to Ct, pi ∈ Pt ∪ {rdfs:subClassOf}, and (vs, pi, vt) ∈ Ts is a
triple such that domain(pi)=vs and range(pi)=vt.

3 The FEA Framework

The problem we solve can be formulated as follows: given a fact (s, p, o), and a
set of paths P(s, p, o) = {π1, π2, . . . , πk} connecting s and o and related to the
domain expressed by p, the goal is to estimate the truthfulness of the fact by:

Φ(s,p,o) = mΘ((s, p, o),P((s, p, o))) (1)

where m is the model having parameters Θ and Φ ∈ [0, 1] is the truthfulness
score. The FEA framework consists of four main modules: path extractor, path
embedder, path aggregator, and fact checker ; Fig. 1 provides an overview of the
framework. The end-to-end learning objective of FEA is guided by the input
fact to be checked (s, p, o) and a set of (domain-specific) paths extracted from
a knowledge graph. The output of the model Φ(s,p,o) represents the truthfulness
of the fact. Note that the set of input paths can provide evidence useful to
understand why a given fact is true or false, for instance by displaying paths.
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⇡1:
<latexit sha1_base64="7H+++tOi5e+FpuBaSeASC6Dpkdg=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbs0ilgEbCwjmA9IjrC32UuW7O2du3NCOPInbCwUsfXv2Plv3CRXaOKDgcd7M8zMCxIpDLrut7O2vrG5tV3YKe7u7R8clo6OWyZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqVPpJaLvVa77pbJbdecgq8TLSRlyNPqlr94gZmnEFTJJjel6boJ+RjUKJvm02EsNTygb0yHvWqpoxI2fze+dknOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J45WdCJSlyxRaLwlQSjMnseTIQmjOUE0so08LeStiIasrQRlS0IXjLL6+SVq3quVXvvlau3+RxFOAUzuACPLiEOtxBA5rAQMIzvMKb8+i8OO/Ox6J1zclnTuAPnM8frMSPCQ==</latexit><latexit sha1_base64="7H+++tOi5e+FpuBaSeASC6Dpkdg=">AAAB73icbVA9SwNBEJ3zM8avqKXNYiJYhbs0ilgEbCwjmA9IjrC32UuW7O2du3NCOPInbCwUsfXv2Plv3CRXaOKDgcd7M8zMCxIpDLrut7O2vrG5tV3YKe7u7R8clo6OWyZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnCScD+iQyVCwShaqVPpJaLvVa77pbJbdecgq8TLSRlyNPqlr94gZmnEFTJJjel6boJ+RjUKJvm02EsNTygb0yHvWqpoxI2fze+dknOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J45WdCJSlyxRaLwlQSjMnseTIQmjOUE0so08LeStiIasrQRlS0IXjLL6+SVq3quVXvvlau3+RxFOAUzuACPLiEOtxBA5rAQMIzvMKb8+i8OO/Ox6J1zclnTuAPnM8frMSPCQ==</latexit>

…

Path Aggregator

Combined
Path Representation

PV
<latexit sha1_base64="IWVkYkOgh+eBdSHG0a+7oazpt/Y=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSpQwMlVgYi0QfUhtFjuu0Vh0nsh2kEvVLWBhAiJVPYeNvcNoM0HIkS0fn3Kt7fIKEM6Ud59sqbW3v7O6V9ysHh0fHVfvktKfiVBLaJTGP5SDAinImaFczzekgkRRHAaf9YHab+/1HKhWLxYOeJ9SL8ESwkBGsjeTb1foownpKMM86C79X9+2a03CWQJvELUgNCnR8+2s0jkkaUaEJx0oNXSfRXoalZoTTRWWUKppgMsMTOjRU4IgqL1sGX6BLo4xRGEvzhEZL9fdGhiOl5lFgJvOUat3Lxf+8YarDay9jIkk1FWR1KEw50jHKW0BjJinRfG4IJpKZrIhMscREm64qpgR3/cubpNdsuE7DvW/W2jdFHWU4hwu4Ahda0IY76EAXCKTwDK/wZj1ZL9a79bEaLVnFzhn8gfX5AyBzkrQ=</latexit><latexit sha1_base64="IWVkYkOgh+eBdSHG0a+7oazpt/Y=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSpQwMlVgYi0QfUhtFjuu0Vh0nsh2kEvVLWBhAiJVPYeNvcNoM0HIkS0fn3Kt7fIKEM6Ud59sqbW3v7O6V9ysHh0fHVfvktKfiVBLaJTGP5SDAinImaFczzekgkRRHAaf9YHab+/1HKhWLxYOeJ9SL8ESwkBGsjeTb1foownpKMM86C79X9+2a03CWQJvELUgNCnR8+2s0jkkaUaEJx0oNXSfRXoalZoTTRWWUKppgMsMTOjRU4IgqL1sGX6BLo4xRGEvzhEZL9fdGhiOl5lFgJvOUat3Lxf+8YarDay9jIkk1FWR1KEw50jHKW0BjJinRfG4IJpKZrIhMscREm64qpgR3/cubpNdsuE7DvW/W2jdFHWU4hwu4Ahda0IY76EAXCKTwDK/wZj1ZL9a79bEaLVnFzhn8gfX5AyBzkrQ=</latexit>
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<latexit sha1_base64="IWVkYkOgh+eBdSHG0a+7oazpt/Y=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSpQwMlVgYi0QfUhtFjuu0Vh0nsh2kEvVLWBhAiJVPYeNvcNoM0HIkS0fn3Kt7fIKEM6Ud59sqbW3v7O6V9ysHh0fHVfvktKfiVBLaJTGP5SDAinImaFczzekgkRRHAaf9YHab+/1HKhWLxYOeJ9SL8ESwkBGsjeTb1foownpKMM86C79X9+2a03CWQJvELUgNCnR8+2s0jkkaUaEJx0oNXSfRXoalZoTTRWWUKppgMsMTOjRU4IgqL1sGX6BLo4xRGEvzhEZL9fdGhiOl5lFgJvOUat3Lxf+8YarDay9jIkk1FWR1KEw50jHKW0BjJinRfG4IJpKZrIhMscREm64qpgR3/cubpNdsuE7DvW/W2jdFHWU4hwu4Ahda0IY76EAXCKTwDK/wZj1ZL9a79bEaLVnFzhn8gfX5AyBzkrQ=</latexit><latexit sha1_base64="IWVkYkOgh+eBdSHG0a+7oazpt/Y=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWLRITFXSpQwMlVgYi0QfUhtFjuu0Vh0nsh2kEvVLWBhAiJVPYeNvcNoM0HIkS0fn3Kt7fIKEM6Ud59sqbW3v7O6V9ysHh0fHVfvktKfiVBLaJTGP5SDAinImaFczzekgkRRHAaf9YHab+/1HKhWLxYOeJ9SL8ESwkBGsjeTb1foownpKMM86C79X9+2a03CWQJvELUgNCnR8+2s0jkkaUaEJx0oNXSfRXoalZoTTRWWUKppgMsMTOjRU4IgqL1sGX6BLo4xRGEvzhEZL9fdGhiOl5lFgJvOUat3Lxf+8YarDay9jIkk1FWR1KEw50jHKW0BjJinRfG4IJpKZrIhMscREm64qpgR3/cubpNdsuE7DvW/W2jdFHWU4hwu4Ahda0IY76EAXCKTwDK/wZj1ZL9a79bEaLVnFzhn8gfX5AyBzkrQ=</latexit>

�(Dune, director, D. Lynch)
<latexit sha1_base64="pfhkPhwMqvk+jr2aBeLHzNmO+Os=">AAACJHicbVDLSgNBEJz1GeMr6tHLYBQiSNj1oqAHwRw8eIhgEiEJYXbSmwzOzi4zvWJY8jFe/BUvHnzgwYvf4uQhxGhBQ01VN9NdfiyFQdf9dGZm5+YXFjNL2eWV1bX13MZm1USJ5lDhkYz0jc8MSKGgggIl3MQaWOhLqPm35wO/dgfaiEhdYy+GZsg6SgSCM7RSK3ey2yh3RaGBcI8mSEuJgv4B/Xm2hQaOkZ6QSkV62VO829/fbeXybtEdgv4l3pjkyRjlVu6t0Y54EoJCLpkxdc+NsZkyjYJL6GcbiYGY8VvWgbqlioVgmunwyD7ds0qbBpG2pZAO1cmJlIXG9ELfdoYMu2baG4j/efUEg+NmKlScICg++ihIJMWIDhKjoxBkzxLGtbC7Ut5lmnG0uWZtCN70yX9J9bDouUXv6jB/djqOI0O2yQ4pEI8ckTNyQcqkQjh5IE/khbw6j86z8+58jFpnnPHMFvkF5+sb7buk7Q==</latexit><latexit sha1_base64="pfhkPhwMqvk+jr2aBeLHzNmO+Os=">AAACJHicbVDLSgNBEJz1GeMr6tHLYBQiSNj1oqAHwRw8eIhgEiEJYXbSmwzOzi4zvWJY8jFe/BUvHnzgwYvf4uQhxGhBQ01VN9NdfiyFQdf9dGZm5+YXFjNL2eWV1bX13MZm1USJ5lDhkYz0jc8MSKGgggIl3MQaWOhLqPm35wO/dgfaiEhdYy+GZsg6SgSCM7RSK3ey2yh3RaGBcI8mSEuJgv4B/Xm2hQaOkZ6QSkV62VO829/fbeXybtEdgv4l3pjkyRjlVu6t0Y54EoJCLpkxdc+NsZkyjYJL6GcbiYGY8VvWgbqlioVgmunwyD7ds0qbBpG2pZAO1cmJlIXG9ELfdoYMu2baG4j/efUEg+NmKlScICg++ihIJMWIDhKjoxBkzxLGtbC7Ut5lmnG0uWZtCN70yX9J9bDouUXv6jB/djqOI0O2yQ4pEI8ckTNyQcqkQjh5IE/khbw6j86z8+58jFpnnPHMFvkF5+sb7buk7Q==</latexit>

�(Dune, director, D. Lynch)
<latexit sha1_base64="pfhkPhwMqvk+jr2aBeLHzNmO+Os=">AAACJHicbVDLSgNBEJz1GeMr6tHLYBQiSNj1oqAHwRw8eIhgEiEJYXbSmwzOzi4zvWJY8jFe/BUvHnzgwYvf4uQhxGhBQ01VN9NdfiyFQdf9dGZm5+YXFjNL2eWV1bX13MZm1USJ5lDhkYz0jc8MSKGgggIl3MQaWOhLqPm35wO/dgfaiEhdYy+GZsg6SgSCM7RSK3ey2yh3RaGBcI8mSEuJgv4B/Xm2hQaOkZ6QSkV62VO829/fbeXybtEdgv4l3pjkyRjlVu6t0Y54EoJCLpkxdc+NsZkyjYJL6GcbiYGY8VvWgbqlioVgmunwyD7ds0qbBpG2pZAO1cmJlIXG9ELfdoYMu2baG4j/efUEg+NmKlScICg++ihIJMWIDhKjoxBkzxLGtbC7Ut5lmnG0uWZtCN70yX9J9bDouUXv6jB/djqOI0O2yQ4pEI8ckTNyQcqkQjh5IE/khbw6j86z8+58jFpnnPHMFvkF5+sb7buk7Q==</latexit><latexit sha1_base64="pfhkPhwMqvk+jr2aBeLHzNmO+Os=">AAACJHicbVDLSgNBEJz1GeMr6tHLYBQiSNj1oqAHwRw8eIhgEiEJYXbSmwzOzi4zvWJY8jFe/BUvHnzgwYvf4uQhxGhBQ01VN9NdfiyFQdf9dGZm5+YXFjNL2eWV1bX13MZm1USJ5lDhkYz0jc8MSKGgggIl3MQaWOhLqPm35wO/dgfaiEhdYy+GZsg6SgSCM7RSK3ey2yh3RaGBcI8mSEuJgv4B/Xm2hQaOkZ6QSkV62VO829/fbeXybtEdgv4l3pjkyRjlVu6t0Y54EoJCLpkxdc+NsZkyjYJL6GcbiYGY8VvWgbqlioVgmunwyD7ds0qbBpG2pZAO1cmJlIXG9ELfdoYMu2baG4j/efUEg+NmKlScICg++ihIJMWIDhKjoxBkzxLGtbC7Ut5lmnG0uWZtCN70yX9J9bDouUXv6jB/djqOI0O2yQ4pEI8ckTNyQcqkQjh5IE/khbw6j86z8+58jFpnnPHMFvkF5+sb7buk7Q==</latexit>

Fact 
Checker

Truthfulness Score
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Fig. 1. Overview of FEA. Paths are grouped and processed for each length l.

3.1 Path Extractor

This module is responsible for the exploration of the KG to gather information
in the form of paths, which will be used by the other modules.
Schema-level patterns. The Path Extractor leverages the TBox graph to find
schema-level patterns for an input predicate p. It assembles paths up to a length
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l between the domain(s) and range(s) of p treating the input graph as undi-
rected. To reduce the search space, this module only extracts the patterns most
relevant to p, where relevance is defined in terms of the extent to which the path
is semantically related to p. As an example, for the predicate director, paths
including predicates like director, starring producer are intuitively more relevant
than paths including birthDate or college. To quantify the relevance between a
predicate and a schema-level pattern, the Path Extractor relies on a predicate
relatedness measure. Given a pair of predicates (pi, pj) their relatedness is:

Rel(pi, pj) = Cosine(Emb(pi), Emb(pj)) (2)
where Emb(·) is an embedding function (e.g., RotatE [19]) and Cosine is the
cosine operation between the vector embeddings of pi and pj . Finally, the relat-
edness between a path and a predicate p is computed as the average relatedness
between p and all predicates in the path. The algorithm to extract patterns, not
reported for sake of space, proceeds with a BFS traversal of the TBox graph
conditioned on the top-k predicates.
Data-level paths. The Path Extractor has available a set of schema-level pat-
terns Pp, for each predicate p, found in the previous step. Hence, given an in-
put fact (s, p, o), the goal is to find data-level paths from the ABox for each
schema-level pattern πi ∈ Pp. We adopt an algorithm based on a variant of
Depth-First-Search (DFS), which starts from s and at each traversal step of the
graph ensures the compliance with πi in terms of predicate traversed and entity
types toward reaching the entity o. Consider the fact (Dune, director, D. Lynch),
the schema-level-path π = Work

starring−−−−−→ Actor
starring←−−−−−Work

director−−−−−→ Person and the
DBpedia KG. The algorithm starts from the node Dune and traverses the edge
starring (as per π) reaching the nodes J. Nance, K. Mclaughlin, and E. McGill.
From each of these nodes, it traverses edges labeled as starring in reverse direc-
tion (again as per π) and reaches the nodes Eraserhead, Twin Peaks and Twin
Peaks Fire Walks with Me. Finally, according to the last step of π, the algorithm
traverses edges labeled as director thus closing the paths between the subject
Dune and the object D. Lynch of the input fact. When considering the pattern
π = Film

cinematography−−−−−−−−−−→ Person
director←−−−−− Film

editing−−−−→ Person, it is not possible to find
any path between Dune and D. Lynch complying with π in the ABox. If no path
can be found, FEA performs an unconstrained DFS.

3.2 Path Embedder

To be processed by the learning model at the core of FEA, paths found by the
Path Extractor are given a numerical representation. This is done by vectorizing
each fact (triple) in a path, which can be done in different ways. One way is
to consider techniques like TransE [3] or DistMult [21] to first learn entity and
predicate embeddings via a generic function Emb(·), which given an entity or
a predicate, returns its corresponding vector embedding. Hence, to compute the
embedding of a fact t=(s, p, o), one can perform some operation op (e.g., con-
catenation) on its constituents vectors, that is, Emb(t)=op( Emb(s), Emb(p),
Emb(o)). Note that we do not consider one-hot encodings since these techniques
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do not take into account the structure of the KG. Another way to learn fact
embeddings is to rely on approaches like triple2vec [8], which instead of learning
embeddings for entities and predicates separately directly learns fact embed-
dings. For the time being, given a fact t=(s, p, o), we define its embedding as
tE=EmbF(t). Building upon the embedding of facts, a path π={t1, t2, . . . tl} of
length l including l facts is encoded as a sequence πE=[t1E , t

2
E , . . . , t

l
E ].

3.3 Path Aggregator and Fact Checker

Paths converted into their vector form by the Path Embedder are then passed
to the Path Aggregator. The Aggregator implements a variety of aggregation
strategies. We can see the aggregator as another learning module, which takes
the paths from the Path Embedder and provides an overall vector representation
for them. We considered the following aggregation strategies:
1. Average Pool. It combines the different representations of paths by con-

catenating the vector representations of the facts in a path. Then on the
set of paths obtained, the aggregator performs a 1D average pooling opera-
tion. The final combined path representation is a single vector obtained by
averaging the paths between s and o. This can be summarized as follows:

P lV = AvgPool([⊕(πli),∀πli ∈ P l]) (3)

where AvgPool is the one-dimensional average pooling operation, and ⊕(·)
is the vector concatenation operation. This representation relies on the em-
beddings of the facts in each path.

2. Max Pool. What changes wrt the AvgPool is the final vector of the path;
instead of being the average, it is now computed by using a dense neural
network layer. The resulting activations are then passed through a max-
pooling operation which helps to derive a single vector representation for
the paths of length l. The whole operation can be summarized as follows:

P lV = MaxPool([σ(Wl · ⊕(πli) + bl),∀πli ∈ P l]) (4)

where MaxPool is the one-dimension max pool operation (which selects
bitwise the maximum value from multiple vectors to derive a single final
vector.), Wl are the weights to be learned, bl the bias, and σ the activation
function.

3. LSTM Max Pool. The idea is to treat a (vectorized) path as a sequence
an employ an LSTM network to cater for sequential dependencies between
facts in a path. With this reasoning, each fact in a path represents a point
of a sequence. At each step l − 1, the LSTM layer outputs a hidden state
vector hl−1, consuming subsequence of embedded facts [f1, ..., fl−1]. In other
words, xl−1=fl−1. The input xl−1 and the hidden state hl−1 are used to
learn the hidden state of the next path step l. After processing all of them
via the LSTM, the aggregator employs another LSTM followed by a max
pool operation to produce the combined representation PV .
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As the Path Extractor groups paths according to their different lengths, the
Path Aggregator processes each length-specific set of paths separately. Finally,
the path representations for each length are concatenated together to give the
final length-specific path representation PV (see Fig. 1). The last step of the FEA
framework consists in providing the final truthfulness score about the input fact.
This is done by the Fact Checker, which takes as input the output of the Path
Aggregator (i.e., the vector representation PV ) and feeds it into a classifier. We
treat the fact-checking problem as a binary classification problem, where a true
fact and a false fact are assigned 1 and 0 as target values, respectively. The final
goal is to optimize the negative log-likelihood objective function, which defined
as follows:

L = −
∑

f+∈F+

log ŷf+ +
∑

f−∈F−
log(1− ŷf− ) (5)

where F+={f+ | yf+=1}, F−={f+ | yf−=0} are the true (resp., false) facts.

4 Evaluation

We tested the ability of our approach to check facts considering both existing
and not existing facts in a given KG. We use the Area Under the Receiver
Operating Characteristic curve (AUC) as the primary quality indicator because
it is independent from thresholds and has been used previously (e.g., [18, 7]). All
experiments have been carried out on a machine with a 4 core 2.7 GHz CPU
and 16 GB RAM. We considered DBpedia as underlying KG.
Embedding and relatedness computation. To compute fact embeddings we used
triple2vec [8], which directly computes fact embeddings by leveraging the no-
tion of line graph of a KG. We tested other indirect approaches based on the
embedding of the triple elements (see Section 3.2) but obtained less competi-
tive results. Predicate embeddings were used to obtain a predicate relatedness
matrix, where the relatedness of each pair of predicates is computed as per equa-
tion (2) for all datasets but DBpedia. In this case, we obtained the predicate
relatedness matrix from KStream2. This was necessary since neither DistMult
nor ComplEx could run on this dataset on our machine.

4.1 Comparison with related work

We considered the following competitors: (i) CHEEP [7], an approach, which
leverages paths to come up with a truthfulness score for an input fact; (ii)
PredPath [15], which exploits frequent anchored predicate paths between pair
of entities in the KG; (iii) Path Ranking Algorithm (PRA) [9], which extracts
(positive and negative) training set of triples via a two-sided unconstrained ran-
dom walk starting from the fact endpoints to retrieve paths between them; (iv)
KStream [18], which reduces the fact-checking problem to the problem of max-
imizing the flow between the subject and the object of the fact; (v) Klinker

2 https://github.com/shiralkarprashant/knowledgestream
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[4], which relies on a single short, specific path to differentiate between a true
and a false fact; (vi) LEAP [1], which tackles the problem of link prediction on
unlabeled graphs. We included LEAP as we took inspiration from it for the path
aggregation strategies, although FEA tackles the more challenging problem of
fact-checking. For LEAP, paths were generated ignoring the edge labels and we
report the best results obtained with its aggregation strategies; (vii) we could
not run experiments with DistMult and ComplEx because of memory issues.
Nevertheless, we report the results for TransE [3] obtained by Shiralkar et al.
[18]. We did not consider approaches based on logical rules learned from the KG
(e.g., [13]) since it is not completely clear how to obtain high-quality rules.

Fig. 2. Performance (average AUC) on both real-world (up) and synthetic (down)
datasets (average of 4 runs); # true facts over all facts appears below the predicate.

Benchmarks. We compared the various systems on two benchmarks defined
on DBpedia. The first defined in Shiralkar et al. [18] and available online3. It
includes 5 real-world datasets derived from Google Relation Extraction Corpora
and WSDM Cup Triple Scoring challenge and 5 synthetic datasets mix a-priori
known true and false facts. The number of true/false facts for each benchmark
is reported below the predicate name in Table 2. The second benchmark4 re-

3 https://github.com/shiralkarprashant/knowledgestream/
4 https://github.com/huynhvp/BUCKLE-Fact checking/
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leased by Huynh and Papotti [11] takes into account popularity, transparency,
homogeneity, and functionality properties of the facts to cover a broader variety
of scenarios than previous benchmarks.

Evaluation results. We observe that on the first benchmark (Fig. 2), FEA
performs quite well for all predicates considered. In particular, it brings some
improvement wrt CHEEP, the second-best performing system, when consid-
ering the LSTMMaxPool aggregator. We note that approaches like PredPath,
which only consider one path perform worse; perhaps a single path is not able to
capture all needed semantic evidence. As expected, the worst-performing system
is LEAP, which, however, has not been designed to work on labeled graphs as
it aims to solve the link prediction problem in unlabeled graphs. We observe
that TransE, which also tackles the link prediction problem performs better
than LEAP; although worse than the other systems. This could be because it
does not consider paths. Results are more interesting in the second benchmark
(Table 1), which has carefully been designed to test the behavior of fact-checking
systems on (non)popular (NP) and random entities (R). On this benchmark, we

§small

Approach Predicate P NP R

FEA-LSTMAggr
nearestCity .87 .67 .78
foundedBy .82 .67 .86

manufacturer .91 .88 .94
employer .70 .52 .71

FEA-MaxAggr
nearestCity .79 .61 .72
foundedBy .77 .63 .79

manufacturer .88 .79 .86
employer .66 .47 .62

FEA-AvgAggr
nearestCity .85 .64 .75
foundedBy .79 .63 .80

manufacturer .89 .88 .91
employer .68 .50 .67

CHEEP
nearestCity .86 .61 .72
foundedBy .81 .62 .79

manufacturer .78 .86 .81
employer .67 .43 .64

PredPath
nearestCity .84 .58 .69
foundedBy .80 .63 .81

manufacturer .55 .51 .53
employer .58 .38 .50

KLinker
nearestCity .87 .66 .76
foundedBy .82 .67 .80

manufacturer .90 .85 .92
employer .69 .43 .66

LEAP
nearestCity .41 .40 .41
foundedBy .69 .58 .71

manufacturer .68 .57 .64
employer .58 .42 .43

TransE
nearestCity .49 .40 .43
foundedBy .75 .60 .75

manufacturer .72 .47 .70
employer .62 .46 .48

Table 1. AUC on the benchmarks in [11] for popular (P), non popular (NP), and
random (R) entity pairs. Train/test pairs have been provided by the authors of [11].



Fact-checking via Path Embedding and Aggregation 9

ran experiments for FEA, LEAP, and CHEEP while for TransE, KLinker,
and PredPath we report results from [11]. Here we observe that FEA per-
forms particularly well on non-popular entities with both LSTMMaxPool and
Avg aggregators. This may be explained by the fact that even when the number
of paths is smaller than between popular entities, the Path Aggregator can cor-
rectly capture the necessary evidence, which passed to the other modules of the
FEA framework (after embedding) captures the truthfulness of facts eventually.
FEA leverages deep-learning techniques for the embedding of paths providing a
strategy that can capture dependencies between the facts in a path and aggre-
gate them. Moreover, we remark the importance of considering the semantics of
paths for fact-checking but, most importantly, the need to correctly relate the
semantics of such paths with the fact to be checked in order to only consider
the most relevant ones. Indeed, even if LEAP uses node embedding and path
aggregation strategies, it is the worst performing system. We noted that the sys-
tem fails to especially recognize false facts since even if the existence of a link
is correctly predicted, this is not enough as for fact-checking it is necessary to
establish the existence of a specific link.

5 Conclusions and Future Work

We describe a fact-checking approach that combines path-based approaches and
embedding based approaches. Our experiments showed that first embedding
whole facts in a path and then aggregating them is a viable solution. Investigat-
ing other aggregation strategies, the usage of adversarial learning techniques [10],
and temporal information [6] is in our research agenda.
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10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS. pp. 2672–2680
(2014)

11. Huynh, V.P., Papotti, P.: A benchmark for fact checking algorithms built on knowl-
edge bases. In: CIKM (2019)
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