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Abstract. With the hype around blockchain technologies, misinforma-
tion on ‘get rich quick’ scams are becoming rampant. In this work, we
describe a solution that puts in the groundwork to identify fraudulent
users and track them across multiple blockchains using semantic mod-
eling. The application of Semantic Web and Linked Data technologies
provides a well-grounded solution to connecting fragmented but concep-
tually linked resources. This paper focuses on showing that through the
integration of ontology-driven knowledge graphs and a queryable graph
database, a novel off-chain protocol utilizing comprehensive cross-chain
integration techniques can be used to link an identity across multiple
blockchains, and provide a significantly enhanced foundation for prove-
nance data analysis for scam activity detection. This foundation could
help reduce the challenges users face as they try to safely and effectively
navigate the decentralized cryptocurrency financial ecosystem.
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1 Introduction

As it exists today, blockchain still carries much mystique and uncertainty even
though the first large-scale implementation of the technology is over a decade old,
with Bitcoin introducing itself to the world in 2009. Undoubtedly, blockchain as a
technology aims to be the harbinger of a new era of secure, trustless transactions
that do not require a third-party facilitator or arbitrator. In a nutshell, a global
ledger of immutable, digital records stored in virtual “blocks” is maintained by
distributed, independent computers. These independent nodes work together to
maintain the global ledger of transactions, which is uniquely fault-tolerant and
decentralized to establish trust among all participants in the network. The digital
currencies we have analyzed as part of this work are Bitcoin (BTC), Ethereum
(ETH), and Bitcoin Cash (BCH).
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While major blockchain technologies pride themselves on their fault-tolerant,
secure nature at their core, the structures built around or on top of these
blockchains are exploited daily and prone to a multitude of attack vectors. The
entry points to these decentralized ledger technologies are usually via the Web.
Therefore, the same misinformation challenges that exist on the Web apply to
users who want to understand and invest in these nascent technologies.

For a technology still in its infancy with such vast potential, its key draw-
backs must be identified, and methods for extracting more information about
blockchain activities need to be developed. Such disadvantages include high frag-
mentation across blockchains, and investigative difficulties when dealing with
increasing instances of crypto exchange hacks, and other fraudulent activities
that are fueled by misinformation on the Web. We will introduce some of the
blockchain’s growing pains, particularly fraudulent scams, and fragmentation in
the blockchain ecosystem.

Phishing scams are nothing new, but have unique advantages when being
operated on decentralized currencies. Digitally transacted US currency must be
tied to a bank account, which is tied to one’s identity, and is certain to pass
under the watchful eye of a regulatory agency. Conversely, many digital curren-
cies are quite easy to operate anonymously. Many were intentionally built to
make tracking the flow of currency nearly impossible. The inputs and result-
ing outputs from any given Bitcoin (BTC)1 transaction can consist of multiple
wallet addresses not necessarily related to the account of the original sender of
the BTC. The effects of this are that malicious actors can pose as whatever
convincing entity they want and lure people into traps that continually evolve
in complexity, causing people to send large amounts of currency (often BTC)
to malicious addresses. Video re-runs of a famous tech celebrity giving a speech
on cryptocurrencies, with QR codes of malicious receiver addresses and entic-
ing rewards or other social media posts, are used as baits. More recently, there
was a Twitter hack where the hackers took over many high profile accounts
in a cryptocurrency scam [1]. This is a newer type of operation identified in
Phillips and Wilder’s discussion of cryptocurrency scams [2]. Their discussion
lays bare the need for fiat-accepting exchanges, i.e., exchanges that let users buy
cryptocurrencies with central, government-controlled currencies, such as the US
dollar, euro, to have preventative tools to identify these scam addresses (and
potentially all accounts directly associated accounts), given that exchanges are
the most popular destination for these illicitly obtained funds.

No widespread or easily accessible solutions exist for maintaining or view-
ing interoperability between disparate blockchains. For example, if Alice held
one BTC and wanted to complete an expensive purchase from Bob using an
Ethereum smart contract that governs the terms of the transactions in a com-
putable manner, she would not have an easy way to use her BTC for this pur-
chase without going through an exchange. Such a centralized exchange requires
the trust of its users, and do not align with the decentralized ecosystems that
lets mutually distrusting parties to interact. The primary solution now is to rely
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on a crypto exchange on the Web to take Alice’s BTC, and swap in an equiva-
lent BTC to ETH value from the exchanges’ store of multiple currencies. Alice
would have no way of viewing how the flow of her BTC eventually made it to
Bob’s wallet that has ETH tokens. Moreover, the exchange rate value is the key
metric that could be manipulated by the third party exchange to its advantage,
reducing the real value of ETH that Alice’s BTC could be worth. There is no
way to prove if indeed a given exchange rate was entirely fair, and worst of all,
a third-party intermediary controlled the transaction between Alice and Bob.
In other cases, accounts operated by scammers can target vulnerabilities in the
underlying blockchains themselves. These situations are reminiscent of the DAO
hack [3], which caused the original hard-fork of the Ethereum network, resulting
in two disparate Ethereum ecosystems. While rare, it is still prudent to develop
a resource that can adequately mark these suspicious addresses in all cases for
future whitelisting, such that no legitimate exchange of value could allow them
to realize their illicitly obtained values.

2 Integrative Blockchain Provenance Analyzer

Given the blockchain’s growing pains identified above, we borrow techniques
from decades of semantic web research to link the fraudulent accounts on various
platforms to better inform users. Specifically, we utilize the provenance ontology
(Prov-O) in our work. Prov-O’s strict, organized, yet broad schema makes it a
well-suited candidate for converting data from different blockchains, as well as
from the Web, toward a common representation that can be interpreted by any
system.

The function of the “Integrative Blockchain Provenance Analyzer” (IBPA) is
to graphically define cross-chain information from the perspective of any given
user (or potential user) of a set of cryptographic currencies. Most crucially, the
IBPA runs tests on those inputted wallet-addresses to assign a Pass/Fail score
to addresses that match fraudulent criteria, which enables any user suspecting a
crypto scam to ascertain if it infact is a scam. Additionally, the IBPA is chain-
agnostic - meaning that should a scam operation accept ETH, BTC, BCH, or
other currencies, the data abstraction performed by the IBPA would not be im-
pacted in any way and would yield similar results. However, the diversification
of crypto holdings poses a challenge for cohesive user analysis. Conventionally,
this would be managed by a centralized exchange behind the scenes (with or
without graphical representation). Therefore, identifying trends and interactions
of users of these different currencies is left up to the exchange itself, with the
near-zero ability for everyday users to analyze other cryptocurrency accounts
themselves. The IBPA puts in the groundwork needed to “link” addresses, ac-
counts, and transaction nodes together on a graph instance by associating pro-
vided wallet addresses to a single “identifier” property. The identifier could be
a URI for a user (“Alice,” as an example), and the wallet addresses Alice has
(or presumed to be Alice’s) across her different cryptocurrency holdings are
then associated to her user node on the graph using Prov-O constructs such



as prov:wasAssociatedWith. These public wallet addresses are all that is re-
quired to access the transactional data that will be formatted and converted to
the queryable, targeted graph instance of cross-chain interactions by the IBPA.
The graph instance can be targeted and analyzed with all the built-in querying
capabilities of Neo4j and its external Awesome Procedures On Cypher (APOC)
library.2 Anyone can run these queries themselves, so the accessibility of cross-
chain analysis outside of private exchanges is achieved. Additionally, the IBPA
interface is extensible, such that additional functionalities could be quickly built
with more 1-click queries that display analytical results to the interface. Multi-
ple cross-chain currencies could be added to the interface as well, allowing for a
comprehensive transactional profile to be built from a series of crypto addresses
connected to a single user.

(a) Ethereum Transactions (b) Bitcoin Transactions

Fig. 1: Representing Blockchain Transactions as a Graph

2.1 Directed Graph Network of Blockchain Transactions

The IBPA intends to represent user nodes in a fashion that isolates raw transac-
tion (TX) data into its simplest components necessary for straightforward prove-
nance analysis. Not all cryptocurrencies use a standard method of representing
transactions in their respective systems. The usage of Prov-O in IBPA fills this
void as it will now enable a common vocabulary to analyze any scam activi-
ties either within or across various cryptocurrencies. Our implementation cur-
rently supports Ethereum and Bitcoin, and could be extended to support other
cryptocurrency schemes. For instance, the Ethereum network provides “to” and
“from” addresses for each transaction and contract call posted on the network,
that can be modeled using prov:hadRole. It is easy to draw a 1-degree connec-
tion from one Ethereum user account to the next because the raw TX data is
available due to Ethereum’s “account-based scheme.” Despite every Ethereum
transaction occurring as its own discrete unit, consisting of an input and output
account address, schema can be transformed into a less complicated graphical
format by removing the “TX” intermediary node for this cross-chain provenance
analysis (see fig. 1a). A similar method can be applied to the Bitcoin network
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with its UTXO scheme (Unspent Transaction Output schema), but it is a bit
more complicated. Fig. 1b shows how BTC and BCH transactions are split and
interpreted in our graph. In both figures, the right side is the resulting graph
representation for each respective currency. Additionally, the directed-acyclic
nature is desired to reduce the inevitable redundancies seen in blockchain trans-
actions. Instead of creating hundreds of new user nodes over the lifetime of an
account, a single node and relationship can be drawn between repeated patterns
of transactions, which dramatically reduces the need for extraneous data inges-
tion, thus enhancing the speed of the queries in question. The IBPA can be run
successfully to determine a suspicious wallet address on an average laptop due
to the high efficiency of how the raw chain data is processed.

2.2 Determination Classifier

Several tests are performed on each address entered into the IBPA to classify
if a particular address is a scam address or not. Upon various criteria being
met, an integer score variable is automatically incremented, using a combina-
tion of visual and quantitative classification methods. Normal crypto accounts
(chosen at random from a block explorer) when processed by the IBPA into a
graph instance resemble a structure similar to fig 2. Here, a single user ”Alice”,
is passing currency back and forth between other users and herself over a long
period. However, accounts that are carrying out phishing scams resemble, with
a striking similarity, to the graphs shown in fig 3. In this figure, now Alice is the
fraudulent actor, luring in unsuspecting holders of crypto as part of the scam.
Please note that this is a real depiction of one of the accounts that carried out a
BTC scam on the Web. Specifically, the number of incoming relationships, out-
going relationships, and the relationship between those two values are analyzed
by the IBPA. Additionally, the values of cryptocurrency sent to the address of
interest provide important clues as to its ostensible purpose.

Fig. 2: Example of a Typical Control Crypto Address



Fig. 3: Example of a Typical Scam BTC Address

Compared with typical addresses (often sending a variable number of cur-
rency tokens back and forth between a few addresses), wallets behind phishing
operations often request of their victims provide a specified amount of currency
in increments that are easy to remember, like 0.1, 0.2, 0.5. If a significant number
of transactions are sent to an address that never returns tokens to the senders,
especially in those increments, we deduce this as extremely likely to be a scam
address. Additional analytics are run on the timing of the transactions. Typi-
cally, the interquartile (or non-outlier) range for the highest rate of transactions
per hour occurs within a several-hour period. Compared with a standard wallet
or receiver address - which will periodically receive and transfer out currency
as deemed appropriate - phishing accounts’ activity is often abrupt and abso-
lute. Over a few hours, enough transactions are sent to the receiver address at a
rate of 1-3 per hour, then the scammer promptly shuts down the operation, and
empties the balance out into several different addresses.

3 Results

As a result of the graphs produced via the raw data processing by the IBPA,
pattern matching tests can be run to determine whether or not specific addresses
exhibit similarities those carrying out scam operations. These tests take into ac-
count a variety of parameters outlined in table 1. Parameters, like the average
number of incoming transactions over a unit of time, the quantity of incom-
ing/outgoing transactions, and the quantity of incoming/outgoing nodes, tell an
essential story. Upon processing those various quantities with the help of the
automated queries, the IBPA will return a “PASS” response to the interface if
the ranked address score is less than a certain threshold. Conversely, a“FAIL”
response is sent to the interface in cases where the score is greater than or equal
to the threshold. As can be in table 1, this threshold value is taken as 3, which
is highly arbitrary, and we note that this is only based on the preliminary tests
for this iteration of the IBPA for a small set of accounts (n=16).



Avg
Tx/Hr

Median
Tokens

Incoming
Nodes

Outgoing
Nodes

Incoming
Rels

Outgoing
Rels

IBPA Score
& Classification

0.015 0.0133 7 6 7 6 1 (regular)

0.015 0.6035 5 5 5 5 1 (regular)

<0.01 0.0003 9 0 9 0 1 (regular)

<0.01 0.7922 1 1 1 1 0 (regular)

<0.01 0 0 5 5 5 1 (regular)

0.07 0.01 7 2 13 11 5 (scam)

3.00 0.01 7 3 6 5 9 (scam)

8.73 0.01 11 1 11 5 11 (scam)

0.41 0.005 6 1 6 1 7 (scam)

4.00 0.022 6 3 11 24 3 (scam)

Table 1: IBPA results for sample of regular (non-scam) and scam accounts. Any
score >= 3 results in a failing score and the corresponding address is flagged as
a suspicious address meeting fraudulent criteria.

The standard BTC transactions selected at random did not exhibit graph
shapes or structures close to those associated with the fraudulent operation.
Of course, not all fraudulent cryptocurrency operations could be identified this
way. Scams like false crypto exchanges operate under very different, much more
long-term circumstances when compared with short-term live-streaming scams.
However, the standard operations involving even such scams that garner tens of
thousands of views can be identified by the IBPA. Whether or not the blockchain
is UTXO, account-based, or predicated on another scheme, degree-1 transactions
(providing standard public tx data) are all that the IBPA requires to assert
relevant predictions. While some existing methods may propose highly resource-
intensive operations that look at entire blockchain networks to identify long-term
suspicious behavior patterns, this IBPA identifies this instantly, referencing a
highly localized portion of a network to produce a highly accurate determination
of how it applies to a regular user.

4 Related Work

The IBPA is by no means the first attempt at identifying fraudulent addresses
on decentralized networks, and it certainly will not be the last. Chen et al [4]
crucially lay out the need for more significant research into detecting crypto
fraud and propose a graphical analysis API to aid in fraudulent Ethereum ad-
dress. Vasek and Moore [5] put forth a granular investigation into the lifetime
of crypto scams and their impacts. Bartoletti et al [6] investigated data mining
and intensive classifiers to identify BTC Ponzi schemes. These works and oth-
ers illustrate the importance of identifying bad actors who put innocent users
at significant financial risk. There have already been some investigations by
developers into detecting cryptocurrency fraud with Neo4j [7]. While their in-
vestigation was only focused on the Bitcoin blockchain, the investigation done



by this team proves that it is possible to use the tool to upload blockchain data
and convert it into a useful, Cypher-queryable format to analyze suspicious ad-
dresses. Our solution differs from all these works because we utilize semantic web
ontologies in representing the relationships between the various actors. We plan
to incorporate these scam activities on the blockchain with the real-world events
in a semantically meaningful manner that could lead to even more inferences in
ascertaining fraudulent activities.

5 Conclusion

Blockchain platforms, currencies, and networks carry the immense potential to
enhance our daily lives by empowering individuals to make their peer-to-peer
transactions in almost any context, but also revolutionizing the way even central-
ized banking entities perform transactions across the globe. The growth of cryp-
tocurrency phishing scams has become widely known, and available resources to
protect the decentralized community are minimal. The IBPA described in the
paper shows initial successes in presenting a method for chain-agnostic determi-
nation of whether or not a particular address is involved in a phishing operation
by analyzing the patterns observed. However, for operations that operate as
fraudulent crypto exchanges, more investigation would be required to identify
addresses involved on decentralized networks robustly. These exchanges can as-
sign individual addresses to each unique user, and will promptly siphon out funds
in no unique or “flaggable” manner that would be particularly unlike control ad-
dresses. Ideally, future implementations of the IBPA would incorporate machine
learning. While the current process for analyzing addresses is available, addi-
tional processing requirements would be necessary to ingest the massive pool of
fraudulent transactions throughout the various blockchain ecosystems for large
scale data analysis. Additional sweeping throughout the Web for instances of
scam accounts would prove useful for this task. No singular attribute is the be-
all-end-all for a scam account - they are merely pieces of evidence contributing to
an arbitrary score. The accumulated relative score of these activities combined
gives away the nature of addresses involved in these illegal operations. As time
progresses, the classifier may require tweaks and neural net integrations as more
suitable training datasets become available.

In conclusion, this preliminary evaluation proves that this minimally resource-
intensive platform can accurately discover addresses that match the criteria for
fraudulent phishing scams posing as legitimate live-stream giveaways. The IBPA
can also be used to build comprehensive graphs enabling access to interoperable
provenance queries that span across several blockchains for wallet addresses that
are known to be linked to a single user. Consequently, the IBPA can be used as
a plug-in module for future projects seeking enhanced knowledge of “bad actor”
provenance across a variety of blockchain networks.
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