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Abstract
While generative machine learning has recently attracted a significant amount of attention in the
computer science community, its potential for the digital humanities has so far not been fully eval-
uated. In this paper, we examine generative adversarial networks, a state-of-the art generative
machine learning technique. We argue that GANs can be particularly useful in digital art history,
where they can be employed to facilitate the exploration of the semantic structure of large image
corpora. Moreover, we posit that the foundational statistical distinction between discriminative and
generative approaches offers an alternative critical perspective on machine learning in the digital
humanities context. If “all models are wrong, some are useful”, as the often-cited passage reads, we
argue that, in case of the digital humanities, the most useful-wrong models are generative.
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1. Introduction
The computational humanities, recently, have established themselves as a subfield of the dig-
ital humanities, or in some readings [25] even as a potentially separate field that pursues a
re-alignment with computer science. This re-alignment implies both the identification of hu-
manities questions requiring computational means that go beyond those of widely available
tools1, and the identification of areas of research in computer science that have significant
historical or philosophical implications.

Other than, for instance, [18] and [25], however, we do not understand this re-alignment
as the beginning of a new split between technical and non-technical digital humanities work.
Instead, we understand it as an opportunity to extend the critical focus of the digital human-
ities to the technical systems themselves. We see the computational humanities not only as
an opportunity to open up the digital humanities towards computer science but also as an
opportunity to investigate the epistemological implications of the technical systems that drive
this development. To put it differently: “computational humanities” can and should not only
imply the application of state-of-the-art computational methods to humanities questions, but
also the questioning of computational methods from “state of the art” critical perspectives2.
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1By “widely available tools” we mean specifically widely used stand-alone software packages like Gephi or
Transcribus, but also “off-the-shelf” libraries like Gensim.

2It should be noted that several recent initiatives within the digital humanities, like the “tool criticism”
workshop at DH2020 (https://dls.hypotheses.org/1110), propose a similar research direction. Along with an
increasing amount of collaboration between the digital humanities and media studies, for instance within the
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As a potential demonstration of this approach, this paper attempts to make both a theoret-
ical and preliminary practical contribution to the integration of machine learning into digital
humanities research. Concretely, we explore a subfield of machine learning which we believe to
have great practical and critical potential, but which so far has not been studied in the digital
humanities context. Recent research [1, 17, 34, 24] has shown the huge potential of adopting
experimental machine learning methods for digital humanities research in particular. What is
missing from these and similar investigations, however, is the subfield of generative machine
learning.

On the theoretical level, we investigate the epistemological implications of generative ma-
chine learning techniques in the context of digital humanities research. Despite a seemingly
infinite variety of highly specific machine learning applications, all machine learning is auto-
mated statistical modeling. The rules of statistics, even if they are applied to web-scale corpora
of complex, high-dimensional data, stand as unifying principles behind all machine learning
approaches. While this is obvious to computer science practitioners, it is often disregarded
when machine learning is discussed in the humanities context, mirroring an often-diagnosed
epistemological split [22] between computer scientists and engineers and digital humanities
scholars. We argue that, somewhat counter-intuitively, statistical notions offer an alternative
critical perspective on machine learning in the humanities context, and we suggest that the
foundational statistical distinction between discriminative and generative approaches [23] can
be utilized to guide the further development of the computational humanities. In other words,
if “all models are wrong, some are useful”, as the often-cited passage by George Box reads
[5], we argue that, in case of the computational humanities, the most useful-wrong models are
generative models.

On the practical level, we explore the potential of generative machine learning techniques in
the visual domain, targeting applications in digital art history. Concretely, we examine gen-
erative adversarial networks [13], a state-of-the art image-based generative machine learning
technique, in regard to their potential for data augmentation, i.e. the production of “realistic”
additional data from an image corpus. As visual data augmentation methods using GANs have
recently been applied successfully to a number of complex tasks in the sciences (e.g. Ravan-
bakhsh et al. [26]) we propose that they can also be of practical use in the digital humanities
context, particularly in digital art history, where data is often particularly scarce.

We conclude by arguing that much more research is needed regarding both the practical
potential and theoretical implications of generative machine learning in the digital and com-
putational humanities.

2. Generative machine learning
For the purpose of this paper, we formally define generative machine learning as one of two
possible statistical approaches – discriminative and generative – to modeling real-world data
[23]. A toy example best demonstrates the difference between these two approaches in sta-
tistical terms. To distinguish between two kinds of objects, say apples and oranges, based on
a dataset of labeled images of both, we can imagine two possible strategies of classification.
We can design a model that learns the most salient difference between apples and oranges
from the dataset. A good candidate for a distinctive visual feature would be color: apples are

recently established DFG research cluster “The Digital Image”, one could argue that this suggests the beginning
of a “critical turn” in the field.
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usually red; oranges are usually orange. The model then uses these most salient features to
classify new, unseen samples. This is the discriminative approach. The generative approach,
however, learns the complete distribution of visual features for both apples and oranges. Apples
come in different shades of red, yellow, and green, oranges come in different shades of orange.
The model then classifies new, unseen samples by comparing their visual feature distribution
to the visual feature distribution for apples and the visual feature distribution for oranges.
In other words: the discriminative approach attempts to model a decision boundary between
classes (it literally learns “where to draw the line” between apples and oranges), while the
generative approach attempts to model the actual distribution of each class. The generative
approach essentially asks: what is the most likely source of the signal we are seeing, while the
discriminative approach simply looks for a way to distinguish one signal from the other and
does not take the source into account.

Formally, whereas the discriminative approach attempts to learn the conditional probability
distribution p(y|x), i.e. the probability of y given x, the generative approach attempts to learn
the joint probability distribution p(x, y), i.e. the probability of x, y to appear together. While
the discriminative approach models p(y|x) directly and thus allows us to find the most likely
class y for any given set of features x, the generative approach models p(y) (the so called
class priors, i.e. the distribution of labels) and both p(x|y = apple) and p(x|y = orange). By
applying Bayes’ rule, we can then derive the posterior distribution on y given x:

p (y|x) = p (x|y)
p (y) p (x)

Note that the generative approach is unsupervised (as there is one “model” for each class
and the label of each class thus becomes irrelevant), even though it can be transformed into
a supervised approach with the steps described above. In other words: the discriminative
approach is a sparse approach to modeling the world – only what is needed from the world
is taken into account – and the generative approach is a dense approach – an attempt to
model the world as it is. More importantly, while a sparse approach can tell us something
about the abstract properties of our data, a dense approach can tell us something about the
concrete properties of our data. While both approaches can thus solve classification problems,
the discriminative approach is obviously simpler. As resources are limited, we usually would
like to avoid learning things that are not pertinent to the problem. To distinguish apples from
oranges, for instance, learning the shape of both seems irrelevant. As Vapnik [33] puts it: “one
should solve the [classification] problem directly and never solve a more general problem as an
intermediate step [such as modeling p(y|x)].”

Taking the generative route, however, comes with one specific benefit: it enables us to
synthesize data, to produce new likely data points for each of the classes we are modeling. For
instance, by sampling the distribution p(x|y = apple) we would get a set of features x0, ..., xn
describing one possible manifestation of “apple”. This is impossible with the discriminative
approach, because a discriminative model has only learned the difference between apples and
oranges, and not what apples and oranges are (in terms of their features).

3. Generative digital humanities
The digital humanities have often been broadly criticized for the mere use of quantitative
methods, as eloquently summarized in Ted Underwood’s blog post “It looks like you’re writing
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an argument against data in literary study…” [32]. While some of these critiques from the
early days of the field still resonate, and general critiques of quantitative methods occasionally
reappear with force (as recently in Claire Bishop’s critique of digital art history, Bishop [4]),
generally, a consensus has grown that such a blanket rejection has no grounding in the reality of
digital humanities work. The focus of critique, thus, has shifted to more elaborate discussions
of theory building with quantitative methods [30], and the shortcomings of specific statistical
tools in the analysis of cultural data.

One of the most powerful recent critiques is Nan Z. Da’s article “The Computational Case
against Computational Literary Studies” [8]. Da writes: “all the things that appear in [Com-
putational Literary Studies]—network analysis, digital mapping, linear and nonlinear regres-
sions, topic modeling, topology, entropy—are just fancier ways of talking about word frequency
changes.” Based on a formal distinction between discriminative and generative methods, as
outlined above, we can see, however, how some of these methods are not the same. In fact,
linear regression and topic modeling fall on opposite ends of the spectrum between discrimina-
tive and generative approaches, and the prevalence of latent Dirichlet allocation (LDA), also
known as (one variation of) topic modeling, in computational literary studies and in the digital
humanities in general points to an even stronger claim: the digital humanities “intuitively”
choose generative over discriminative approaches because they are more aligned to humanities
data.

Why do the digital humanities gravitate towards generative approaches? Because generative
approaches mitigate, at least in part the alienation, the general inadequacy of quantitative
methods vis-a-vis cultural artifacts. Quantitative methods, obviously, can never fully represent
cultural artifacts. Precisely, both the sampling of cultural artifacts into data, and the modeling
of this data are reductive. In the domain of modeling, however, generative approaches stay
as close to the material as possible, while discriminative approaches essentially “ignore” the
material for the sake of classification. In other words, generative approaches, while not being
able to mitigate the problems introduced by sampling, can mitigate the problems introduced
by modeling within the realm of what can be modeled.

Regardless, many of the problems discussed in Da’s article stand with or without generative
machine learning. Shoddy hypothesis building or the lack thereof, intentional or unintentional
over- or misinterpretation of the empirical evidence quantitative methods can offer, or too-
broad applications of narrow technical concepts are problematic irrespective of the kind of
model involved. Hence, a focus on generative approaches does not “solve” or even explicitly
address these issues. Generative approaches do not magically produce a “self-reflexive account
of what the model has sought to measure and the limitations of its ability to produce such a
measurement”, as Richard Jean So writes [29]. On the contrary, generative methods tend to
actually, implicitly encourage the problematic “exploratory” approach that became a central
argument in the discussion following Da’s article3 [31, 7].

Moreover: famously, the existence of “raw data” is an illusion [12, 21, 10], and the existence
of “neutral algorithms” even more so [3, 6, 9]. Thus, if we propose that generative methods
“stay as close to the material as possible”, we do not imply the absence of subjective guidance
through the design or selection of algorithms and datasets. Indeed, it is not only dataset bias
that shapes machine learning models, but inductive biases induced by pragmatic architectural
decisions often further entangle subjective and machinic perspectives [24, 11].

What a critical distinction between generative and discriminative approaches offers, regard-

3One could argue that this is an effect of the reduced interpretability of generative methods.
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less, is a prospective path through current and future experimental work in computer science,
where the digital humanities, we argue, need to critically consider the distinction between gen-
erative and discriminative methods in the evaluation of new, experimental tools and methods
– all while keeping in mind that the maximum benefit of all machine learning models is a
“useful-wrong” model in the sense of Box [5], i.e. a model that stays “reasonably” close to the
material.

4. Generative digital art history
In the following, we sketch such a path for digital art history. As Leonardo Impett has pointed
out [16] the computer vision problems that art history relates to are almost exclusively search-
related, i.e. they are classification problems. What if digital art history would start focusing on
generative methods instead? Would a closer relation to the material also establish itself in the
domain of images? Generative methods are already implicitly employed in the neural network
based clustering of images, which has become increasingly more popular in digital art history
in recent years [34]. When embeddings are utilized, a learned sub-system of a classifier is re-
purposed exactly for its generative properties, which is also why recent research [14] suggests
building explicitly generative systems for the specific purpose of clustering. In the realm of
explicitly generative systems, then, we argue that generative adversarial networks can become
for the visual domain what LDA became for the text domain: an instrument of unsupervised
exploration for large-scale corpora.

Generative adversarial networks, first introduced by Goodfellow et al. [13] leverage game
theory to model the probability distribution of a corpus by means of a minimax game between
two deep convolutional neural networks. Effectively, generative adversarial networks define a
noise distribution pz which is mapped to data space via G (z; θg) where G is a “generator”, an
“inverted” convolutional neural network with parameters θg that “expands” an input variable
into an image, rather than “compressing” an image into a classification probability. G is
trained in conjunction with a “discriminator”, a second deep convolutional neural network
D (z; θd) that outputs a single scalar. D (x) represents the probability that x came from
the data rather than G. Note that the whole system, not just the “generator”, realizes the
generative approach, as the whole system is needed to model p(x|y = 0). Also note that the
system effectively learns a compression: a high-dimensional data space with dimensions > z is
compressed to be reproducible from a data space with dimensions z.

The original paper by Goodfellow demonstrates the potential of generative adversarial net-
works to synthesize images in particular by synthesizing new handwritten digits from the
MNIST dataset. The MNIST dataset, however, has a resolution of 28x28 pixels, i.e. several or-
ders of magnitude below standard photo resolutions. Scaling up the approach proved difficult,
and while a lot of effort was made to go beyond marginal resolutions, progress was slow (for
machine learning) until very recently, when StyleGAN [19], a generative adversarial network
that implemented several significant optimization tricks to mitigate some of the limitations of
generative adversarial networks, was introduced. Current-generation models like StyleGAN2
[20], which presents another improvement over the original StyleGAN, are able to produce
extremely realistic samples from large image corpora, samples that – the reader should keep
this in mind – are not part of any training corpus, but share the decisive features of the images
in a corpus.

Such samples, to the humanist, feel uncanny. GANs obviously learn “something” (maybe
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everything?) about a corpus, and GAN samples “tick all the boxes” at the first glance. At the
same time, GANs seem almost useless. What knowledge is there to gain from a model that
essentially learns to recreate approximations to what exists, and nothing about what exists?
Interestingly, for a long time and despite impressive early results, the utility of generative ad-
versarial networks was not entirely clear in the computer science community either. And while
today there are obvious applications in digital image processing (inpainting, superresolution,
image-to-image translation, style transfer etc.) and manipulation (deep fakes etc.), the episte-
mological qualities of GANs, i.e. their role in scientific (and, we argue, humanist) processes of
discovery, are still not fully explored.

5. Generative data augmentation
In the meantime, however, the targeted generation of images with GANs has been improved
significantly. Bau et al. [2] had already shown in 2018 that GANs learn less entangled rep-
resentations than comparable CNNs. More recently, approaches have been found that allow
the unsupervised identification of meaningful hyper-directions in GAN latent spaces, with an
approach called GANspace [15] currently providing the most efficient method4. In other words,
if recent experimental approaches are taken into account, latent spaces become accessible to
exploration.

Why is this relevant to the potential exploitation of generative methods in the visual domain?
An important epistemological aspect of GANs is the continuity of the latent spaces that can
be produced. GAN latent spaces are, for better or worse, “filled to the brink” with images.
This also means, for each sample there exist millions of other samples that look almost like
this sample, except for tiny details. It also means that, between each two samples we can
find theoretically infinite “intermediate” samples, hybrid images that combine aspects of both
of the samples between which they are positioned. Digital humanities corpora, on the other
hand, visual or otherwise, always exist as discrete collections of samples. Concretely, in an art
historical corpus, there is no “intermediate” image between, for instance, a Titian Marriage
at Cana and a Last Supper, or between the latter and a Last Supper of Titian. However, if
we train a GAN on this corpus, such an “intermediate” image suddenly comes into existence.
Simply put we argue that GANs can reintroduce a certain continuity to a corpus that allows
to study the discreteness of the corpus itself.

In the following, we present a proof of concept for this approach. In a first step, we train
a generative adversarial network, following the StyleGAN architecture, on two art historical
corpora. First, an iconographic corpus of 20,000 “adoration” scenes. This corpus contains
images referencing the adoration of the Christ Child; in particular the Adoration of the Child
(by Mary and Joseph), the Adoration of the Shepherds, and the Adoration of the Magi. The
second corpus contains 50,000 images from the Museum of Modern Art, New York, online
collection. The hypothesis, here, is that a GAN, by means of compression, would learn the
most salient differences between images in a corpus. In the case of the adoration corpus in
particular, which is drawn from several centuries of visual culture, these differences would likely
not only relate to the number and arrangement of people and objects, but also the style and
medium of the works. In a second step, we then analyze the most salient hyper-directions in
the learned latent space with the help of the GANspace method. Importantly, GANspace is

4In July 2020, another, conceptually different, approach was published [28] that shows even more promising
results. Unfortunately, we were unable to test it on our data before the submission deadline of this work.
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Figure 1: Meaningful directions in the latent space of a StyleGAN model trained on our corpus of 20,000
adoration scenes, as predicted by GANspace. All directions are shown starting from the same random z,
going two steps in the discovered direction, and its inverse.

an unsupervised method, i.e. no labeling is involved.
What we find is that, indeed both semantic and syntactic hyper-directions in latent space

emerge. For the adoration corpus (fig. 2), an interpretation of these directions suggests that,
among other things, they represent syntactic concepts such as “painting or object” (C1), “pre-
cious carving or non finito sculpture” (C4), “pencil or colored drawing” (C7), “sharp or blurry
outlines” (C9) and semantic concepts such as “zooming into a scene” (C3) and “number of
people in a scene” (C5, C6). For the MoMA corpus (fig. 3), unsurprisingly for a corpus com-
posed of mainly abstract art, we find mostly syntactic concepts such as “figurative or abstract”
(C0, C13), “organic or technical” (C3), “drawing or painting” (C1), “textural or graphical”
(C8).

It is important to point out that, due to the proof-of-concept nature of the above experi-
ment, significant caveats apply. Obviously, our results are exploratory and trivial in the exact
sense criticized by Da. At this point, they do not expand our knowledge about either the
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Figure 2: Meaningful directions in the latent space of a StyleGAN model trained on our corpus of 50,000
works of modern art from the MoMA collection, as predicted by GANspace.

concrete corpus or about a potential iconography represented by it but simply confirm our
preconceived ideas about both. Moreover, comparable results could have likely been achieved
by more established methods, like clustering based on CNN features, or a principal component
analysis in pixel space. Finally, GAN latent spaces, of course, are imaginary spaces. They are
reconstructions of the defining features of a corpus, and exploring such spaces is not the same
thing as exploring the corpus itself.

This imaginary quality, however, that is deeply problematic in any other application of gen-
erative methods (for instance, in the sciences), can precisely be of use in the digital humanities
context. Here, GAN samples are not mistaken for valid information generated from nothing,
as in so many recent examples, but can be understood as an additional means to ask questions
about the information we do have, about the corpus at hand.

While our concrete results thus remain preliminary, we argue that they point towards a
significant potential of generative methods in the visual domain. By reintroducing continuity
to a corpus of discrete images, we are forced to precisely quantify the semantic thresholds that
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support its discreteness. Discrete concepts are transformed into continuous variables. What,
exactly, defines a certain iconography? How far in any direction (in the literal sense of latent
space hyper-directions) can we veer off until an image that is clearly recognizable as belonging
to a certain iconographic tradition stops being recognizable as such? A synthetic grammar of
art emerges that is not historical like Riegl’s [27] but diachronic and multimodal. In a sense,
if generative approaches automatically stay close to the material, using GANs means staying
closer to the material than actually possible by augmenting it.

6. Conclusion
In this paper, we have demonstrated how the statistical distinction between generative and
discriminative approaches can inform the methodological discourse in the digital humanities
and can be understood as a starting point for a deep technical exploration in the computational
humanities. We have argued that generative methods, while they are not immune against many
of the general problems pointed out in recent discussions on the methodological grounding of
digital humanities work, can mitigate some of the problems introduced on the level of data
modeling. Moreover, we have proposed that, while computational literary studies and related
sub-disciplines of the digital humanities have already implicitly embraced generative methods,
the visual digital humanities lack equivalent tools.

We have also suggested to explore generative adversarial networks as a potential generative
approach in digital art history and have documented a proof-of-concept approach utilizing
StyleGAN and the GANspace algorithm to identify meaningful directions in the latent spaces
of two GANs trained on art historical corpora. Based on the results from this experiment we
have argued that, other than in scientific uses of GANs, the imaginary nature of GAN images
allows for the emergence of a synthetic, continuous “replacement” corpus that, exactly by
means of its continuity, can serve to delineate the semantic thresholds that define a collection
of images.

Pragmatically, future research will have to show if GANs are the right tool for this purpose, or
if other networks like variational autoencoders need to be considered. More importantly, future
research will have to empirically verify the hypothesis that the synthetic corpora produced by
GANs and related methods are interpretable enough to serve as a means to evaluate semantic
(e.g. iconographic) concepts in specific art-historical corpora, or if more traditional methods
remain the more viable approach for the time being.
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