
Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0).

Productivity of Software Enhancement Projects:

an Empirical Study

Luigi Lavazza1[0000−0002−5226−4337] Geng Liu2[0000-0003-4686-0834] Roberto Meli3[0000-0003-1069-

8548]

1 Università degli Studi dell’Insubria, Varese, Italy

luigi.lavazza@uninsubria.it
2 Hangzhou Dianzi University. Hangzhou, China

liugeng@hdu.edu.cn
3 DPO Srl. Rome, Italy

roberto.meli@dpo.it

Abstract.

Background. Having a correct, although approximate, knowledge of software de-

velopment productivity is clearly important. In some environments, the belief

that software enhancement projects are characterized by higher productivity than

new software development has emerged.

Aim. We want to understand whether the mentioned belief is rooted on solid bases

or is due to some cognitive biases.

Method. An empirical study was performed, analyzing the data from a large da-

taset that collects data from real-life projects. Several statistical methods were

used to evaluate the unitary cost (i.e., the cost per Function Point) of enhancement

projects and new developments.

Results. Our analyses show that–contrary to some popular beliefs–software en-

hancement costs more than new software development, at least for projects

greater than 300 Function Points.

Conclusions. Project managers and other stakeholders interested in the actual cost

of software should reject ill-based evaluations that the productivity of software

enhancement is greater than new software development. More generally, objec-

tive evaluations based on the analysis of representative data should be preferred

to evaluations affected by cognitive biases.

Keywords: Function Point Analysis, Functional Size Measurement, Software

measurement, Software Development Productivity, Software Maintenance.

Software Enhancement.

2 Productivity of Software Enhancement Projects: an Empirical Study

1 Introduction

 Software cost models are relevant to the market since they influence budget alloca-

tion on individual projects, tenders, contracts and finally they affect the quality of cus-

tomer-supplier relationships. Since the number of factors that may influence, at various

levels of impact, the productivity in delivering software systems is huge, it is unavoid-

able to make some assumptions and to focus on a subset of variables considered as

significant. Assumptions may be based on direct personal experiences, on common

sense or on empirical evidence derived from collected data. Sometimes the experts that

build software cost models are induced to introduce in models some biases that may

affect the quality of correlation among the considered variables. This is done in absence

of awareness due to the cognitive biases effect.

Specifically, we have observed the tendency to consider the enhancement of existing

software as less demanding–in terms of total effort–than the development of new soft-

ware. Since such beliefs can have quite relevant consequences (e.g., setting unrealistic

prices for software enhancement contracts), it is of great importance that we show if

the belief is rooted on solid bases, or it is affected by cognitive biases.

In this paper, we apply the empirical method of testing the assumptions using ade-

quate data to address the problem of evaluating the actual effort of software enhance-

ment, especially compared to the effort of developing new software. In this way, we

contribute to reduce or inhibit the impact of cognitive biases on software cost models.

The paper is organized as follows. Section 2 presents the motivations of the work

and highlights the importance of getting objective evaluations of the productivity of

software enhancement. Section 3 describes the empirical study through which we de-

rive objective effort evaluations. In Section 4 we discuss the threats to the validity of

the empirical study. Section 5 accounts for related work. Finally, Section 6 draws some

conclusions and outlines future work.

2 Motivations and Goals

Cognitive sciences have shown that even the finest expert may be affected by cog-

nitive biases [17]. Intuition, in software engineering, is often blurred by prejudice, con-

firmation bias, overconfidence, group-thinking, availability bias, framing [1817].

Prejudice is a pre-defined cause-effect relationship, based on hyper-generalizations,

that does not need a test, validation, adaptation in order to be considered true by its

“owner”.

Confirmation bias is the tendency to pay undue attention to sources that confirm our

existing beliefs while ignoring sources that challenge our beliefs. Once we have elabo-

rated a theory, we tend to look for confirmations instead of unexplained facts.

Overconfidence bias is the tendency to overestimate one’s skills and abilities. This

may lead to ignore some factors in the model only because we do not think that we may

personally be affected by that factor.

Group-thinking is a psychological phenomenon that occurs within a group of people

in which the desire for harmony or conformity in the group results in an irrational or

Productivity of Software Enhancement Projects: an Empirical Study 3

dysfunctional decision-making outcome, by inhibiting critical thinking to avoid con-

flicts. This may happen even to people that do not know one each other, but that belong

to a community ruled by opinion leaders and recognized experts. It is very difficult for

anybody to swim against the flow.

Availability bias is a tendency to allow information that is easier to recall unduly

influence preconceptions or judgments. We use in models the parameters that are the

easiest to be measured, regardless of the relevance they really have.

Finally, the framing effect is the tendency to react differently to situations that are

fundamentally identical but presented (or framed) differently.

All these cognitive biases may induce to build a model that may be poorly repre-

sentative of reality. The only way to know if this has happened is to “de-bias” the rea-

soning with specific approaches possibly supported by empirical data.

The wrong definition of a software cost model may be favored by situation in which

the outcome of a production process is influenced by two or more factors that may

affect the result in opposite ways and we are wrong in the identification of the resultant

of the vector composition.

In this paper, we will focus on the productivity associated to a functional enhance-

ment project compared to a new development project. If we believe that adding, chang-

ing and deleting a certain amount of functionalities in an existent application is much

easier than adding the same amount of functionalities in a new application (due to reuse,

fundamentally), we must expect a higher productivity in enhancement maintenance. On

the contrary, if we consider the difficulty of adding, changing and deleting functional-

ities that are not well documented, were written with old technologies, by not particu-

larly skilled people in an unmanaged environment, then we will expect a lower produc-

tivity with respect to new development. Which one is true or more often true in the

market? The right thing to do is to collect data and derive statistical driven inference.

The most frequent thing that has been done in the past is the application of the cognitive

biases illustrated before.

The initial idea that changing and deleting functionalities should be associated to a

lower functional measure, if compared with the operation of adding new functions, was

supported by a NESMA (Netherlands Software Metrics Users Association) document

[19]. This work proposed a way to consider the impact of change in enhancement

maintenance projects that is mainly associated to a reduction in size. The source of the

document is highly reliable and the approach was also adopted for a while by IFPUG

(International Function Point User’s Group), who gave it an “institutional” benediction.

This favored the group-thinking bias in the community of practitioners and subsequent

confirmation bias that led to prejudice. So, at least in Italy–which is one of the most

advanced country in using functional size in contracts–the sizing proposal was trans-

formed into a pricing proposal that assigned to a changed function a relevant discount

(50%) and to a deleted function a huge discount (90%). A framing bias was set up

presenting the situation as a case of pure profitable reuse. The idea was reasonable and

consequently “attractive” for practitioners. This approach, in turn, became a “prece-

dent” for all succeeding contracts (again a framing bias). No empirical evidences have

been given to support this approach but it became steady as a rock.

4 Productivity of Software Enhancement Projects: an Empirical Study

The specific situation may have, and actually had, a huge impact on markets and

outsourcing contracts (in the order of millions of euro). Consider that the “discount

approach” for enhancement initiatives generates less than half the revenues with respect

to the neutral assumption (same cost as development by scratch) and less than 35% of

the opposite assumption (cost of enhancement is 150% of development by scratch).

A cost model for contractual goals should be built according to sound articulated

approaches and empirically derived knowledge [20].

In this paper we present an empirical study–based on data from real-life projects–to

determine objectively (although possibly approximatively) the real relation between the

cost of enhancing existing software and the cost of developing new software.

3 The Empirical Study

3.1 The dataset

We analyzed data from the ISBSG dataset [8]. However, not all the data included in

the dataset were used. First of all, we selected the data concerning projects whose size

was measured in IFPUG Function Points. In addition, following the recommendations

by ISBSG [7], only records having “Data Quality Rating” equal to B or better were

used; that is, only projects with the highest data integrity were considered. Similarly,

we selected records having “UFP rating” equal to B or better, i.e., the UFP counting

was evaluated as sound by the ISBSG quality reviewers. Projects too big or too small

were also removed. Specifically, projects having size smaller than 50 UFP were ignore,

because their development effort is so small that effort estimation is not even conven-

ient, since estimation cost would be a significant fraction of the development cost. Pro-

jects having size greater than 800 UFP we discarded according to the criteria described

below, when analogy-based estimation is introduced.

The descriptive statistics of the analyzed datasets are given in Table 1. Specifically,

Table 1 illustrates the characteristics of the New developments and Enhancements da-

tasets. For each dataset, statistics concerning the size expressed in UFP, the effort ex-

pressed in PH (person hours) and the number of person hours required per function

point are given.

Table 1. Descriptive statistics for New development and Enhancement projects.

 New Development Enhancement

n 861 2935

Size range [50, 800] [50, 800]

Size mean 292 176

Size st. dev. 186 149

Size median 246 119

Effort range [64, 45778] [31, 92380]

Effort mean 3852 3032

Effort st. dev. 4655 5029

Effort median 2385 1532

Productivity of Software Enhancement Projects: an Empirical Study 5

3.2 Description of the study

First, we performed a very simple comparison of the effort per FP required by New

development and enhancement projects.

Fig. 1. Boxplots showing the distributions of Effort per FP. In the picture on the right hand side

outliers are omitted, and mean values are shown as orange diamonds.

Fig. 1 shows that the quantity of effort per FP required by enhancement projects is

generally greater: both the mean and the median are greater than new developments'.

Similarly, several enhancement projects required a very large amount of effort per FP,

as shown in the left part of Fig. 1. The main statistics concerning the required effort per

FP are given in Table 2. It appears that Enhancement projects require more effort per

FP than new development projects. This fact was tested by means of the Wilcoxon rank

sum test [21], which confirmed that the probability that a randomly selected New de-

velopment effort per FP is less than a randomly selected Enhancement effort per FP is

significantly greater than the probability of picking a greater or equal effort per FP

value.

Table 2. Effort/Size statistics for New development and Enhancement projects.

 New Development Enhancement

Median 9.41 12.12

Range [0.13, 160.9] [0.11, 1097.4]

Mean 14.95 19.67

St. dev. 16.75 36.65

Another simple evaluation of the effort per FP required for New developments and

enhancement projects can be obtained via lowess curves of effort vs. size. Lowess (lo-

cally weighted scatterplot smoothing) is a nonparametric method for fitting a smooth

curve between two variables; in this nonparametric method, the linearity assumptions

of conventional regression methods are relaxed.

6 Productivity of Software Enhancement Projects: an Empirical Study

Fig. 2 shows the lowess curves of effort vs. size for the considered project types. It

can be observed that for sizes up to just over 200 UFP the effort per FP required is

approximately the same for the two types of projects. For larger projects, the effort per

FP slightly increases for Enhancement projects, while it decreases substantially for New

developments.

Fig. 2. Lowess curves of Effort vs Size for New development and Enhancement projects.

Several project managers could consider the observations reported above to be suf-

ficient to conclude that–except for small projects–the productivity of New develop-

ments is greater than the productivity of Enhancement projects. However, we would be

more comfortable if we could provide evidence based on proper model, which provide

a statistically sound synthesis of the relationship that links effort and size. To this end,

we proceeded to build model of effort as a function of size.

All effort models were derived via ordinary least square (OLS) regression. We used

Cook’s distance to identify possible influential observations. Data points with Cook’s

distance greater than 4/n (n being the cardinality of the training set) were considered

for removal as suggested by Kitchenham and Mendes [5]. All the models illustrated

below were checked for the usual characteristics of OLS regression [3]. All the results

reported are statistically significant at the α = 0.05 level, as is common in Empirical

Software Engineering and many other disciplines.

Table 3. OLS linear models for New development and Enhancement projects.

 New Development Enhancement

Model Effort = 9 Size Effort = 11.48 Size

Num. outliers 292 (34%) 1172 (40%)

P value < 2-16 < 2-16

Adjusted R2 0.76 0.82

Normal residuals NO NO

Productivity of Software Enhancement Projects: an Empirical Study 7

We started building linear models. The obtained models and their characteristics are

given in Table 3.

The OLS linear regression models described in Table 3 provide some interesting

indications, in that 1) they confirm that Enhancement projects are more expensive than

New development projects; 2) the obtained coefficients are very close to the median

Effort/Size values given in Table 2. However, both models do not conform to the OLS

regression constraints, having not normally distributed residuals. In addition, they were

built by discarding as outliers a large fraction of the projects.

Therefore, we looked for non-linear OLS regression models. Specifically, we per-

formed logarithmic transformations of both the independent and dependent variables.

This choice was suggested by both the desire to be compliant with earlier research (for

instance, Boehm’s COCOMO [1,2]) and to deal with the characteristics of the data dis-

tributions (as suggested by Kitchenham and Mendes [15], among others).

Table 4. OLS log-log models for New development and Enhancement projects.

 New Development Enhancement

Model Effort = 29.5 Size0.801 Effort = 18.7 Size0.912

Num. outliers 100 (12%) 454 (15%)

P value < 2-16 < 2-16

Adjusted R2 0.31 0.42

Normal residuals Yes NO

The log-log model for Enhancements has not normal residuals; the log-log model for

New developments has normal residuals, but a rather low coefficient of determination.

However, they tend to conform that Enhancement projects have greater cost per FP than

New developments. The difference in terms of required effort can be observed by look-

ing at the models' curves, shown in Fig. 3.

Fig. 3. OLS log-log regression models.

8 Productivity of Software Enhancement Projects: an Empirical Study

Since no really adequate OLS regression models could be achieved, we adopted

analogy-based estimation (AbE). With AbE, the effort required by a project is estimated

based on the effort that was required by "similar" projects.

Given a project P, we selected the projects that contribute to estimate the develop-

ment or maintenance effort for P as follows:

1) Let sp=0.02.

2) Let NP be the set of projects such that p ∈ NP iff (1-sp) size(P) ≤ size(p) ≤ (1+sp)

size(P)

3) If |NP| ≥ 7, let the estimated effort for P be the median of the efforts of the pro-

jects belonging to NP.

4) Otherwise, increase sp by 0.01 and go back to step 2).

Before proceeding to apply AbE, we determined the size range in which there are

enough data points to support AbE. The histograms in Fig. 4 show that–as could be

expected–there are few large Enhancement projects. Specifically, above 800 UFP pro-

jects are few and sparse, hence it is difficult to find "similar" projects for AbE. There-

fore, in the rest of this study we consider only projects having size not greater than 800

UFP. Noticeably, for New development there are no problems of the type discussed

above: there are many projects having size greater than 800 UFP, actually, there are

many projects up to 2000 UFP. Nonetheless, since we are mainly interested in compar-

ison between Enhancement and New development projects, we need to study both types

of projects in the same size range.

Fig. 4. Size distribution of Enhancement projects. The picture on the right hand size provides a

view restricted to the [400,1200] UFP range.

To evaluate whether AbE estimates are worth considering, we have to verify that

they provide better performance than baseline models. To this end, Shepperd and Mac-

Donell [9] proposed that an estimation model be taken into consideration only if it pro-

vides better estimates than a baseline model; they also proposed to use random estima-

tion as a baseline model.

Shepperd and MacDonell also proposed that the accuracy of a given estimation

method be measured via the Mean Absolute Residual (MAR), i.e., the mean of the ab-

solute values of errors, where errors are computed as actuals minus estimates.

Productivity of Software Enhancement Projects: an Empirical Study 9

A random effort estimation for a project is obtained by picking at random the actual

effort of any of the other projects. Of course, in this way there are n−1 possible esti-

mates for every project; therefore, to compute the MAR of the random model we need

to average all these possible values. Shepperd and MacDonell suggest to make a large

number of random estimates (typically 1000), and then compute the mean MAR. Shep-

perd and MacDonell observed also that the value of the 5% quantile of the random

estimate MARs can be interpreted like α for conventional statistical inference. Accord-

ingly, the MAR of a proposed model should be compared with the 5% quantile of the

random estimate MARs, to make us reasonably sure that the model is actually more

accurate than the random estimation.

We also used “constant” models as baseline, proposed, among others, by Lavazza

and Morasca [10] and Di Martino et al. [11]. With the mean–respectively, median–

constant model, the estimated effort for a project is given by the mean–respectively,

median–of all other projects' actual efforts.

The models’ estimation errors are given in Table 5 and visualized via a boxplot in Fig.

5, where outliers are not show, for readability. In Fig. 5, the orange diamonds represent

the means, i.e., the MARs. The dashed line is the MAR of the mean constant model,

the dotted line is the MAR of the median constant model, the continuous line is the 5%

quantile of the random estimate MARs. It can be observed that the MARs of AbE esti-

mates are smaller than the baselines' MARs, hence AbE is an improvement over base-

line estimation methods. This fact is also confirmed by Wilcoxon sign rank test.

Table 5. MAR of AbE models for New development and Enhancement projects.

Model New Development Enhancement

AbE 2380 1940

Const. mean 2997 2664

Const. median 2701 2267

5% MARrnd 3830] 3427

Fig. 5. Distributions of analogy-based effort estimation error for New developments (left) and

Enhancement (right) projects (outliers not shown).

10 Productivity of Software Enhancement Projects: an Empirical Study

Fig. 6. AbE effort estimates (blue crosses) and actual effort (black circles) with respect to Size,

for New developments (left) and Enhancements (right).

Fig. 6 show Effort estimates, in comparison with actual effort values. Understanding

the trend of estimated effort vs size (hence of effort per FP) from Fig. 6 is not easy.

Thus, we use again the lowess curves to provide a more readable representation of the

estimated effort vs. size. Fig. 7 shows such lowess curves for New developments and

Enhancement, respectively. It can be observed that, just like in Fig. 2, the slope of the

New development curve decreases around 300 FP, while the Enhancement curve ap-

pears approximately straight.

Fig. 7. AbE effort estimates and lowess curve for New developments (left) and Enhancements

(right).

Fig. 8 compares the lowess curves given in Fig. 7, highlighting that the effort per FP

required by Enhancement projects is greater than the effort per FP required by New

developments. Fig. 8 is remarkably similar to Fig. 2 and Fig. 3: this fact reinforces the

observation given above.

Productivity of Software Enhancement Projects: an Empirical Study 11

Fig. 8. AbE effort estimate lowess curves for New developments and Enhancements.

3.3 Discussion of Results

In the previous sections, we evaluated the effort per UFP in several ways: using simple

statistics, building regression models, and via analogy-based estimation. In all cases we

got clear indications that–at least when the project size is larger than 300 UFP, the effort

required by Enhancement projects is larger than the effort required by New develop-

ments.

However, large variations of the effort per UFP were observed in the ISBSG dataset:

Table 2 shows that the standard deviation is larger than the mean for both New devel-

opments and Enhancements; for the latter it is almost twice the mean. Therefore, prac-

titioner should be careful in using the productivity values presented in this paper: they

should take into account some variability.

4 Threats to Validity

Internal validity of the study could be affected by the way measures were obtained. We

mitigated this threat by carefully selecting the measures that are classified as most reli-

able in the ISBSG dataset.

The models presented in Section 3 do not qualify as proper regression model, since

most of them have not normally distributed residuals (and sometimes other problems

as well). Nonetheless, together with the other findings given in Section 3, they provide

reasonably reliable indications, at least qualitatively.

Concerning the generalizability of the proposed results, we analyzed the largest pub-

lic available dataset, (see the descriptive statistics in Table 1). Although we cannot

claim that our findings are generally valid, the fact that they are based on a large dataset,

which collects data from many different software development organizations, supports

the hypothesis that our findings are representative of many software projects.

12 Productivity of Software Enhancement Projects: an Empirical Study

It can be noticed that we built effort models based only on size, while usually effort

models account for multiple factors that are believed to affect development or mainte-

nance effort. In this paper, we limited the investigation to size based models to get

straightforward indications concerning the amount of effort needed in relation to the

size of the project. In this respect, it is worth noting that currently many public admin-

istrations and private organizations, worldwide, adopt contractual cost models that are

based on the size of the software to be delivered as the only independent variable. Alt-

hough such practice has evident limits, it is widely used. This paper provides results

that help applying the mentioned practice based on objective empirical knowledge, thus

avoiding macroscopic mistakes, like assuming that enhancement cost less–on a unitary

basis–than new development.

Another possible threat comes from the possibility that the observed differences are

due to the managerial choices concerning new development and enhancement projects.

For instance, managers could assign more skilled people to new development projects

and less skilled people to enhancement projects: this would explain the observed dif-

ferences, at least partly.

Finally, we have to notice that the available dataset contains little data concerning

enhancement projects larger than 800 FP. Accordingly, we limited the study to projects

not greater than 800 FP. We cannot make any claim concerning larger projects.

5 Related Work

Approaches to effort prediction are generally grouped into three general categories:

expert judgement, algorithmic models, and analogy [12].

Estimation by analogy predicts the effort of the target project using information from

former similar project at the system level and sub-system level. The primary steps in

this method consist of: 1) choosing the right analogy, usually measured via Euclidean

distance, 2) investigating similarities and differences, 3) examining analogy quality, 4)

providing the estimation [13].

The key factor of successful EbA method is finding the appropriate right analogy.

The simple method is using a fixed number of analogies starting from k=1 and increase

this number until non further improvement on the accuracy can be obtained [14,15].

However, in our case, finding additional analogies to be used in conjunction with size

analogy was not appropriate: having to devise models that support the notion of effort

per FP, we needed to restrict the independent variable to size, specifically, size meas-

ured in Function Points.

In fact, the great majority of software effort estimation methods proposed in the lit-

erature use software size or size dependent elements as a major explanatory variable.

Size measures are considered as the most influential predictors for estimation. Several

functional size measures have been defined, including Function Points, Use Case

Points, NESMA, FiSMA, Mark II FP, COSMIC FP, SiFP and many others. In this pa-

per we investigate the relationship of effort required between enhancement projects and

new development projects, using only FP as a size measure. Investigations using other

measures is an objective for future work.

Productivity of Software Enhancement Projects: an Empirical Study 13

Concerning the study of productivity of software enhancement projects, this is defi-

nitely not a new research field. Back in 1993, Abran and Robillard performed an em-

pirical study based on the analysis of 21 projects [16]: among other results, they found

that the mean effort per function point was 18.96 PH/FP, quite close to 19.67 PH/FP,

the mean value we found in the ISBSG dataset (see Table 2).

6 Conclusions

Having a–possibly approximate–quantitative knowledge of the unitary cost of software

projects in terms of effort per function point is very important for several purposes.

Specifically, when considering the possibility of making a bid, having a reasonably

good idea of the cost of the project is essential.

Relatively little research was performed concerning the unitary cost of enhancement

projects, at least in comparison with the huge amount of work performed on investigat-

ing the cost of new software development. The relatively small amount of empirical

data is favoring ill-based guessing. In some environment, the false believe that software

enhancement activity cost less than new development–on a unitary basis–is spreading.

In this paper, we looked at what reliable and objective knowledge we can derive

from real project data.

Not all the results we presented here are perfectly reliable from a statistical point of

view. Nonetheless, the consistency of results we obtained via different analysis tech-

niques seems to indicate that the indications we derived are–at least qualitatively–cor-

rect and reliable.

In summary, we found that:

˗ Enhancement projects have a unitary cost that is generally greater than new de-

velopment projects.

˗ Specifically, the unitary cost of enhancements and new developments is similar

for projects up to around 300 FP, while for larger projects the unitary cost of

enhancements is greater.

˗ As shown in Fig. 6, the unitary cost is largely variable, even for projects having

approximately the same size. Therefore, the data presented here must be re-

garded as indicating tendencies, but are not necessarily valid for all projects.

From the cognitive bias point of view, our empirical study showed that, based on the

data available in a very reputed dataset (namely, the ISBSG dataset), the assumption

that productivity is higher for functional enhancement projects than for new develop-

ment projects is not supported by evidence. Instead, the opposite is true, except for

fairly small projects. We may thus state that–most likely–many huge contracts have

been undervalued for years because of an apparently reasonable assumption, not con-

firmed by empirical data.

Future work include, among other activities, looking for factors that let us select

project classes characterized by small variations in unitary cost, and experimenting with

different techniques for building effort models.

14 Productivity of Software Enhancement Projects: an Empirical Study

Acknowledgments

This work has been partially supported by the “Fondo di ricerca d’Ateneo” of the Uni-

versità degli Studi dell’Insubria.

References

1. Boehm, B.: Software Engineering Economics. Prentice Hall (1981).

2. Boehm, B., Madachy, R., Steece, B., et al.: Software cost estimation with Cocomo II. Pren-

tice Hall PTR (2000).

3. Maxwell, K. Applied statistics for software managers. Prentice Hall PTR Englewood Cliffs

(2002).

4. Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the joint

SHARE/GUIDE/IBM application development symposium, pp. 83–92. IBM (1979).

5. Mendes, E., and Kitchenham, B. Further comparison of cross-company and within-company

effort estimation models for web applications. In Proceedings of the 10th International Sym-

posium on Software Metrics. IEEE, 348–357 (2004)

6. LNCS Homepage, http://www.springer.com/lncs, last accessed 2016/11/21.

7. ISBSG. Productivity Data Query (PDQ) Tool User Guide. Technical Report. ISBSG (2017).

8. ISBSG, International Software Benchmarking Standards Group. ISBSG repository–release

R13 (2015).

9. Shepperd, M. and MacDonell, S. Evaluating prediction systems in software project estima-

tion. Information and Software Technology 54(8) 820–827 (2012).

10. Lavazza, L. and Morasca, S. On the Evaluation of Effort Estimation Models. In Proceedings

of the 21st International Conference on Evaluation and Assessment in Software Engineering.

ACM, 41–50 (2017)

11. Di Martino, S., Ferrucci, F., Gravino, C. and Sarro, F. Assessing the Effectiveness of Ap-

proximate Functional Sizing Approaches for Effort Estimation. Information and Software

Technology (2020)

12. Shepperd, M., Schofield, C., & Kitchenham, B. Effort estimation using analogy. In Proceed-

ings of the 18th International Conference on Software Engineering. IEEE, 170–178 (1996)

13. Azzeh, M., and Nassif, A. B. Analogy-based effort estimation: a new method to discover set

of analogies from dataset characteristics. IET Software (2), 39–50 (2015).

14. Mendes, E., Mosley, N., and Counsell, S. A replicated assessment of the use of adaptation

rules to improve Web cost estimation. In Proceedings of the International Symposium on

Empirical Software Engineering, IEEE, 100–109 (2003)

15. Azzeh, M. and Marwan, A. Value of ranked voting methods for estimation by analogy, IET

Software, 7(4), 195–202 (2013)

16. Abran, A., and Robillard, P. N. Reliability of function points productivity model for en-

hancement projects (a field study). In Proceedings of the International Conference on Soft-

ware Maintenance, IEEE 80-87 (1993)

17. Gerd Gigerenzer. Reckoning with Risk: Learning to Live with Uncertainty. Penguin books

(2002)

18. Mohanani, R., Salman, I., Turhan, B., Rodríguez, P., and Ralph, P. Cognitive biases in soft-

ware engineering: a systematic mapping study. Transactions on Software Engineering. IEEE

(2018)

19. NESMA, Function Point Analysis for Software Enhancement, Guidelines Version 1.0,

NESMA (2001)

Productivity of Software Enhancement Projects: an Empirical Study 15

20. Meli, R. and Iorio, T. Software measurement issues in contractual environments. In Pro-

ceedings of the Software Measurement European Forum. (2005)

21. Wilcoxon, F. Individual comparisons by ranking methods. Breakthroughs in statistics.

Springer, New York, NY, 196-202 (1992).

