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ABSTRACT
Entity resolution (ER) is of great importance in many real-world

applications, including information retrieval, web search, natural

language processing, web information integration, multi-source

data analysis, etc. In this paper, we present an extensible block

scheme-based method for entity resolution. Specifically, at first we

preprocess data records from multiple datasets, so as to remove

ambiguity and maintain data attributes that are helpful for entity

resolution. Then, the processed records are assigned to different

blocks, after which similarity between records within a same block

is computed. Experiment results on challenge datasets from DI2KG

show that our proposed method is promising.
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1 INTRODUCTION
Entity Resolution (ER) is to match data records from two or more

data sources, by analyzing their contents that describe identical

entities in real-world [5], and it remains as a challenging problem

in data management [9], information retrieval [8], data mining [7],

natural language processing, etc. Entity resolution has a wide range

of applications, including data cleansing, electronic commerce [6],

web search, and public/government data analysis [11].

In this paper, we focus on the problem of matching products

recorded in electronic commerce website. Performing the entity

matching task on an e-commerce database is challenging, because

of 1) product data is highly heterogeneous; 2) structure of the data

is loosely defined; 3) there are multiple data sources (for example,

in the DI2KG challenge we need to process different data sources

from different stores). One of the critical missions of ER on large

data sets is how to reduce the computational complexity to im-

prove efficiency. Currently, there are three prominent solutions, i.e.,

Blocking [10], Windowing [4], and Hybriding [3]. In this paper we

use the first one. By assigning each product to one or more blocks

and computing the similarity for pairs of products in these blocks,

blocking schemes can reduce the number of pair-wise similarities

that need to be computed. Due to challenges of ER on multiple

source data, we need to solve several problems, as described below:

• How to perform data preprocess and cleansing

• How to design efficient block scheme and block. aggregation

method
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• How to compute entity similarity within a block, and how

to determine transitivity of similarity between entities

Inspired by the previous work of rule-based ER method [2], we

develop a scalable ER system framework. Specifically, the core of

our framework consists of a block scheme for the data set and simi-

larity computation of the product pairs within a block. The block

scheme includes various preprocessing steps, different keyword ex-

traction methods, as well as multiple block scheme aggregators. We

solve the ER tasks of DI2KG 2020 Challenges that involve product

entities of Monitor and Notebook, by using our block scheme-based

framework.

The paper is organized as follows. In Section 1 we give an in-

troduction of entity resolution and the challenge task in DI2KG.

We present our framework for entity resolution in Section 2, in-

cluding the three main components of our framework. In Section

3, we conduct experiments on the challenge datasets to evaluate

the effectiveness of our method. Finally, in Section 4 we summarize

this paper and give our future work on entity resolution.

2 THE PROPOSED METHOD
Our method is based on block scheme and scheme aggregation. As

shown in Figure 1, our extensible entity resolution system frame-

work mainly includes three submodules, i.e., Preprocess, Block

Scheme and Scheme Aggregation (BS-SA), Similarity and Cluster-

ing. In this section, we described three sub-modules in detail.

Figure 1: Our extensible entity resolution system framework



2.1 Data Preprocessing
In data preprocessing step, we remove some less important terms

from page titles, and less informative properties from the product

description text. Specifically, from table 1 we can see that there are

differences between product profiles. For example, the first product

possesses some property feature while the second product contains

neither this property nor the corresponding value. We also observe

that for the same products, their model names are the same. So, we

try to find model names for entity matching. Before finding the

model name, there are two problems to deal with, as given below:

• Which property contains the model name

• How to deal with the situation that the extracted model

words cannot be extracted from the predetermined key value

or the extracted model names

Table 1: Example Raw Data

property value

<page title> New ELO 1928L 19inch TFT 1280x1024

LCD Non Touch Dual Monitor E939583

7411493021428 | eBay

aspect ratio 5:4

brand Elo

contrast ratio 1300:1

model 1928L

screen size 19

<page title> Elo TouchSystems 1928L – MBE

contrast ratio

typical

1300:1

display resolu-

tion

1280 x 1024 pixels

horizontal scan

range

31.5 - 80 kHz

model name 1928L

Table 2: Example Data after Preprocessing

property value

<page title> new elo 1928l tft lcd non touch dual monitor

e939583 7411493021428 | ebay

brand elo

model 1928l

<page title> elo touchsystems 1928l – mbe

model name 1928l

To solve the above problems, at first some preprocessing steps are

necessary, such as lowercasing strings and removing some special

symbols. Generally, the model names have at least one number

and one non-numeric character. Hence, we use regular expression

to match the model name. We find that the model name will be

obtained precisely in the properties, like model, model name and so

on. And we retain these properties as new descriptions of product.

When one is unable to find these properties, we consider property

’<page title>’, because there is part of information which need to

be removed, such as resolution and screen size in the ’<page title>’.

On the other hand, we consider the situation that the model name

is separated by spaces, so we will remove the space between non-

numeric characters and numeric characters to create a model word

(i.e. the model name is something like ’P 230’, we will change it to

’p230’).

2.2 Block Scheme and Scheme Aggregation
After data preprocessing step, the processed data will be passed to

submodule Block Scheme and Scheme Aggregation, through which

each product is assigned to a block. Referring to Figure 1, this

submodule consists of two parts: first, the products are classified

based on the brand list that obtained from the Internet [2] and

supplemented and modified manually. Just as [12] said, the brand

list provides the algorithm with specific task information. Then, for

the products of each brand, we classify products to different blocks,

by extracting model word and using the blocks aggregator [13].

In this challenge, the model word is defined as a word that con-

tains at least one number and one non-numeric character, and the

entire word is completely extracted as one model word. We adopt

two block schemes, i.e., extracting a single model word for title and

description, and then aggregating the two schemes by the union

aggregator. Eventually, all documents of each brand will be mapped

to multiple product entities and each document will only be mapped

to one product entity.

2.3 Entity Similarity within Blocks
The method we proposed in this paper for computing entity sim-

ilarity is based on model words and set judgment. The definition

of model word is as described in Section 2.2, and we compare the

model words set of product 𝑎 and the model words set of product

𝑏, which measures the similarity of two products. Our proposed

similarity function consists of two parts.

The first part evaluates whether the models of product 𝑎 and

𝑏 are the same, by using function 𝑑𝑖 𝑓 𝑓 𝑀𝑜𝑑𝑒𝑙 (𝑎, 𝑏,𝑀). Here, 𝑀 is

a list we constructed from product descriptions, which consists

of attributes where the model may appear. We count the model

words extracted from the attributes in the list 𝑀 , and select the

model word that appears the most frequently as the product model.

Moreover, if there is no any model word, then we take the first

model word from ’<page title>’ as the model. The rationale is that

the product model in the title usually appears first.

The second part determines whether synonymous attributes

of product 𝑎 and product 𝑏 are similar, by calling the function

𝑚𝑤𝑆𝑖𝑚(𝑎, 𝑏, 𝐿𝑖 ,𝑂𝑖 ) multiple times. Here, parameter 𝐿 = [𝐿1, , 𝐿𝑛],
where 𝐿𝑖 ∈ 𝐿 contains synonymous attributes, and 𝑂 = [𝑂1, ,𝑂𝑛],
where operator 𝑂𝑖 ∈ 𝑂 is either

′𝑎𝑛𝑑 ′ or ′𝑜𝑟 ′, which is applied to

𝐿𝑖 . Each time𝑚𝑤𝑆𝑖𝑚(𝑎, 𝑏, 𝐿𝑖 ,𝑂𝑖 ) is invoked, for the model word

set extracted from all the attributes of the product in list 𝐿𝑖 , we de-

termine the relationship between two sets, according to the content

of operator 𝑂𝑖 . Specifically, if 𝑂𝑖 is
′𝑎𝑛𝑑 ′, then the two sets must

be the same, otherwise one set must be the subset of the other set.

For example, a parameter configuration is shown below:

𝑚𝑤𝑆𝑖𝑚(𝑎, 𝑏, [′< 𝑝𝑎𝑔𝑒𝑡𝑖𝑡𝑙𝑒 >′,′𝑚𝑜𝑑𝑒𝑙 ′,′𝑚𝑜𝑑𝑒𝑙𝑛𝑎𝑚𝑒 ′],′ 𝑜𝑟 ′)



Algorithm 1 shows a high-level overview of how to compute

product similarity. Specifically, if the model names of the two prod-

ucts are the same, the algorithm will compare whether certain

attributes of the product are similar according to the parameter 𝐿

and 𝑄 .

Algorithm 1 Product Similarity Method

Input: Product profile 𝑎 and 𝑏; List 𝐿 = [𝐿1, , 𝐿𝑛], where 𝐿𝑖 ∈ 𝐿

contains some synonyms attributes; List 𝑂 = [𝑂1, ,𝑂𝑛], where
operator 𝑂𝑖 ∈ 𝑂 is either

′𝑎𝑛𝑑 ′ or ′𝑜𝑟 ′, which corresponds to

𝐿𝑖 ; Attributes list𝑀 ; Furthermore, the following functions are

used:

-𝑑𝑖 𝑓 𝑓 𝑀𝑜𝑑𝑒𝑙 (𝑎, 𝑏) is true if models of product 𝑎 and 𝑏 are

different

-𝑚𝑤𝑆𝑖𝑚(𝑎, 𝑏, 𝐿𝑖 ,𝑂𝑖 ) the model words similarity between

the products 𝑖 and 𝑗 using the key list 𝐿𝑖 and operator 𝑂𝑖 .

Output: True if product 𝑎 and product 𝑏 are the same; otherwise,

False.

1: function ProdSim(𝑎, 𝑏,𝑀, 𝐿,𝑂)

2: if 𝑑𝑖 𝑓 𝑓 𝑀𝑜𝑑𝑒𝑙 (𝑎, 𝑏,𝑀) then return False

3: end if
4: for all 𝐿𝑖 ,𝑂𝑖 in 𝐿,𝑂 do
5: if not𝑚𝑤𝑆𝑖𝑚(𝑎, 𝑏, 𝐿𝑖 ,𝑂𝑖 ) then return False

6: end if
7: end for
8: return True

9: end function

Algorithm 2 judges whether the two products have the same

model. It regards the most frequently occurring model word or the

first model word in the title as the model name, and compares the

model names of the two products.

Function𝑚𝑤𝑆𝑖𝑚(𝑎, 𝑏, 𝐿𝑖 ,𝑂𝑖 ) in Algorithm 3 is used to compute

the similarity between product description of 𝑎 and 𝑏, according to

some special product attributes. The number of times this function

is called depends on the length of the parameter 𝐿𝑖 and 𝑂𝑖 . In this

algorithm, the model words from some attributes of product 𝑎 and

𝑏 are compared. If 𝑂𝑖 is ‘𝑎𝑛𝑑
′
, the model words must be the same,

otherwise, one model word set must be the subset of the other set.

Due to transitivity property between products, if A is similar to

B, and B is similar to C, then we regard it that A is similar to C.

We perform clustering while calculating the similarity, instead of

clustering after calculating the similarity between all products. This

may sacrifice accuracy a little bit, but can significantly improve

efficiency.

3 EXPERIMENT RESULTS
To evaluate performance of our proposed method, we conduct

experiments on the challenge datasets provided by DI2KG. We sum-

marize the best experiment results of our proposed method in Table

3, i.e., on training Dataset Y the Precision, Recall and F-Measure are

1.000, 0.964 and 0.982, respectively, whereas on Dataset X Precision,

Recall and F-Measure are 0.915, 0.967 and 0.940, respectively.

In addition, we tested our algorithm on the camera dataset and

the Precision, Recall and F-Measure are 0.98, 0.97 and 0.98 [1]. In

general, we can see that our algorithm achieved good performance

Algorithm 2 Model Comparison Method

Input: Product profile 𝑎 and 𝑏; Attributes list𝑀 ;

-𝑚𝑤 (𝑎,𝑀) extracts the model words from the key-value

pair of product a if the key appears in list𝑀 .

-𝑀𝑎𝑥𝑀𝑜𝑑𝑒𝑙 (𝐿) find the model word appear most fre-

quently in the model word list 𝐿.

-𝑖𝑠𝐸𝑚𝑝𝑡𝑦 (𝐿) true if 𝐿 is empty.

Output: True if themodels of product𝑎 and product𝑏 are different;

otherwise, False.

1: function diffModel(𝑎, 𝑏,𝑀)

2: 𝑑𝑖𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐴𝑚𝑤 =𝑚𝑤 (𝑎,𝑀)
3: 𝑑𝑖𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐵𝑚𝑤 =𝑚𝑤 (𝑏,𝑀)
4: 𝑡𝑖𝑡𝑙𝑒𝐴𝑚𝑤 =𝑚𝑤 (𝑎, [′<page title>′])
5: 𝑡𝑖𝑡𝑙𝑒𝐵𝑚𝑤 =𝑚𝑤 (𝑏, [′<page title>′])
6: if 𝑖𝑠𝐸𝑚𝑝𝑡𝑦 (𝑑𝑖𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐴𝑀𝑊 ) then
7: if 𝑡𝑖𝑡𝑙𝑒𝐴𝑚𝑤 [0] in 𝑡𝑖𝑡𝑙𝑒𝐵𝑚𝑤 then return False

8: end if
9: 𝑚𝑜𝑑𝑒𝑙𝐴 = 𝑡𝑖𝑡𝑙𝑒𝐴𝑚𝑤 [0]
10: else
11: 𝑚𝑜𝑑𝑒𝑙𝐴 = 𝑀𝑎𝑥𝑀𝑜𝑑𝑒𝑙 (𝑑𝑖𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐴𝑚𝑤)
12: end if
13: if 𝑖𝑠𝐸𝑚𝑝𝑡𝑦 (𝑑𝑖𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐵𝑚𝑤) then
14: if 𝑡𝑖𝑡𝑙𝑒𝐵𝑚𝑤 [0] in 𝑡𝑖𝑡𝑙𝑒𝐴𝑚𝑤 then return False

15: end if
16: 𝑚𝑜𝑑𝑒𝑙𝐵 = 𝑡𝑖𝑡𝑙𝑒𝐵𝑚𝑤 [0]
17: else
18: 𝑚𝑜𝑑𝑒𝑙𝐵 = 𝑀𝑎𝑥𝑀𝑜𝑑𝑒𝑙 (𝑑𝑖𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐵𝑚𝑤)
19: end if
20: return not (𝑚𝑜𝑑𝑒𝑙𝐴 ==𝑚𝑜𝑑𝑒𝑙𝐵)
21: end function

Algorithm 3 Model Word Similarity Method

Input: Product profile 𝑎 and 𝑏; Synonyms attributes list 𝐿𝑖 ; Opera-

tor 𝑂𝑖 is either
′𝑎𝑛𝑑 ′ or ′𝑜𝑟 ′, which corresponds to 𝐿𝑖 ;𝑚𝑤 (𝑤)

extracts the model words for a given set of words𝑤 .

Output: True if the model words of product 𝑎 and 𝑏 extracted from

𝐿𝑖 are the same under operator 𝑂𝑖 ; otherwise, False.

1: function mwSim(𝑎, 𝑏, 𝐿𝑖 ,𝑂𝑖 )

2: 𝑠𝑒𝑡𝐴, 𝑠𝑒𝑡𝐵 =𝑚𝑤 (𝑎, 𝐿𝑖 ),𝑚𝑤 (𝑏, 𝐿𝑖 )
3: if 𝑂𝑖 ==

′ 𝑎𝑛𝑑 ′ then
4: if 𝑠𝑒𝑡𝐴.𝑖𝑠𝑠𝑢𝑏𝑠𝑒𝑡 (𝑠𝑒𝑡𝐵) and 𝑠𝑒𝑡𝐵.𝑖𝑠𝑠𝑢𝑏𝑠𝑒𝑡 (𝑠𝑒𝑡𝐴) then
5: return True

6: end if
7: end if
8: if 𝑂𝑖 ==

′ 𝑜𝑟 ′ then
9: if 𝑠𝑒𝑡𝐴.𝑖𝑠𝑠𝑢𝑏𝑠𝑒𝑡 (𝑠𝑒𝑡𝐵) or 𝑠𝑒𝑡𝐵.𝑖𝑠𝑠𝑢𝑏𝑠𝑒𝑡 (𝑠𝑒𝑡𝐴) then
10: return True

11: end if
12: end if
13: return False

14: end function

on both data sets, that is, it has good extensivity. In order to be

suitable for different datasets, we can set the parameters such as

brand list, product descriptions list and synchronous attributes list,



Table 3: Performance of Our Method on Challenge Datasets

Precision Recall F-Measure

Dataset Y 1.000 0.964 0.982

Dataset X 0.915 0.967 0.940

which can be obtained based on rules or machine learning. It is

worth mentioning that our algorithm is mainly based on model

words, thus, it is better for data sets that mainly rely on product

models for matching, such as cameras, displays and other electronic

products.

Our observation is that the key to data preprocessing is to remove

some redundant information. Since in Algorithm 2, we try to use

the first model word in ’<page title>’ for comparison, it is highly

recommended to make the first model word in the ’<page title>’ to

be the model number of the product.

On the other hand, in the block scheme the acquisition of brand

information requires some manual intervention. Although it can

be obtained through machine learning or rules-based methods, we

found that there are some special circumstances that need to deal

with. For instance, Alienware was acquired by Dell, so Alienware

and Dell belong to the same brand. Since brand classification is

the first step in the BS-SA, manual intervention for such special

situations can improve the recall rate at lower cost.

4 CONCLUSION
In this paper, we proposed an extensible block-scheme basedmethod

for entity resolution. Specifically, our method consists of three

components, i.e., data preprocessing, block-scheme and scheme

aggregation, and similarity and clustering. Experiments on DI2KG

challenge datasets show that our method can achieve 0.982 and 0.94

F-measure values on Dataset X and Dataset Y, respectively.

In our future work, we intend to combine machine learning

techniques and consider weighting key properties, so as to find as

many as possible the best <key, value> pairs of products. Because

by using those strategies, we can make full use of training datasets,

by mapping product similarity to the range [0, 1].
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