
Towards an Ontology Engineering Framework for Integrating
Visualisation, Metamodelling and Reasoning

Emiliano Rios Gavagnin1, Germán Braun1,3, Laura Cecchi1, Pablo Fillottrani2,4

1Universidad Nacional del Comahue, Argentina

2Universidad Nacional del Sur, Argentina

3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)

4Comisión de Investigaciones Cientı́ficas de la Provincia de Buenos Aires (CIC)

emiliano.rios@est.fi.uncoma.edu.ar

{german.braun,lcecchi}@fi.uncoma.edu.ar,prf@cs.uns.edu.ar

Abstract. Conceptual data modelling languages are a common approach to rep-
resent ontologies visually. This paper introduces a framework aiming at en-
abling modelling tools to represent, manipulate and reason over OWL ontolo-
gies represented in different visual languages, such as UML, EER or ORM 2,
based on a previously developed theoretical metamodel. We describe the frame-
work and define a methodology to exploit it, in order to make visual indepen-
dence a reality. Finally, we present case studies on realistic ontologies to show
the applicability of our approach.

1. Introduction
Visualisations provide suitable abstraction levels for ontologies and their techniques help
users to enhance the interaction with the tools by encoding information in a manipula-
ble medium. However, both the lack of widely accepted methods [Dudáš et al. 2018] in
addition to the fragmented methodologies and tools in the landscape of Semantic Web
technologies [Vigo et al. 2014], have grounded the need of defining suitable and flexible
system requirements.

Conceptual data modelling languages (CDMLs) are a common approach to repre-
sent OWL ontologies visually [Fillottrani et al. 2012, Cerans et al. 2012]. Normally, each
modeller has their own preferences about which conceptual modelling language to use
during the data analysis and design stages. Moreover, stakeholders may have different
level of knowledge, understanding and cognitive capability for comprehending models
[Ong and Jabbari 2019]. Thus, to enhance the collaboration among them, an important
task is to establish the relation that underlies these conceptual modelling languages to
provide interoperability, integration and conversion of conceptual models represented in
such languages [Keet and Fillottrani 2013].

On the other hand, the development of high-quality models needs to in-
clude automated reasoning technologies to ensure their correctness. Giving tools
the ability to detect errors and unexpected (non-) entailments [Horrocks 2011,
Glimm and Stuckenschmidt 2016] is key for assuring certain quality parameters and ade-
quate development times and costs.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Aiming to put together these related aspects, we have previously identified the fol-
lowing set of system requirements framed into a web architecture for visual ontology en-
gineering tasks, named crowd1 [Braun et al. 2020]: (R1) Conceptual Modelling Support,
(R2) Visual Editing, (R3) Integrated Reasoning Services, (R4) Visual Language Indepen-
dence, (R5) Simultaneous Manipulation of Visual Models, (R6) Extensible Framework
and (R7) Semantic Web Compatibility. Some of them, R1, R2, R6 and R7, have been ful-
filled by crowd [Braun et al. 2020], so that in this work, we focus specifically on three of
them: R3, R4 and R5, where we consider the separation of concerns into formal features
and visual functionalities. Thus, we take metamodelling aspects as formal ones, which
give independence of how the models are (visually) represented, while addressing aspects
related to the vital support of automated reasoning.

(R4) Visual Language Independence and (R5) Simultaneous Manipulation of Visual
Models The independence of visual languages enables tools to represent and manipulate
the very same ontology in different visual languages, according to modellers’ preferences.
The variety of CDMLs is wide, and preferences may vary according to end users or mod-
ellers, communities and research fields. Therefore, achieving language independence is
a key factor when creating an ontology design tool. In this sense, the Keet-Fillottrani
(KF) Metamodel [Keet and Fillottrani 2013] is a unifying ontology-driven metamodel of
the three main language families, EER, UML and ORM 2 conceptual data modelling lan-
guages, inclusive of all constructs of the languages under consideration. This metamodel
has been completely formalised in FOL [Fillottrani and Keet 2014b], and thus ensuring
the precision of meaning and determining its expressiveness and complexity.

(R3) Integrated Reasoning Services Visual aspects can help modellers detecting anti-
patterns and debugging models, however, the increasing complexity of models requires
a formal encoding and automated reasoning to ensure their quality. Nowadays, reason-
ing systems are integrated into a huge range of tools but some interoperability issues and
undetected deductions are still present [Braun et al. 2019a]. On the other hand, the use
of Description Logics (DLs) to define precisely the semantic of UML, EER and ORM
2 has been widely studied [Berardi et al. 2003, Artale et al. 2007, Franconi et al. 2012].
Therefore, the aim of integrating automated reasoning with visual aspects is to take ad-
vantage of them to manage both the original model and its (possible) implicit deductions
in a graphical way.

In summary, suitable visualisations, automated reasoning and metamodelling are
key features in ontology engineering to facilitate the analysis and design of models and
successfully integrate modeller’s intentions with the formal semantics. With this work,
we go one step further towards satisfying these requirements. Our main contributions are:

1. the development of a framework that integrates visual editing over EER, UML and
ORM 2 conceptual modelling languages, which covers R4 and R5 requirements.
This capability is based on the solid theoretical background of the KF metamodel.
Here, we implement the subset of interoperability rules, given by KF, which uni-
fies the commonalities of the selected CDM languages.

2. the development of a new interface for partial visualisation of OWL ontologies in
any of the supported notations, by mapping OWL axioms to KF, integrated on the

1http://crowd.fi.uncoma.edu.ar/

framework. This feature aims to assist people who are not familiar with OWL but
are familiar with some other notation such as UML, EER, or ORM 2.

3. the design of a new version of crowd core implementing the encoding of KF
metamodel instances as DL knowledge bases, which satisfies the R3 requirement.

4. a methodology, where we exploit visualisation, metamodelling and reasoning for
dealing with ontology development tasks. The methodology makes use of custom
visualisations but keeping only one common and unified model. It enables repre-
senting ontologies by using different visual representations, and hence, manipu-
lating simultaneously these representations. Finally, we also show how this could
be used to partially visualise arbitrary OWL 2 ontologies [Horrocks et al. 2006].

This work is structured as follows. Section 2 reviews some preliminary concepts
related to the KF metamodel and the tool crowd. Section 3 presents and details the
proposed framework together with the methodology to exploit it. Section 4 shows case
study based on a realistic ontology. Finally, section 5 details related approaches, and
section 6 concludes the work and presents future directions.

2. Preliminaries
In this section, we briefly describe the preliminary concepts of our work. We give de-
scriptions of both the Keet-Fillottrani (KF) metamodel and crowd, which is a web tool
for ontology development tasks.

2.1. KF Metamodel
The intention behind the ontology-driven KF metamodel [Keet and Fillottrani 2015] is
to provide interoperability, integration and conversion of conceptual data models repre-
sented in different languages. For this purpose, the metamodel specifies an approach for
transforming models in one language into other ones, and to be able to assert semanti-
cally proper links between them. It unifies all main static entities and constraints of UML
Class Diagrams, EER, and ORM 2. The KF hierarchy is currently divided into Entity
Types, Relationships (such as Attributes and Subsumptions), Roles and
Constraints. In this way, the metamodel covers all the native feature of the con-
ceptual data model languages (CDMLs), and it allows to represent models of different
languages in a single unifying model. Its structure and complete formalisation in FOL
can be found in [Fillottrani and Keet 2014b].

The KF metamodel defines four groups of interoperability rules
[Fillottrani and Keet 2014a] divided into 1:1 mappings, transformation, approxima-
tions, and no alternatives. 1:1 mappings are those where the elements are the same
from an ontological point of view and as a consequence, the conversions are in simple
steps. One of the simplest cases is Subsumption. Secondly, transformations involve
elements which are essentially the same but not from a syntax point of view. Such
transformations take place, for instance, from ORM 2 value types to UML and EER
attributes. Approximations are special kinds of rules where modellers are required
to accept or reject the conversions or links. These rules are based on patterns which
could lead to different outcomes. Finally, since these languages do not have the same
expressiveness, some of their features cannot be either represented nor approximated in
a target language. As an example, the conversion from ORM 2 compound cardinality to
UML is not possible.

KF Interface

other editor

crowd EER

EER visual
editors

Input/Output

Norma

crowd ORM2

ORM 2 visual
editors

Input/Output

OWL2 Interface

UML Interface

EER Interface

ORM2 Interface

crowd core

KF API

other toolProtégé

Ontology Editors Input/Output

UML visual editors
Input/Output

other editorcrowd UML

«artifact»
DL Reasoner

«framework»
crowd

OWLAPI

«uses»

«uses»

KF Metamodel

OWL2KF

ResponsesDL Translator«uses»

«uses»

«uses»

«uses»

Figure 1. New framework crowd for ontology engineering

2.2. crowd Tool

crowd [Braun et al. 2020] is a visual web tool for ontology engineering tasks. The
intention behinds crowd is to assist users to design OWL ontologies from standard
CDMLs and visual support for developers. Its complete architecture has been described
in [Braun et al. 2019b].

The leverage of automated reasoning is enabled by a precise semantic definition
of all the elements of the diagrams. Hence, diagrams constraints are internally translated
into a logic-based formalism capturing typical features of models. The tool is fully in-
tegrated with a powerful logic-based reasoning server acting as a background inference
engine. Unlike other tools, crowd is based on a deduction-complete notion of reasoning
support relative to the diagram graphical syntax. Thus, users will see the original model
graphically completed with all the deductions and expressed in the graphical language it-
self. This includes checking class and relationship consistency, discovering implied class
and cardinality constraints. First versions of crowd only focus on visual modelling of
schemes, while it does not consider individuals yet.

Currently, crowd enables ontology development tasks by using UML diagrams
and supporting automated reasoning over them. Furthermore, it presents Semantic Web
Compatibility, the tool ensures compliance with W3C standards by allowing defining
global naming schemes as well as exporting specifications OWL 2 to interoperate with
other tools.

3. Putting together Diagrams, Metamodelling and Reasoning on the web
In this section, we describe the main components of our new framework. We first present
its architecture, where both the KF metamodel and the new crowd core are integrated.
Finally, we explain the methodology underlying to our approach and show the capa-
bilities of the framework in a behavioural model. The suite of tools involved in this

framework is composed of a core PHP, two visual tools for both UML and ORM 2
diagrams and two Java APIs. All of the tools are open source and are available at:
https://bitbucket.org/gilia/workspace/projects/CROW.

3.1. Framework

Figure 1 depicts the module view style of the proposed architecture. The A <<uses>>
B relationship defines the interaction between modules. Each module provides a set of re-
sponsibilities aiming to define the role of such a module in achieving certain functionality.
This view details how these units ensemble to form one greater structure. The framework
is structured as follows.

(i) The external visual editors for UML, EER and ORM 2. Each one interacts with the
framework by sending the diagrams using the HTTP protocol. Currently, only the UML
and ORM 2 editors provided by crowd have been integrated to the framework, however,
other applications dealing with conceptual modelling languages for ontology development
communicate with the core by giving their models to the respective interfaces.

(ii) The interfaces are the entry points to the framework. They process the inputs and
outputs according to the schemes accepted by the KF interface. From the imple-
mentation point of view, these schemes are JSON objects with the primitives of the
visual models. Aiming at using crowd to import OWL 2 ontologies, the framework
includes an OWL 2 interface which differs from the other ones. In particular, it only
loads an OWL document, which is after parsed and manipulated by the OWL API
[Horridge and Bechhofer 2011]. Currently, the functionalities associated with the ma-
nipulation of OWL 2 ontologies are limited to extract atomic class, the whole hierarchy
of classes and sub-hierarchies from a particular super class.

(iii) The KF API is based on the underlying theory of the KF metamodel. This com-
ponent instantiates the metamodel to convert between different diagrams given in a par-
ticular CDML. The KF API implements the following 1:1 Mapping rules: Relationship,
Role, Object Type, Subsumption, Object Type cardinality, Completeness and Disjointness
between Object Types, and Subset constraint and Mandatory. Regarding transformation
rules, UML Attribute from/to ORM Value Type is the only rule implemented. Lastly, the
KF API also implements an initial version of an OWL2toKF component, in charge of
generating KF instances from OWL 2 documents given as input and parsed by using the
OWL API.

(iv) The last module is crowd core. Its main purpose is to manipulate and encode KF
instances as DL Knowledge Base (KB). Moreover, it implements OWL 2 builders and the
features to deal with off-the-shelf reasoners.

All of these modules are orchestrated by the KF Interface, which receives the
external inputs and redirect them to the remaining modules according to the requirements
from users.

3.2. Methodology

Our methodology exploits visualisation, metamodelling and reasoning for dealing with
ontology development tasks. In particular, it enables custom visualisations but keeping
only one common and unified model. Figure 2 illustrates an OCBC model with the flow

refers to

Load
UML/EER/ORM2

Generate
KF Metamodel

Load OWL 2

Encoding to
OWL 2

DL Reasoning

Export
UML/EER/ORM2

Update
KF Metamodel

Conceptual
Model KF Instance OWL

Specification

X

refers

is_encodedinstantiatesinstantiates

creates outs

modifies

updates
1 1 1 1..*

1

1

1

1

1

1
1

1

1

1

Figure 2. OCBC model [Artale et al. 2019] illustrating the flow of tasks in our
framework. Double arrow between two tasks indicates that if the first task
executes, the second one must be executed afterwards.

of tasks in our framework. Here we show the interaction between these tasks (in blue)
and between the underlying data model (in orange). We consider the below scenarios.

(i) In the first scenario, users draw a scheme using any of the CDML sup-
ported, which is automatically mapped to the KF metamodel and thus gen-
erating the respective instance (applying the metamodel interoperability rules):
Load UML/EER/ORM2 → Generate KF Metamodel. According to the users’
choice, this instance could be exported again to other CDML: Generate
KF Metamodel → Export UML/EER/ORM2; or encoded into OWL 2 to be
checked. In the latter case, the metamodel instance could or not be updated
with the reasoning results before being exported and visualised in one of the
CDML supported: Generate KF Metamodel → Encoding to OWL 2 →
DL Reasoning → Update KF Metamodel → Export UML/EER/ORM2.

(ii) In the second scenario, users load an OWL document, which is automatically mapped
to the KF metamodel and thus generating the respective instance: Load OWL 2 →
Generate KF Metamodel. Here, the KF instances are generated by mapping OWL
axioms to KF entities, previously parsed by the OWL API. Once the KF instance has been
generated, the only possible task to be executed is to export it to one of the CDML sup-
ported: Generate KF Metamodel → Export UML/EER/ORM2. The crossed
line between Load OWL 2 and Encoding to OWL 2 indicates that if Load OWL 2 is
executed then Encoding to OWL 2 is never executed.

As far as we are aware, there is not any exact match between arbitrary OWL
2 ontologies and the KF metamodel [Keet and Fillottrani 2013], i.e. mapping rules to
convert OWL 2 primitive into KF ones. Therefore, we sketch an approximation based
on the use of new rules, similar to 1:1 mapping ones, as starting point. To see the
complexity of this mapping, we give an example with the case of OWL 2 object
properties and KF relationships. Just to exemplify, we consider the (R1) Rule

(R1) Association
UML to KF
=======⇒ Relationship

in: Association(AssociationEnd: Class, AssociationEnd : Class) (1)
out: AssociationEnd → Role (2)
out: Association → Relationship (3)
out: Class → Object Type (4)
out: Relationship(Role:Object Type, Role:Object Type) (5)

Figure 3. (R1) Rule UML to KF from [Fillottrani and Keet 2014a].

from [Fillottrani and Keet 2014a] shown in Figure 3 (UML to KF), where we can see
that for instantiating a KF relationship we should have at least two participating entities.
Moreover, we need two roles.

So let us suppose that an ontology defines the hasLocation object property,
whose domain and range are BioEvent and Location, respectively. Thus, the (R1)
input is hasLocation(AssociationEnd: BioEvent, AssociationEnd: Location) (Figure 3,
(1)). Following the rule structure, we should map the object property as a metamodel re-
lationship hasLocation (Figure 3 (3)). As we said, the definition of a relationship re-
quires of other associated primitives: Role and Object Type. Thus, both object prop-
erty domain BioEvent and range Location can be mapped to Object Type (Fig-
ure 3 (4)), however, two fresh roles, bioEventRole: Role and locationRole:
Role must be created to complete the definition of such relationship and instantiate (Fig-
ure 3 (2)). Therefore, adding those fresh roles implies that a new OWL 2 specification,
different from the first one imported, could be generated.

4. Case Study
BiGe-Onto [Zárate et al. 2019] is an ontology-based system to manage information from
Biodiversity and Biogeography domains, using standards such as the Darwin Core
and GeoSPARQL. It is composed of a BiGe-Onto architecture; a conceptual model
called BiGe-Onto; an OWL 2 operational version of BiGe-Onto; and an integrated dataset
for its exploitation through a SPARQL endpoint.

Figure 4 depicts the current model of BiGe-Onto, which has been modelled in
crowd-UML. There, we can identify each ontology reused to build it. The correspond-
ing URIs of namespaces have been also loaded in the tool. Concepts extracted from
Darwin Core vocabulary models events, where occurrences referencing organisms
have been identified along with their respective locations and regions. On the same
hand, the information related to these locations and regions are modelled by reusing
concepts from GeoSPARQL and ENVO. Finally, events have date and time descrip-
tions given by Time ontology, and datasets and persons by VoID and FOAF, respec-
tively. This model has been used to guide the process of mapping the raw data to RDF.
Further information about the case study, such as demos and images, can be found at
http://crowd.fi.uncoma.edu.ar/ontobras/.

Converting from UML to ORM 2
Our first case study is about applying interoperability rules to convert an initial UML
model of BiGe-Onto into an ORM 2 model. This scenario involves running the follow-
ing tasks depicted in the Figure 2: Load UML, Instantiate KF Metamodel, and

Darwin Core

GeoSPARQL

ENVO

FOAF

TIMENERC

VoID

Figure 4. Visualisation of BiGe-Onto in crowd-UML

Darwin Core

GeoSPARQL

ENVO

FOAF

TIME

VoID

Figure 5. Visualisation of BiGe-Onto in crowd-ORM 2

Export ORM 2. Both the first and the last tasks are depicted in Figure 4 and Figure
5, respectively. The crucial task here is to instantiate the KF metamodel, which imply to
apply its interoperability rules.

As can be seen from Figure 4, the model contains 18 classes, 7 generalisations, 11
associations (with their respective roles), and 6 attributes distributed between the classes
MeasurementOrFact and Geometry. Using the 1:1 Mapping rule we can generate the fol-
lowing entities: 18 Object Type, 11 Relationship, 22 Role, 7 Subsumption,
and 22 Object type cardinality, making a total of 80 rules applied to generate
our instance. To illustrate it, below we show the case of Relationships(R) rule. For
the example, we use the classes Environment, Region, and the association characterizes
from the BiGe-Onto model in Figure 4.

(R) UML to KF
characterizes : Association → characterizes : Relationship

environmentEnd → environmentRole : Role

regionEnd → regionRole : Role

characterizes → characterizes : Relationship

Environment → Environment : ObjectType

Region → Region : ObjectType

environmentEndMult : Multiplicity → environmentEndMult : OTCardinality2

0 → 0 : MinOTCardinality

N → N : MaxOTCardinality

regionEndMult : Multiplicity → regionEndMult : OTCardinality2

0 → 0 : MinOTCardinality

N → N : MaxOTCardinality

(R) KF to ORM 2
characterizes : Relationship → characterizes : FactType

environmentEnd → environmentRole : Role

regionEnd → regionRole : Role

characterizes → characterizes : FactType

Environment → Environment : ObjectType

Region → Region : ObjectType

environmentEndCard : Cardinality → environmentEndCard : OTCardinality2

0 → 0 : MinOTCardinality

N → N : MaxOTCardinality

regionEndCard : Cardinality → regionEndCard : OTCardinality2

0 → 0 : MinOTCardinality

N → N : MaxOTCardinality

Once the KF metamodel has been instantiated, the next step in the conversion process
is the application of interoperability rules to generate an ORM 2 model from the KF

2ObjectTypeCardinality

metamodel instance. The conversion from the metamodel to ORM 2, using 1:1 Mapping
rules, will generate an equal amount of entities as the metamodel instance but using ORM
2 primitive names.

Reasoning over Metamodel Instances
In addition, to provide customisable visualisations from the utilisation of a unified model,
we want to add support for automated reasoning over such common instance. This
scenario corresponds to the flow Load UML → Generate KF Metamodel →
Encoding to OWL 2 → DL Reasoning → Update KF Metamodel →
Export UML defined for our methodology. In particular, it involves encoding each
metamodel instance as an OWL specification, and thus to be sent to off-the-shelf DL
reasoners for checking for satisfiability and discovering (possible) implicit assertions.

Considering again our initial BiGe-Onto model and the OWL formalisation of
the whole metamodel3, we consider the DL semantics of UML generalisations and an
association of BiGe-Onto as shown below.

(S) KF to DL
Feature : ObjectType → Feature : Class

Geometry : ObjectType → Geometry : Class

SpatialObject : ObjectType → SpatialObject : Class

(Feature, SpatialObject) : Subsumption → (Feature, SpatialObject) : SubClassOf

(Geometry, SpatialObject) : Subsumption → (Geometry, SpatialObject) : SubClassOf

DL Feature v SpatialObject

Geometry v SpatialObject

The first mapping (S) KF to DL takes the metamodel instance generated from UML com-
posed generalisation between the SpatialObject, Feature and Geometry. Such
instance generates two Subsumption primitives and the respective Object Types.
In DL, we simply write two concept inclusion between these atomic concepts.

Exploring OWL 2 Ontologies
There exist many ways to express requirements and test ontologies to understand the con-
tent of them [Blomqvist et al. 2012, de Almeida Falbo 2014] and thus reusing them to ex-
tend other ontologies. However, not all entities or relationships are of interest to be reused,
implying that we should be aware of the structure of such related ontologies. This last case
describes the use of the metamodel as a common model to interoperate between OWL 2
and CDML-based visualisations, aiming to explore OWL 2 ontologies for identifying
those entities of interest. The scenario corresponds to the following tasks from our OCBC
model: Load OWL 2 → Generate KF Metamodel → Export ORM2. Thus,
we will generate an instance of the KF for the structure of interest of the loaded ontology
and finally, a visualisation of such instance in UML, EER or ORM 2. As we already
justified in section 3.2, we will cancel the task of encoding again to OWL 2.

We describe the case of extending BiGe-Onto by re-using entities from FaBiO4

ontology [Peroni and Shotton 2012] for describing publications related to findings about
3http://crowd.fi.uncoma.edu.ar/KFDoc/
4http://www.sparontologies.net/ontologies/fabio

data of BiGe-Onto. FaBiO is an ontology for recording and publishing on the Semantic
Web descriptions of entities that are published or potentially publishable. Then, let us
suppose that we want to explore the kinds of publications, for instance lecture notes,
chapters, etc. From the FaBiO documentation, we also know that these publications are
expression of works published or potentially publishable so that the starting point is to
look for the class Expression and its subclasses. For doing this task and after loading
the respective OWL 2 specification of FaBiO, our framework generates a KF instance by
executing these rules:
OWL 2 fabio : Expression a owl : Class

fabio : LectureNotes a owl : Class

rdfs : subClassOf fabio : Expression

fabio : Chapter a owl : Class

rdfs : subClassOf fabio : Expression

OWL 2 to KF fabio : Expression → Expression : ObjectType

fabio : LectureNotes → LectureNotes : ObjectType

LectureNotes.subClassOf : Expression → playSub : Role

fabio : Expression → playSup : Role

fabio : Chapter → Chapter : ObjectType

Chapter.subClassOf : Expression → playSub : Role

fabio : Expression → playSup : Role

As the OWL 2 to KF rule shows, OWL 2 classes are mapped to Object Type,
while both LectureNotes and Chapter play the subclass role and Expression
plays superclass role. Once a KF instance has been generated containing all the subsump-
tions, we could follow the flow to export this instance into an appropriate visual language.

5. Related Works
Several approaches have been proposed to address formalisation and implementation
of suitable tools for ontology engineering tasks, that integrate visual multi-model, con-
version among different CDMLs and automated reasoning. One of such works is pre-
sented in [Boyd and McBrien 2005], where authors developed a Hypergraph Data Model
to relate models represented in ER, relational, UML, and ORM through transformation
rules. However, the expressiveness of models is limited, since they omit roles, aggre-
gation, weak entity types and several constraints. This approach can be considered as
a platform for automating the process of transforming between different modelling lan-
guages, but currently, it is not implemented. Another work has been carried out by Halpin
[Halpin 2004, Halpin 2002], where diverse mappings from ORM to UML and from ORM
to ER are analysed. However, these last ones are only theoretical and are presented as sep-
arated approaches as well.

Going one step further, an Universal Conceptual Modelling (UCM) Framework
is proposed in [Sportelli 2017] providing reasoning services and import/export of dia-
grams in different languages like ORM, UML and ER. Even this approach is similar to
our framework, there exists some differences: the visualisation of EER, ORM and UML
conceptual languages integrated into our framework, and the interaction between such

visualisations and partial views OWL axioms. Furthermore, our implementation allows
users to extend visual model expressive with OWL coding and manage namespaces, two
important aspect in ontology development. Currently, the whole UCM framework is not
implemented yet, but the author presents the application ORMiE [Sportelli 2016], which
is a plugin for NORMA [Curland and Halpin 2010], to perform reasoning on ORM 2 con-
ceptual scheme extended by derivation rules, augmenting ORM 2 standard expressibility.

GeRoMe [Kensche et al. 2007] is a Generic Role-based Metamodel which rep-
resents models from different modelling languages (such as EER, UML, XML Schema,
OWL, SQL) in a generic way. Each model element in GeRoMe is labelled with a set of
role objects that represent specific properties of the model element. This framework does
not support ORM 2, it does not provide automated reasoning nor graphical functionali-
ties. Atzeni et al. [Atzeni et al. 2011] present an automated model-independent approach
for translating a model from one language to another, considering ER, UML, Object-
Oriented and Object Relational languages. Translations are specified as Datalog rules and
the source and target of the translation are exposed in a generic relational dictionary of
constructs. However, a sequence of rules is required to translate from a representational
language to another one (if possible). Visual features are basics.

Finally, two commertial visual tools have been considered: Astah
[Astah Homepage 2020] and Visual Paradigm [Visual Paradigm Homepage 2020].
Astah supports UML and EER conceptual model languages, but does not support ORM.
Astah Professional allows to convert ER diagrams to UML Class diagrams and back to
ER diagrams again. Reasoning support is provided just for UML to check inconsistency
between Class diagram models and Sequence diagram models. Visual Paradigm is tool
suite for software development that provides UML, EER and BPMN visual modelling
capabilities. Visual Paradigm supports generating UML class diagrams from ER
diagrams. Both automated reasoning nor interoperability capabilities are provided either.

6. Conclusions and Future Works
We have shown the feasibility of using a unified model to implement visual independence
in an ontology engineering tool by leveraging the theoretical KF metamodel and auto-
mated reasoning. To this end, we have provided a framework that integrates visual editing
over EER, UML and ORM 2 conceptual modelling languages, along with a methodology
to exploit it. Finally, we have demonstrated the applicability of our approach by introduc-
ing case studies on a realistic ontology.

The central aspect of the methodology is based on manipulating metamodel in-
stances, which can be exported as visual models in diverse conceptual data modelling
languages or mapped to OWL 2 to reason over them. Thus, separating the visual abstrac-
tion from the formal one. Through the case studies, we have analysed diverse scenar-
ios where visualisation, metamodelling and reasoning are required. However, they also
brought to light new challenges. In particular, those related to the interoperability with
arbitrary OWL 2 ontologies and the scalability of the whole approach.

In conclusion, we foresee various future to improve the results obtained here. On
one side, the obvious one is to continue the implementation of more interoperability rules.
On the other hand, we plan to extend the compatibility of OWL 2 and the KF for dealing
with arbitrary OWL 2 ontologies.

References

Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., and Zakharyaschev, M. (2007).
Complexity of Reasoning in Entity Relationship Models. In International Workshop
on Description Logics.

Artale, A., Kovtunova, A., Montali, M., and van der Aalst, W. M. P. (2019). Modeling
and Reasoning over Declarative Data-Aware Processes with Object-Centric Behavioral
Constraints. In 17th International Conference, BPM, Proceedings, pages 139–156.

Astah Homepage (2020). http://astah.net/features/
convert-diagrams-and-models.

Atzeni, P., Gianforme, G., and Cappellari, P. (2011). Data model descriptions and trans-
lation signatures in a multi-model framework. Annals of Mathematics and Artificial
Intelligence, 63(3-4):287–315.

Berardi, D., Cali, A., Calvanese, D., and Giacomo, G. D. (2003). Reasoning on UML
Class Diagrams. Artifical Intelligence.

Blomqvist, E., Sepour, A. S., and Presutti, V. (2012). Ontology Testing - Methodology
and Tool. In Knowledge Engineering and Knowledge Management - 18th International
Conference, EKAW 2012. Proceedings, pages 216–226.

Boyd, M. and McBrien, P. (2005). Comparing and Transforming Between Data Models
Via an Intermediate Hypergraph Data Model. In Spaccapietra, S., editor, Journal on
Data Semantics IV, pages 69–109, Berlin, Heidelberg. Springer Berlin Heidelberg.

Braun, G., Cecchi, L., and Fillottrani, P. (2019a). Taking Advantages of Automated Rea-
soning in Visual Ontology Engineering Environments. In JOWO@BOG.

Braun, G., Estevez, E., and Fillottrani, P. (2019b). A Reference Architecture for Ontol-
ogy Engineering Web Environments. Journal of Computer Science and Technology,
19(01):e03.

Braun, G., Gimenez, C., Cecchi, L., and Fillottrani, P. (2020). crowd: A Visual Tool for
Involving Stakeholders into Ontology Engineering Tasks. KI - Künstliche Intelligenz.

Cerans, K., Ovcinnikova, J., Liepins, R., and Sprogis, A. (2012). Advanced OWL 2.0
Ontology Visualization in OWLGrEd. In DB&IS, Frontiers in Artificial Intelligence
and Applications. IOS Press.

Curland, M. and Halpin, T. A. (2010). The NORMA Software Tool for ORM 2. In CAiSE
Forum, Lecture Notes in Business Information Processing. Springer.

de Almeida Falbo, R. (2014). SABiO: Systematic Approach for Building Ontologies. In
Proceedings of the 1st Joint Workshop ONTO.COM.

Dudáš, M., Lohmann, S., Svátek, V., and Pavlov, D. (2018). Ontology visualization
methods and tools: a survey of the state of the art. The Knowledge Engineering Review,
33.

Fillottrani, P., Franconi, E., and Tessaris, S. (2012). The ICOM 3.0 Intelligent Conceptual
Modelling Tool and Methodology. Semantic Web Journal.

Fillottrani, P. R. and Keet, C. M. (2014a). Conceptual Model Interoperability: A
Metamodel-driven Approach. In Rules on the Web. From Theory to Applications -
8th International Symposium, RuleML@ECAI. Proceedings.

Fillottrani, P. R. and Keet, C. M. (2014b). KF metamodel formalization. CoRR,
abs/1412.6545.

Franconi, E., Mosca, A., and Solomakhin, D. (2012). ORM2: Formalisation and Encod-
ing in OWL2. In On the Move to Meaningful Internet Systems Workshops.

Glimm, B. and Stuckenschmidt, H. (2016). 15 years of semantic web: An incomplete
survey. KI-Künstliche Intelligenz, 30(2):117–130.

Halpin, T. A. (2002). Information Analysis in UML and ORM: A Comparison. In Ad-
vanced Topics in Database Research, Vol. 1.

Halpin, T. A. (2004). Comparing Metamodels for ER, ORM and UML Data Models. In
Advanced Topics in Database Research, Vol. 3.

Horridge, M. and Bechhofer, S. (2011). The OWL API: A Java API for OWL Ontologies.
Semantic Web.

Horrocks, I. (2011). Tool support for ontology engineering. In Foundations for the Web
of Information and Services, pages 103–112. Springer.

Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more irresistible SROIQ. In In
KR, pages 57–67. AAAI Press.

Keet, C. M. and Fillottrani, P. R. (2013). Toward an Ontology-Driven Unifying Meta-
model for UML Class Diagrams, EER, and ORM2. In Conceptual Modeling - 32th
International Conference. Proceedings.

Keet, C. M. and Fillottrani, P. R. (2015). An ontology-driven unifying metamodel of
UML Class Diagrams, EER, and ORM2. Data Knowl. Eng., 98:30–53.

Kensche, D., Quix, C., Chatti, M. A., and Jarke, M. (2007). Gerome: A generic role based
metamodel for model management. In Journal on data semantics VIII, pages 82–117.
Springer.

Ong, D. and Jabbari, M. (2019). A review of problems and challenges of using multiple
conceptual models. In Proceedings of the 27th European Conference on Information
Systems (ECIS).

Peroni, S. and Shotton, D. (2012). FaBiO and CiTO: Ontologies for describing biblio-
graphic resources and citations. Journal of Web Semantics, 17:33 – 43.

Sportelli, F. (2016). NORMA: A Software for Intelligent Conceptual Modeling. In
JOWO- FOIS.

Sportelli, F. (2017). Supporting Conceptual Modelling in ORM by Reasoning. In Euro-
pean Conference on Advances in Databases and Information Systems, pages 422–431.
Springer.

Vigo, M., Bail, S., Jay, C., and Stevens, R. (2014). Overcoming the Pitfalls of Ontol-
ogy Authoring: Strategies and Implications for Tool Design. International Journal of
Human Computer Studies.

Visual Paradigm Homepage (2020). https://www.visual-paradigm.com/.

Zárate, M., Braun, G., Fillottrani, P. R., Delrieux, C., and Lewis, M. (2019). BiGe-
Onto: An Ontology-Based System for Managing Biodiversity and Biogeography Data.
Applied Ontology.

