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Abstract. In this paper we extend previously developed approach to
FCA-based machine learning with discrete attributes to the case with
objects described by continuous attributes. We combine the logistic re-
gression with an entropy-based separation of attribute values, which is
similar to Quinlan’s approach to dealing with continuous attributes. We
apply Cox-Snell and McFadden significance criteria to logistic regression.
Finally, we present the results of applying the new version of FCA-based
learning system to the analysis of Wine Quality dataset from UCI Ma-
chine Learning Repository.
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Introduction

In [8] the author extended some FCA ideas [1] by developing a probabilistic ap-
proach to Machine Learning (ML) based on similarity operation. FCA provides
a very efficient representation for training objects by means of bitsets (fixed
length strings of bits) with bit-wise multiplication as a similarity between them.
The previous version of the ML program (called ’VKF system’ in honor to Prof.
V.K. Finn) was applicable to objects described by discrete attributes only. How-
ever, a variety of interesting data needs both discrete and continuous attributes
for their representation. The first step to include continuous cases to VKF system
is an analogue of J.R. Quinlan’s approach to similar problem for C4.5 decision
tree algorithm [5]. He splits the whole domain of a continuous attribute into
several intervals to reach minimal mean entropy.

To obtain bitset representation from such division we introduce indicator
variables and combine their values. The main result asserts that bit-wise mul-
tiplication corresponds to a convex hull of intervals of values under similarity,
which was studied in [2] and [4] in terms of interval pattern structures within,
an FCA-based approach to analysis of data with continuous attributes. A more
important problem is to discover complex combinations of continuous attributes.
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Since our main goal is to discover a classifier, we apply Bayes Machine Learning
ideas to generate such complex attributes through well-known logistic regression.

The key question is to detect significance of essential relationships (interac-
tions) between pairs of attributes. Hence, we apply well-known Cox-Snell and
McFadden criteria to discover such interactions.

The structure of the paper is as follows. In Section 1 we recall general def-
initions and some facts from FCA. Section 2 covers main algorithms of VKF-
method. Section 3 describes new results. Subsection 3.1 reproduces Quinlan’s
technique to separate continuous feature domain into several intervals. It also in-
troduces a representation of the occurrence of an attribute value in some interval
by bitset. Subsection 3.2 introduces a logistic regression approach to discovering
relationships between continuous features.

1 Formal Concept Analysis (FCA)

A (finite) context is a triple (G,M, I) where G and M are finite sets and
I ⊆ G × M . The elements of G and M are called objects and attributes,
respectively. As usual, we write gIm instead of 〈g,m〉 ∈ I to denote that object
g has attribute m.

For A ⊆ G and B ⊆M , define

A′ = {m ∈M |∀g ∈ A(gIm)}, (1)

B′ = {g ∈ G|∀m ∈ B(gIm)}; (2)

so A′ is the set of attributes common to all the objects in A and B′ is the set
of objects possessing all the attributes in B. The maps (·)′ : A 7→ A′ and (·)′ :
B 7→ B′ are called derivation operators (polars) of the context (G,M, I).

If we fix attribute subsets {g1}′ ⊂ M and {g2}′ ⊂ M for objects g1 ∈ G
and g2 ∈ G, respectively, with corresponding bitsets, then the derivation opera-
tor on a pair of objects corresponds to bit-wise multiplication, since {g1, g2}′ =
{g1}′ ∩ {g2}′. More generally, the polars correspond to the iteration of bit-wise
multiplication (in arbitrary order) of corresponding bitset-represented objects
and attributes, respectively. The last remark is important, since bit-wise mul-
tiplication is a basic operation of modern CPU and GPGPU. The aim of the
article is to invent a bitset representation of continuous features in such a way
that bit-wise multiplication of resulting bitsets has clear meaning with respect
to original values!

A concept of the context (G,M, I) is defined to be a pair (A,B), where
A ⊆ G, B ⊆ M , A′ = B, and B′ = A. The first component A of the concept
(A,B) is called the extent of the concept, and the second component B is
called its intent. The set of all concepts of the context (G,M, I) is denoted by
L(G,M, I).

Definition 1. For (A,B) ∈ L(G,M, I), g ∈ G, and m ∈M define

CbO((A,B), g) = ((A ∪ {g})′′, B ∩ {g}′), (3)

CbO((A,B),m) = (A ∩ {m}′, (B ∪ {m})′′). (4)



We call these operations CbO because the first one is used in well-known
Close-by-One (CbO) Algorithm [3] for generating all concepts from L(G,M, I).

Lemma 1. Let (G,M, I) be a context, (A,B) ∈ L(G,M, I), g ∈ G, and m ∈M .
Then

CbO((A,B), g) = (A,B) ∨ ({g}′′, {g}′), (5)

CbO((A,B),m) = (A,B) ∧ ({m}′, {m}′′). (6)

This lemma proves the correctness of definition 1 of operations CbO. Most
important property of these operations is represented in the following

Lemma 2. Let (G,M, I) be a context, (A1, B1), (A2, B2) ∈ L(G,M, I), g ∈ G,
and m ∈M . Then

(A1, B1) ≤ (A2, B2)⇒ CbO((A1, B1), g) ≤ CbO((A2, B2), g), (7)

(A1, B1) ≤ (A2, B2)⇒ CbO((A1, B1),m) ≤ CbO((A2, B2),m). (8)

2 FCA-based Machine Learning

We deal with supervised Machine Learning. Hence we have training examples
together with the target values on them. All examples are described by binary
attributes from M , i.e. they can be given by bitsets of fixed length. Usually,
a subset of examples is used as a test sample Gτ for checking the quality of
training. The training examples are divided into positive G+ and negative G−

subsets according to the value of the target attribute. The elements of G+ and
G− make the training sample, elements of G− are called counter-examples
(obstacles). Formal context (G+,M, I) is the main data set.

The well-known example (S, S, 6=) of context for Boolean algebra demon-
strates difficulties of brute force approach. For Boolean algebra of all subsets
of n elements the context uses n2 bits, and all the concepts need n · 2n bits.
For n = 32 the first number is 1 Kb (or 128 bytes) and the second one is 16
Gigabytes! The time complexity is exponential too.

Hence we need to replace computation of the whole lattice of all concepts by
randomized algorithms to generate a random subset of the lattice. The author
introduced and investigated mathematical properties of several algorithms of
this kind, the best of which are variants of coupling Markov chains.

Now we represent the classical version of coupling Markov chain that is a core
of probabilistic approach to machine learning based on FCA (VKF-method).

Data: context (G+,M, I), external function CbO( , )
Result: random concept (A,B) ∈ L(G+,M, I)
X := G tM ; (A,B) := (M ′,M); (C,D) = (G,G′);
while ((A 6= C) ∨ (B 6= D)) do

select random element x ∈ X;
(A,B) := CbO((A,B), x);
(C,D) := CbO((C,D), x);

end
Algorithm 1: Coupling Markov chain



The ordering of two concepts (A,B) ≤ (C,D) at any intermediate step of
the while loop of Algorithm 1 is defined by Lemma 2.

For Boolean lattice (contranomial) context the author [8] computed the mean
length of trajectory of Algorithm 1 as n

∑n
j=1

1
n and proved strong concentration

of length of arbitrary trajectory about its mean. For n = 32 the mean is ≤ 130,
hence every trajectory generates about 260 (since two concepts is a state of the
coupling Markov chain) subsets. Hence, only a small fraction of concepts occurs
during computation of a moderate size subset of the Boolean algebra. We have in
mind that there are 4,294,967,296 elements of Boolean algebra on 32 attributes.

Machine Learning procedure has two steps: induction and prediction. At the
first step the system generate hypotheses about causes of the target property
from training sample. At the prediction step the system applies the hypotheses
to predict the target value for test examples.

The induction step of FCA-based learning applies the Coupling Markov chain
Algorithm 1 to generate a random formal concept (A,B) ∈ L(G+,M, I). The
program saves the concept (A,B) if there is no obstacle (counter-example) o ∈
G− such that B ⊆ o′.

Data: number N of concepts to generate
Result: random sample S of formal concepts without obstacles
G+ := (+)-examples, M := attributes; I ⊆ G+ ×M is a formal context
for (+)-examples;
G− := (-)-examples; S := ∅; i := 0;
while (i < N) do

Generate concept (A,B) by Algorithm 1;
hasObstacle := false;
for (o ∈ G−) do

if (B ⊆ o′) then
hasObstacle := true;

end

end
if (hasObstacle = false) then

S := S ∪ {(A,B)};
i := i+ 1;

end

end
Algorithm 2: Inductive generalization

Condition (B ⊆ o′) of Algorithm 2 means the inclusion of intent B of concept
(A,B) into the intent of counter-example o.

If a concept “avoids” all such obstacles it is added to the result set of all the
concepts without obstacles.

We replace a time-consuming deterministic algorithm (for instance, ”Close-
by-One” [3]) for generation of all concepts by the probabilistic one to randomly
generate the prescribed number of concepts.



The goal of Markov chain approach is to select a random sample of formal
concepts without computation of the (possibly exponential size) set L(G,M, I)
of all the concepts.

Finally, machine learning program predicts the target class of test examples
and compares the results of prediction with the original target value.

Data: random sample S of concepts, list Gτ of test objects
Result: prediction of target class of Gτ elements
for (o ∈ Gτ ) do

PredictPositively(o) := false;
for ((A,B) ∈ S+) do

if (B ⊆ o′) then
PredictPositively(o) := true;

end

end

end
Algorithm 3: Prediction of target class by analogy

The author proved [8] the following theorem to estimate parameter N from
Algorithm 2.

Test object o is an ε-important if probability of all concepts (A,B) with
B ⊆ {o}′ exceeds ε.

Theorem 1. For n = |M | and for any ε > 0 and 1 > δ > 0 random sample S
of concepts of cardinality

N ≥ 2 · (n+ 1)− 2 · log2 δ

ε
(9)

with probability > 1− δ has property that every ε-important object o contains
some concept (A,B) ∈ S such that B ⊆ {o}′.

This theorem is an analogue of the famous results of V. Vapnik and A. Cher-
vonenkis [7] from Computational Learning Theory (here n + 1 corresponds to
log2 d, where d is a VC-dimension).

From the practical point of view this theorem asserts the sufficiency of poly-
nomial number of random concepts as causes of the target property to minimize
1-type error (wrong prediction of positive test examples) with respect to predic-
tion by analogy (Algorithm 3).

3 Continuous attributes

3.1 Entropy approach

Let G = G+ ∪ G− be a disjoint union of training examples G+ and counter-
examples G−. Interval [a, b) ⊆ IR of values of continuous attribute V : G → IR
generates three subsets

G+[a, b) = {g ∈ G+ : a ≤ V (g) < b},



G−[a, b) = {g ∈ G− : a ≤ V (g) < b},

G[a, b) = {g ∈ G : a ≤ V (g) < b}
.

Definition 2. Entropy of interval [a, b) ⊆ IR of values of continuous attribute
V : G→ IR is

ent[a, b) = −|G
+[a, b)|
|G[a, b)| · log2

( |G+[a, b)|
|G[a, b)|

)
− |G

−[a, b)|
|G[a, b)| · log2

( |G−[a, b)|
|G[a, b)|

)
(10)

Mean information for partition a < r < b of interval [a, b) ⊆ IR of values
of continuous attribute V : G→ IR is

inf[a, r, b) =
|E[a, r)|
|E[a, b)| · ent[a, r) +

|E[r, b)|
|E[a, b)| · ent[r, b). (11)

Threshold is a value V = r with minimal mean information.

For continuous attribute V : G → IR denote a = minV by v0 and let vl+1

be an arbitrary number greater then b = maxV . Thresholds {v1 < . . . < vl} are
computed sequentially by splitting the largest entropy subinterval.

These constructions were introduced by J.R. Quinlan for C4.5, the well-
known system for learning Decision Trees [5].

Definition 3. For each 1 ≤ i ≤ l indicator (Boolean) variables corresponds to

δVi (g) = 1⇔ V (g) ≥ vi (12)

σVi (g) = 1⇔ V (g) < vi (13)

Then string δV1 (g) . . . δVl (g)σV1 (g) . . . σVl (g) is a bitset-representation of
continuous attribute V on element g ∈ G.

Lemma 3. Let δ
(1)
1 . . . δ

(1)
l σ

(1)
1 . . . σ

(1)
l represent vi ≤ V (A1) < vj and

δ
(2)
1 . . . δ

(2)
l σ

(2)
1 . . . σ

(2)
l represent vn ≤ V (A2) < vm. Then

(δ
(1)
1 &δ

(2)
1 ) . . . (δ

(1)
l &δ

(2)
l )(σ

(1)
1 &σ

(2)
1 ) . . . (σ

(1)
l &σ

(2)
l )

corresponds to min{vi, vn} ≤ V ((A1 ∪A2)′′) < max{vj , vm}.

In other words, Lemma 3 asserts that the result of bit-wise multiplication of
bitset representations is a convex hull of its arguments’ intervals.

The proof follows immediately from definition 3.
Similar bitset presentation for continuous features was mentioned earlier in [4]

for interval pattern structures. However this work uses a priori given subdivision
of a feature domain into disjoint subintervals.



3.2 Logistic regression between attributes

A classifier is a map c : IRd → {0, 1}, where IRd is a domain of objects to
classify (described by d attributes) and {0, 1} are class marks.

Probability distribution of 〈X,K〉 ∈ IRd × {0, 1} can be decomposed as

pX,K(x, k) = pX(x) · pK|X(k | x),

where pX(x) is a marginal distribution of objects and pK|X(k | x) is a condi-

tional distribution of marks on given object, i.e. for every x ∈ IRd the following
pK|X(k | x) = IP{K = k |X = x} holds.

Error probability of classifier c : IRd → {0, 1} is

R(c) = IP {c(X) 6= K} . (14)

Bayes classifier b : IRd → {0, 1} with respect to pK|X(k | x) corresponds
to

b(x) = 1⇔ pK|X(1 | x) >
1

2
> pK|X(0 | x) (15)

We remind well-known

Theorem 2. The Bayes classifier b has the minimal error probability:

∀c : IRd → {0, 1} [R(b) = IP{b(X) 6= K} ≤ R(c)]

Bayes Theorem implies

pK|X(1 | x) =
pX|K(x | 1) · IP{K = 1}

pX|K(x | 1) · IP{K = 1}+ pX|K(x | 0) · IP{K = 0} =

=
1

1 +
pX|K(x|0)·IP{K=0}
pX|K(x|1)·IP{K=1}

=
1

1 + exp{−a(x)} = σ(a(x))

where a(x) = log
pX|K(x|1)·IP{K=1}
pX|K(x|0)·IP{K=0} and σ(y) = 1

1+exp{−y} is the well-known

logistic function.
Equation (15) transforms to

b(x) = 1⇔ a(x) > 0 (16)

Let approximate unknown a(x) = log
pX|K(x|1)·IP{K=1}
pX|K(x|0)·IP{K=0} by linear combina-

tion wT · ϕ(x) of basis functions ϕi : IRd → IR (i = 1, . . . ,m) with respect to
unknown weights w ∈ IRm.

For training sample 〈x1, k1〉, . . . , 〈xn, kn〉 introduce tj = 2kj − 1. Then

log{p(t1, . . . , tn | x1, . . . ,xn,w)} = −
n∑

j=1

log

[
1 + exp{−tj

m∑

i=1

wiϕi(xj)}
]
.

Lemma 4. log [1 + exp{−t ·∑m
i=1 wiϕi}] is a convex function of w.



Hence, the logarithm of likelihood

L(w1, . . . , wm) = −
n∑

j=1

log

[
1 + exp{−tj

m∑

i=1

wiϕi(xj)}
]
→ max (17)

is concave.
Newton-Raphson method leads to iterative procedure

wt+1 = wt − (∇wT∇wL(wt))
−1 · ∇wL(wt). (18)

Use sj = 1
1+exp{tj ·(wT ·Φ(xj))} we obtain

∇L(w) = −ΦTdiag(t1, . . . , tn)s,∇∇L(w) = ΦTRΦ,

where R = diag(s1(1 − s1), s2(1 − s2), . . . , sn(1 − sn)) is diagonal matrix with
elements s1(1−s1), s2(1−s2), . . . , sn(1−sn) and diag(t1, . . . , tn)s is vector with
coordinates t1s1, t2s2, . . . , tnsn.

wt+1 = wt +
(
ΦTRΦ

)−1
ΦTdiag(t)s = (ΦTRΦ)−1ΦTRz, (19)

where z = Φwt +R−1diag(t1, . . . , tn)s are iterative calculated weights.
As usual, the ridge regression helps to avoid ill-conditioned situation

wt+1 = (ΦTRΦ+ λ · I)−1 · (ΦTRz).

In the computer program ’VKF system’ we use standard basis: constant 1
and attributes themselves.

At last, we need a criterion for significance of regression. For logistic regres-
sion two types of criteria were applied:

Criterion of Cox-Snell declares attribute Vk significant, if

R2 = 1− exp{2(L(w0, . . . , wk−1)− L(w0, . . . , wk−1, wk))/n} ≥ σ. (20)

McFadden criterion declares attribute Vk significant, if

1− L(w0, . . . , wk−1, wk)

L(w0, . . . , wk−1)
≥ σ. (21)

Conclusion

We have extended the ’VKF system’ approach to FCA-based machine learning
on examples with both discrete and continuous attributes.

Experiments with Wine Quality Dataset [6] demonstrate a very good behav-
ior of the proposed approach. For red wines with high scores (more than 7) all
examples were classified correctly.

The pair-wise logistic regression is combined with single threshold compu-
tation. Lemma 3 gives a condition of non-triviality of similarity on values of
continuous attribute: if the corresponding part of the resulting bitset is non-
void, then the values V (B′) belong to a common interval.

When analyzing relationship between ’alcohol’ and ’sulphates’ for red wines
we observe a phenomenon directly corresponding to the well-known



Lemma 5. Disjunction xi1 ∨ . . .∨ xik of Boolean variables holds, if and only if
xi1 + . . .+ xik ≥ σ holds for any 0 < σ < 1.

Positive (but slightly different) weights correspond to different scaling of various
attributes. So we have not only conjuction of attributes by also a disjunction.
Similar case is a relationship between ’citric acid’ and ’alcohol’.The situation
with the pair (’pH’, ’alcohol’) is radically different. The alcohol’s weight is pos-
itive, whereas pH’s weight is negative. With the help of aforementioned lemma
and standard logic we obtain the implication (’pH’⇒’alcohol’).
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