Dihypergraph decomposition: application to closure system representations *

Lhouari Nourine and Simon Vilmin

LIMOS, Université Clermont Auvergne, Aubière, France simon.vilmin@ext.uca.fr, lhouari.nourine@uca.fr

Abstract. Closure systems and their representations are essential in numerous fields of computer science. Among representations, dihypergraphs (or attribute implications) and meet-irreducible elements (reduced context) are widely used in the literature. Translating between the two representations is known to be harder than hypergraph dualization, a wellknown open problem. In this paper we are interested in enumerating the meet-irreducible elements of a closure system from a dihypergraph. To do so, we use a partitioning operation of a dihypergraph which gives a recursive characterization of its meet-irreducible elements. From this result, we deduce an algorithm which computes meet-irreducible elements in a divide-and-conquer way and puts the light on the major role of dualization in closure systems. Using hypergraph dualization, this strategy can be applied in output quasi-polynomial time to particular classes of dihypergraphs, improving at the same time previous results on ranked convex geometries.

Keywords: Dihypergraphs \cdot Decomposition \cdot Closure systems \cdot Meet-irreducible elements

1 Introduction

Closure systems play a major role in several areas of computer science and mathematics such as database [9, 18, 19], Horn logic [16], lattice theory [6, 7] or Formal Concept Analysis (FCA) [12] where they are known as concept lattice.

Due to the exponential size of a closure system, several compact representations have been studied over the last decades [12, 14, 16, 20]. Among all possible representations, there are two prominent candidates: *implicational bases* and *meet-irreducible elements*. The former consists in set a of rules $B \rightarrow h$ over the ground set where B is the body and h the head of the rule. A rule depicts a causality relation between the elements of B and h, i.e., whenever a set contains B, it must also contain h. As several implicational bases can represent the same closure system, numerous bases with "good" properties have been studied. Among them, the Duquenne-Guigues base [13] being minimum or the canonical direct base [5] are worth mentioning. Like closure systems, implicational bases are ubiquitous in computer science. They appear for instance as Horn theories in propositional logic [16], attribute implications in FCA [12], functional dependencies in databases theory [9, 18] and they are conveniently expressed by

Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 $^{^{\}star}$ The second author is funded by the CNRS, France, ProFan project.

directed hypergraphs (dihypergraphs for short) [1,11] where an implication $B \to h$ corresponds to an arc (B, h). A nice survey on the topic can be found in [23].

The second representation for a closure system is a (minimum) subset of its elements from which it can be reconstructed. These elements are known as *meet-irreducible elements* [7]. In Horn logic, they are known as the characteristic models [16]. In FCA, they are written as a binary relation: the context [12]. They appear in the Armstrong relation [19] in database theory.

The problem of translating between these representations has been widely studied in the literature [2, 4, 8, 16, 19, 23]. Even though the two directions of the translation are equivalent [16], computing meet-irreducible elements from a set of implications has been less studied. This problem can be equivalently reformulated in FCA terms as follows: given a set of attribute implications, find an associated (reduced) context. Algorithms for this problem are used in databases to build relations satisfying a set of functional dependencies [19]. Furthermore, some tasks such as a abduction [16] are easier with meet-irreducible elements than implications. On the negative side, it has been shown in [16]that this problem is harder than enumerating minimal transversals of a hypergraph, also known as hypergraph dualization for which the best algorithm runs in output quasi-polynomial time [10]. Furthermore, Kavvadias et al. [15] have shown that enumerating maximal meet-irreducible elements cannot be done in output-polynomial time unless P = NP. On the positive side, exponential time algorithms have been given in [19, 22]. More recently, output quasi-polynomial time algorithms have been given for some classes of closure systems [4, 8].

In this paper we seek to push further the understanding of this problem, based on previous works such as [8, 17]. We use a hierarchical decomposition method introduced in [21] for dihypergraphs representing implicational bases. To achieve this decomposition we use a restricted version of a *split*, a partitioning operation of the ground set [21]. We call this restriction an *acyclic split*. An acyclic split of \mathcal{H} is a bipartition of its ground set V into two non-trivial parts V_1, V_2 such that any arc (B, h) (i.e., any implication) is either fully contained in one of the two parts or the body B is in V_1 while the head h is in V_2 . Intuitively, \mathcal{H} is divided in three subhypergraphs, $\mathcal{H}[V_1], \mathcal{H}[V_2]$ and a *bipartite dihypergraph* $\mathcal{H}[V_1, V_2]$ which models interactions from V_1 to V_2 . Clearly, some dihypergraphs do not admit such splits. An acyclic split yields a decomposition of the underlying closure system into *projections* (or *traces*) and provide a recursive characterization of its meet-irreducible elements. Therefore, we propose an algorithm which compute meet-irreducible elements of a dihypergraph from a hierarchical decomposition using acyclic splits.

The paper is presented as follows. In Section 2 we recall definitions about directed hypergraphs and closure systems. Section 3 introduces acyclic split of a dihypergraph \mathcal{H} and presents an example to illustrate our contribution. In Section 4 we study the construction of the underlying closure system and we give a characterization of its meet-irreducible elements. This characterization suggests a recursive algorithm which computes meet-irreducible elements of \mathcal{H} in a divide-and-conquer way with acyclic splits, discussed in Section 5. We obtain

new classes of dihypergraphs for which computing meet-irreducible elements can be done in output quasi-polynomial time using hypergraph dualization, thus generalizing recent works on ranked convex geometries [8].

2 Preliminaries

All the objects considered in this paper are finite. If V is a set, 2^{V} denotes its powerset. For $n \in \mathbb{N}$, we denote by [n] the set $\{1, \ldots, n\}$. Sometimes we will denote by $x_1 \ldots x_n$ the set $\{x_1, \ldots, x_n\}$.

We begin with notions on lattices and closure systems [6,7]. A closure system on V is a set system $\mathcal{F} \subseteq 2^{V}$ such that $V \in \mathcal{F}$ and for any $F_1, F_2 \in \mathcal{F}, F_1 \cap F_2 \in \mathcal{F}$. An element F of \mathcal{F} is called a *closed set*. The number of closed sets in \mathcal{F} represents its size, written $|\mathcal{F}|$. When ordered by set-inclusion, (\mathcal{F}, \subseteq) is a *lattice*. Let $F \in \mathcal{F}$. The *ideal* of F, denoted $\downarrow F$ is the collection of closed sets of \mathcal{F} included in F, namely $\downarrow F = \{F' \in \mathcal{F} \mid F' \subseteq F\}$. The filter $\uparrow F$ is defined dually. For a subset \mathcal{B} of \mathcal{F} , we put $\downarrow \mathcal{B} = \bigcup_{F \in \mathcal{B}} \downarrow F$ and dually $\uparrow \mathcal{B} = \bigcup_{F \in \mathcal{B}} \uparrow F$. Let $F_1, F_2 \in \mathcal{F}$. We say that F_1 and F_2 are *incomparable* if $F_1 \nsubseteq F_2$ and $F_2 \nsubseteq F_1$. Assume $F_1 \subseteq F_2$. Then F_2 is a cover of F_1 , written $F_1 \prec F_2$, if for any other $F' \in \mathcal{F}$, $F_1 \subseteq F' \subseteq F_2$ implies $F_1 = F'$ or $F_2 = F'$. A closed set M of F is a meet-irreducible element if for any $F_1, F_2 \in \mathcal{F}, M = F_1 \cap F_2$ implies $M = F_1$ or $M = F_2$. The ground set V is not a meet-irreducible element. Equivalently, M is a meet-irreducible element of \mathcal{F} if and only if it has a unique cover. The set of meet-irreducible elements of \mathcal{F} is written $\mathcal{M}(\mathcal{F})$ or simply \mathcal{M} when clear from the context. A subset \mathcal{B} of \mathcal{F} is an *antichain* if elements of \mathcal{B} are pairwise incomparable. Let $U \subseteq V$. The trace (or projection) of \mathcal{F} on U, denoted \mathcal{F} : U, is obtained by intersecting each closed set of \mathcal{F} with U, i.e., $\mathcal{F}: U = \{F \cap U \mid F \in \mathcal{F}\}$. If $\mathcal{F}' \subseteq \mathcal{F}$ is a closure system, it is a *meet-sublattice* of \mathcal{F} . Let $\mathcal{F}_1, \mathcal{F}_2$ be two closure systems on disjoint V_1, V_2 respectively. The *direct product* of \mathcal{F}_1 and \mathcal{F}_2 , denoted $\mathcal{F}_1 \times \mathcal{F}_2$, is given by $\mathcal{F}_1 \times \mathcal{F}_2 = \{F_1 \cup F_2 \mid F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\}.$

In this paper, we suppose that implicational bases are given as directed hypergraphs. Directed hypergraphs are a convenient representation for attribute implications of FCA, Horn clauses, functional dependencies [1,11,23]. We mainly refer to papers [1, 11] for definitions of dihypergraphs. A *(directed) hypergraph* (dihypergraph for short) \mathcal{H} is a pair $(V(\mathcal{H}), \mathcal{E}(\mathcal{H}))$ where $V(\mathcal{H})$ is its set of vertices, and $\mathcal{E}(\mathcal{H}) = \{e_1, \dots, e_n\}, n \in \mathbb{N}$, its set of *arcs*. An arc $e \in \mathcal{E}(\mathcal{H})$ is a pair (B(e), h(e)), where B(e) is a non-empty subset of V called the *body* of e and $h(e) \in V \setminus B$ called the *head* of e. When clear from the context, we write V, \mathcal{E} and (B,h) instead of $V(\mathcal{H}), \mathcal{E}(\mathcal{H})$ and (B(e), h(e)) respectively. An arc e = (B,h)is written as the set $e = B \cup \{h\}$ when no confusion can arise. Whenever a body B is reduced to a single vertex b, we shall write (b,h) instead of $(\{b\},h)$ for clarity. In this case, the arc (b, h) is called a *unit arc*. A dihypergraph where all edges are unit is a digraph. Let $\mathcal{H} = (V, \mathcal{E})$ be a dihypergraph and $U \subseteq V$. The subhypergraph $\mathcal{H}[U]$ induced by U is the pair $(U, \mathcal{E}(\mathcal{H}[U]))$ where $\mathcal{E}(\mathcal{H}[U])$ is the set of arcs of \mathcal{E} contained in U, namely $\mathcal{E}(\mathcal{H}[U]) = \{e \in \mathcal{E} \mid e \subseteq U\}$. A bipartite dihypergraph is a dihypergraph in which the ground set can be partitioned into two parts (V_1, V_2) such that for any $(B, h) \in \mathcal{E}, B \subseteq V_1$ or $B \subseteq V_2$. We denote a bipartite dihypergraph by $\mathcal{H}[V_1, V_2]$. A split [21] of a dihypergraph

 \mathcal{H} is a non-trivial bipartition (V_1, V_2) of V such that for any arc (B, h) of \mathcal{H} , either $B \subseteq V_1$ or $B \subseteq V_2$. A split (V_1, V_2) partitions \mathcal{H} into three arc disjoint subhypergraphs $\mathcal{H}[V_1], \mathcal{H}[V_2]$ and a bipartite dihypergraph $\mathcal{H}[V_1, V_2]$.

The closure system associated to a dihypergraph \mathcal{H} is obtained with the forward chaining algorithm. It starts from a subset X of V and constructs a chain $X = X_0 \subseteq X_1 \subseteq \cdots \subseteq X_k = X^{\mathcal{H}}$ such that for any $i = 1, \ldots, k$ we have $X_i = X_{i-1} \cup \{h \mid \exists (B, h) \in \mathcal{E} \text{ s.t. } B \subseteq X_{i-1}\}$. The operation $(.)^{\mathcal{H}}$ is a closure operator, that is for any $X, Y \subseteq V$, we have $X \subseteq X^{\mathcal{H}}, X \subseteq Y \Longrightarrow X^{\mathcal{H}} \subseteq Y^{\mathcal{H}}$ and $(X^{\mathcal{H}})^{\mathcal{H}} = X^{\mathcal{H}}$. A set X is closed if $X = X^{\mathcal{H}}$. Note that X is closed for \mathcal{H} if and only if for any arc $(B, h) \in \mathcal{E}, B \subseteq X$ implies $h \in X$. We say that X satisfies an arc (B, h) if $B \subseteq X \Longrightarrow h \in X$. The collection $\mathcal{F}(\mathcal{H}) = \{X^{\mathcal{H}} \mid X \subseteq V\}$ of closed sets of \mathcal{H} is a closure system. For clarity, we may write \mathcal{F} instead of $\mathcal{F}(\mathcal{H})$. Our definition of a dihypergraph implies $\emptyset \in \mathcal{F}$, without loss of generality.

3 Acyclic split and illustration on an example

In this section we introduce acyclic splits and we illustrate our approach to compute meet-irreducible elements from a dihypergraph on a toy example. Let V = [7] and $\mathcal{H} = (V, \{(2,3), (4,3), (6,5), (57,6), (24,6), (24,7), (1,4), (1,5), (1,7)\})$. It is represented in Figure 1 (a). To represent an arc (B,h) with $|B| \ge 2$ we use a black vertex connecting every elements of B from which starts an arrow towards h. The closure system \mathcal{F} associated to \mathcal{H} is given in Figure 1 (b).

(b) The closure system \mathcal{F} associated to \mathcal{H} , where meet-irreducible elements are darkened.

The idea is to split \mathcal{H} into three subhypergraphs $\mathcal{H}[V_1], \mathcal{H}[V_2]$ and $\mathcal{H}[V_1, V_2]$ as in [21]. However we use a restricted version of a split we call an *acyclic split*. A split is acyclic if for any arc (B,h) of $\mathcal{H}[V_1, V_2], B \subseteq V_1$ and $h \in$ V_2 . A dihypergraph which does not have any acyclic split is *indecomposable*. A maximum subhypergraph of \mathcal{H} which has no acyclic split is a *c-factor* (cyclic factor) of \mathcal{H} . If a c-factor \mathcal{H}' of \mathcal{H} is reduced to a vertex, i.e., $\mathcal{H}' = (\{x\}, \emptyset)$, it is a *singleton c-factor* of \mathcal{H} .

For instance in \mathcal{H} , the bipartition $V_1 = \{1, 2, 3\}$, $V_2 = \{4, 5, 6, 7\}$ is not a split because the body of (24, 6) has elements from both V_1 and V_2 . If we fix $V_1 = \{1, 2, 4, 6\}$ and $V_2 = \{3, 5, 7\}$, then the bipartition is a split but not acyclic since the arc (6, 5) goes from V_1 to V_2 and (57, 6) from V_2 to V_1 . An acyclic split is $V_1 = \{1, 2, 3, 4\}$ and $V_2 = \{5, 6, 7\}$. It induces the three subhypergraphs $\mathcal{H}[V_1] = (V_1, \{(4, 3), (1, 4), (2, 3)\}), \mathcal{H}[V_2] = (V_2, \{(6, 5), (57, 6)\}$ and $\mathcal{H}[V_1, V_2] = (V, \{(24, 6), (24, 7), (1, 5), (1, 7)\})$. Observe that $\mathcal{H}[V_2]$ is indecomposable: the unique split of V_1 is $V'_1 = \{5, 7\}$ and $V'_2 = \{6\}$, which is not acyclic. Hence, $\mathcal{H}[V_2]$ is a c-factor of \mathcal{H} . Closure systems $\mathcal{F}_1, \mathcal{F}_2$ of $\mathcal{H}[V_1]$ and $\mathcal{H}[V_2]$ are given in Figure 2. Note that \mathcal{F} is a meet-sublattice of $\mathcal{F}_1 \times \mathcal{F}_2$.

(a) \mathcal{F}_1 , the closure lattice of $\mathcal{H}[V_1]$

(b) \mathcal{F}_2 , the closure lattice of $\mathcal{H}[V_2]$

Fig. 2: Closure lattices of $\mathcal{H}[V_1]$ and $\mathcal{H}[V_2]$, meet-irreducible are darkened.

The splitting operation provides a partition of $\mathcal{M}(\mathcal{F})$ into two classes. The first class contains meet-irreducible elements of \mathcal{F}_1 to which we added V_2 . This is the case for example of 234567 and 567, which are the meet-irreducible elements 234 and \emptyset of \mathcal{F}_1 . The second class contains meet-irreducible which are inclusionwise maximal closed sets of \mathcal{F} whose trace on V_2 is meet-irreducible in \mathcal{F}_2 . For instance, 235 and 345 are inclusion-wise maximal closed sets of \mathcal{F} whose intersection with V_2 rise 5, a meet-irreducible element of \mathcal{F}_2 .

Thus, every meet-irreducible element of \mathcal{F} belongs to exactly one of these two classes. Observe that any other $F \in \mathcal{F}$ cannot be part of $\mathcal{M}(\mathcal{F})$. As $\mathcal{F} \subseteq \mathcal{F}_1 \times \mathcal{F}_2$, every $M \in \mathcal{M}$ arise from the combination of some $F_1 \in \mathcal{F}_1$ and $F_2 \in \mathcal{F}_2$. Let $F \in \mathcal{F}$ be outside of those two class. If $V_2 \subseteq F$, then $F \cap V_1$ cannot be meetirreducible in \mathcal{F}_1 . In this case, covers of $F \cap V_1$ in \mathcal{F}_1 can be used to produce distinct covers of F in \mathcal{F} . If however $V_2 \notin F$, then covers of $F \cap V_2$ in \mathcal{F}_2 yield covers of F in \mathcal{F} . In the case where $F \cap V_2$ is meet-irreducible in \mathcal{F}_2 , there will be a closed set F_1 in \mathcal{F}_1 such that $F \cap V_1 \subset F_1$ and $F_1 \cup (F \cap V_2)$ will be closed in \mathcal{F} by assumption. This can be used to find another cover of F in \mathcal{F} .

This characterization suggests to recursively find meet-irreducible elements of \mathcal{F} . If \mathcal{H} is indecomposable, we computes \mathcal{M} with known algorithms [4, 19]. Otherwise, we find an acyclic split (V_1, V_2) and recursively applies on $\mathcal{H}[V_1, V_2]$. Then, we compute \mathcal{M} using $\mathcal{H}[V_1, V_2]$, \mathcal{M}_1 and \mathcal{M}_2 . In Figure 3, we give the trace of a decomposition for \mathcal{H} using acyclic splits. This strategy is particularly interesting for cases where c-factors of \mathcal{H} are all of the form $(\{x\}, \emptyset)$ for $x \in V$, since the unique meet-irreducible element in this case is \emptyset .

Thus, the steps we will follow are the following. Given a dihypergraph H and its closure system \mathcal{F} , we will study the construction of \mathcal{F} with respect to an acyclic split. This will lead us to a characterization of M. Recursively applying this characterization, we will get an algorithm to compute \mathcal{M} from \mathcal{H} .

Fig. 3: Hierarchical decomposition of \mathcal{F} using acyclic splits. Meet-irreducible elements are darkened.

The closure system induced by an acyclic split 4

In this section, we show the construction of a closure system with respect to an acyclic split. We give a characterization of its closed sets and meet-irreducible elements \mathcal{M} . Let $\mathcal{H} = (V, \mathcal{E})$ be a dihypergraph and (V_1, V_2) an acyclic split of \mathcal{H} . Let $\mathcal{F}_1, \mathcal{F}_2$ be the closure systems associated to $\mathcal{H}[V_1]$ and $\mathcal{H}[V_2]$ respectively. Similarly, M_1, M_2 are their meet-irreducible elements. We show how to construct \mathcal{F} from $\mathcal{F}_1, \mathcal{F}_2$ and $\mathcal{H}[V_1, V_2]$. We begin with the following theorem from [21]:

Theorem 1 (Theorem 3 of [21]). Let (V_1, V_2) be a split of $\mathcal{H}, \mathcal{F}_1$ and \mathcal{F}_2 the closure systems corresponding to $\mathcal{H}[V_1]$ and $\mathcal{H}[V_2]$ respectively. Then,

- 1. If $F \in \mathfrak{F}_{\mathfrak{H}}$ then $F_i = F \cap V_i \in \mathfrak{F}_i, i = \{1, 2\}$. Moreover, $\mathfrak{F}_{\mathfrak{H}} \subseteq \mathfrak{F}_1 \times \mathfrak{F}_2$.
- 2. If $\mathcal{H}[V_1, V_2]$ has no arc then $\mathcal{F}_{\mathcal{H}} = \mathcal{F}_1 \times \mathcal{F}_2$. 3. If $B \subseteq V_1$ for any arc (B, h) of $\mathcal{H}[V_1, V_2]$, then $\mathcal{F}_{\mathcal{H}} : V_i = \mathcal{F}_i$ for $i \in \{1, 2\}$. 4. If $B \subseteq V_2$ for any arc (B, h) of $\mathcal{H}[V_1, V_2]$, then $\mathcal{F}_{\mathcal{H}} : V_i = \mathcal{F}_i$ for $i \in \{1, 2\}$.

The first item states that \mathcal{F} is a meet-sublattice of \mathcal{F} . From item 2 we can derive a characterization of meet-irreducible elements of the direct product $\mathcal{F}_1 \times \mathcal{F}_2$. This result has already been formulated in lattice theory, for instance in [7]. We reprove it in our framework for self-containment.

Proposition 1. Let \mathcal{H} be a dihypergraph an (V_1, V_2) an acyclic split of \mathcal{H} where $\mathcal{H}[V_1, V_2]$ has no arcs. Then $\mathcal{M} = \{M_1 \cup V_2 \mid M_1 \in \mathcal{M}_1\} \cup \{M_2 \cup V_1 \mid M_2 \in \mathcal{M}_2\}.$

Proof. Let $M \in \mathcal{M}$, $i \in \{1,2\}$ and $M_i = M \cap V_i$. As $M \neq V$, $V_i \notin M$ for at least one of $i \in \{1,2\}$. Suppose it holds for V_1 and V_2 . Then, there exists $M'_i \in \mathcal{F}_i$, such that $M_i \prec M'_i$ in \mathcal{F}_i . However, by Theorem 1, $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$. Hence $M_1 \cup M'_2$ and $M'_1 \cup M_2$ belong to \mathcal{F} . Furthermore they are incomparable and we have $M \prec M_1 \cup M'_2$ and $M \prec M'_1 \cup M_2$ which contradicts $M \in \mathcal{M}$. Therefore, either $V_1 \subseteq M$ or $V_2 \subseteq M$. Assume without loss of generality that $V_1 \subseteq M$. Let M'' be the unique cover of M in \mathcal{F} . Then, $V_1 \subseteq M''$ and it follows that $M_2 \prec M'' \cap V_2$ in \mathcal{F}_2 . As M'' is the unique cover of M in \mathcal{F} , we conclude that $M'' \cap V_2$ is the unique cover of M_2 in \mathcal{F}_2 and $M_2 \in \mathcal{F}_2$.

Let $M_1 \in \mathcal{M}_1$ and consider $M_1 \cup V_2 \in \mathcal{F}_2$. Let M'_1 be the unique cover of M_1 in \mathcal{F}_1 . As $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ by Theorem 1, we have that $M_1 \cup V_2 \prec M'_1 \cup V_2$ is in \mathcal{F} . Let F be any closed set such that $M_1 \cup V_2 \subset F$. We have $F \cap V_2 = V_2$ and hence $M_1 \subset F \cap V_1$. Since $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$, we get $F \cap V_1 \in \mathcal{F}_1$. As $M_1 \prec M'_1$ in \mathcal{F}_1 and $M_1 \in \mathcal{M}_1$, we conclude that $M'_1 \subseteq F \cap V_1$ and hence that $M'_1 \cap V_2 \subseteq F$. Therefore, $M_1 \cup V_2 \in \mathcal{M}$. Similarly we obtain $M_2 \cup V_1 \in \mathcal{M}$, for $M_2 \in \mathcal{M}_2$. \Box

Item 3 of Theorem 1 considers the case where the split is acyclic (as item 4). In particular, the proof of Theorem 1 shows that $\mathcal{F}_2 \subseteq \mathcal{F}$ in this case. Since \mathcal{F} is a meet-sublattice of $\mathcal{F}_1 \times \mathcal{F}_2$, and both \mathcal{F}_1 , \mathcal{F}_2 appear as traces of \mathcal{F} , we have that $|\mathcal{F}| \geq |\mathcal{F}_1|$ and $|\mathcal{F}| \geq |\mathcal{F}_2|$. As $\mathcal{F}_2 \subseteq \mathcal{F}$, for each $F_2 \in \mathcal{F}_2$, it may exists several closed sets of \mathcal{F}_1 which extend F_2 to another element of \mathcal{F} .

Definition 1. Let \mathcal{H} be a dihypergraph with acyclic split (V_1, V_2) . Let $F_1 \in \mathcal{F}_1$, $F_2 \in \mathcal{F}_2$. We say that $F_1 \cup F_2$ is an extension of F_2 if it belongs to \mathcal{F} . We denote by $\mathsf{Ext}(F_2)$ the set of extensions of F_2 , namely $\mathsf{Ext}(F_2) = \{F \in \mathcal{F} \mid F \cap V_2 = F_2\}$.

We denote by $\mathsf{Ext}(F_2)$: V₁ the set of closed sets of \mathcal{F}_1 which make extensions of F_2 . Hence, any closed set F of \mathcal{F} can be seen as the extension of some $F_2 \in \mathcal{F}_2$ so that \mathcal{F} results from the union of extensions of closed sets in \mathcal{F}_2 :

$$\mathcal{F} = \bigcup_{F_2 \in \mathcal{F}_2} \mathsf{Ext}(F_2)$$

Extensions of $F_2 \in \mathcal{F}_2$ can be characterized using $\mathcal{H}[V_1, V_2]$ as follows.

Lemma 1. Let $F_1 \in \mathcal{F}_1$, $F_2 \in \mathcal{F}_2$. Then $F_1 \cup F_2$ is an extension of F_2 if and only if for any arc (B,h) in $\mathcal{H}[V_1, V_2]$, $B \subseteq F_1$ implies $h \in F_2$.

Proof. We begin with the only if part. Let F_1 be a closed set of \mathcal{F}_1 such that $F_1 \cup F_2$ is an extension of F_2 and let $(B, h) \in \mathcal{H}[V_1, V_2]$. If $B \subseteq F_1$, then it must be that $h \in F_2$ since otherwise we would contradict $F_1 \cup F_2 \in \mathcal{F}$.

We move to the if part. Let F_1 be a closed set of \mathcal{F}_1 and F_2 a closed set of \mathcal{F}_2 such that for any arc $(B,h) \in \mathcal{H}[V_1, V_2], B \subseteq F_1$ implies $h \in F_2$. We have to show that $F_1 \cup F_2$ is closed. Let (B,h) be an arc of \mathcal{H} . As (V_1, V_2) is an acyclic split of V, we have two cases for (B,h): either (B,h) is in $\mathcal{H}[V_1, V_2]$ or it is not. In the second case, assume it is in $\mathcal{H}[V_1]$. As $B \subseteq F_1 \cup F_2$, we have

 $B \subseteq F_1$. Furthermore, F_1 is closed for $\mathcal{H}[V_1]$. Hence, $h \in F_1 \subseteq F_1 \cup F_2$. The same reasoning can be applied if (B, h) is in $\mathcal{H}[V_2]$. Now assume (B, h) is in $\mathcal{H}[V_1, V_2]$. We have that $B \subseteq V_1$ by definition of an acyclic split. In particular we have $B \subseteq F_1$ which entails $h \in F_2$ by assumption. In any case, $F_1 \cup F_2$ already contains h for any arc (B, h) such that $B \subseteq F_1 \cup F_2$ and $F_1 \cup F_2$ is closed. \Box

Observe that for the particular case $F_2 = V_2$, we have $\mathsf{Ext}(V_2)$: $V_1 = \mathcal{F}_1$ because any arc (B, h) of $\mathcal{H}[V_1, V_2]$ satisfies $h \in V_2$. A consequence of Lemma 1 is that the extension is hereditary, as stated by the following lemma.

Lemma 2. Let $F_1 \in \mathcal{F}_1$, $F_2 \in \mathcal{F}_2$. If $F_1 \cup F_2$ is an extension of F_2 , then for any closed set F'_1 of \mathcal{F}_1 such that $F'_1 \subseteq F_1$, $F'_1 \cup F_2$ is also an extension of F_2 .

Proof. Let $F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2$ such that $F_1 \cup F_2 \in \mathcal{F}$. Let $F'_1 \in \mathcal{F}_1$ such that $F'_1 \subseteq F_1$. As $F_1 \cup F_2$ is an extension of F_2 , for any arc (B, h) of $\mathcal{H}[V_1, V_2]$ such that $B \subseteq F_1$, we have $h \in F_2$ by Lemma 1. Since $F'_1 \subseteq F_1$, this condition holds in particular for any arc (B, h) of $\mathcal{H}[V_1, V_2]$ such that $B \subseteq F'_1 \subseteq F_1$. Applying Lemma 1, we have that $F'_1 \cup F_2$ is closed. \Box

As \mathcal{F} is a meet-sublattice of $\mathcal{F}_1 \times \mathcal{F}_2$ by Theorem 1, it follows from Lemma 2 that for any $F_2 \in \mathcal{F}_2$, the set $\mathsf{Ext}(F_2)$: V_1 is an ideal of \mathcal{F}_1 . Thus, it is uniquely determined by its maximal elements. They are inclusion-wise maximal closed sets of \mathcal{F}_1 satisfying the condition of Lemma 1.

Example 1. We consider the introductory example \mathcal{H} and the acyclic split $V_1 = \{1, 2, 3, 4\}$ and $V_2 = \{5, 6, 7\}$. We have for instance $\mathsf{Ext}(7) = \{7, 37, 237, 347\}$ which corresponds to the ideal $\{\emptyset, 3, 23, 24\}$ of \mathcal{F}_1 illustrated on the left of Figure 2 representing \mathcal{F}_1 .

Now we are interested in the characterization of meet-irreducible elements \mathcal{M} of \mathcal{F} . The strategy is to identify for each $F_2 \in \mathcal{F}_2$, which closed sets of $\mathsf{Ext}(F_2)$ are meet-irreducible elements of \mathcal{F} .

Proposition 2. Let $F = F_1 \cup F_2 \in \mathcal{F}$. Let $F'_2 \in \mathcal{F}_2$ such that $F_2 \prec F'_2$. Then $F'_2 \cup F_1$ is closed in \mathcal{F} and $F \prec F'_2 \cup F_1$ in \mathcal{F} .

Proof. Let $F = F_1 \cup F_2 \in \mathcal{F}$. Let $F'_2 \in \mathcal{F}_2$ such that $F_2 \prec F'_2$. As $F_1 \cup F_2$ is an extension of F_2 , for every arc (B,h) of $\mathcal{H}[\mathcal{V}_1,\mathcal{V}_2]$ such that $B \subseteq F_1$, we have $h \in F_2 \subseteq F'_2$ by Lemma 1. Therefore, $F_1 \cup F'_2$ is an extension of F'_2 .

Now we show that $F_1 \cup F'_2$ is a cover of \overline{F} . Let $F'' \in \mathcal{F}$ such that $F \subseteq F'' \subseteq F_1 \cup F'_2$. As $F \cap \mathcal{V}_1 = F_1 = (F_1 \cup F'_2) \cap \mathcal{V}_1$, we have that $F'' \cap \mathcal{V}_1 = F_1$. Recall from Theorem 1 that $\mathcal{F} \subseteq \mathcal{F}_1 \times \mathcal{F}_2$. Therefore $F'' \cap \mathcal{V}_2$ is a closed set of \mathcal{F}_2 and $F_2 \subseteq F'' \cap \mathcal{V}_2 \subseteq F'_2$. As $F_2 \prec F'_2$ in \mathcal{F}_2 , we have either $F_2 = F'' \cap \mathcal{V}_2$ or $F'_2 = F'' \cap \mathcal{V}_2$. Consequently, F'' = F or $F'' = F_1 \cup F'_2$ which entails $F \prec F_1 \cup F'_2$ in \mathcal{F} , concluding the proof.

A consequence of this proposition is that for any $F_2, F'_2 \in \mathcal{F}_2$ such that $F_2 \subseteq F'_2$, one has $\mathsf{Ext}(F_2)$: $V_1 \subseteq \mathsf{Ext}(F'_2)$: V_1 . In particular, if $F_2 \prec F'_2$ in \mathcal{F}_2 , then each extension F of F_2 is covered by the unique extension F' of F'_2 such that $F \cap V_1 = F' \cap V_1$. This leads us to the following lemmas.

Lemma 3. Let $F_2 \in \mathcal{F}_2, F_2 \neq V_2$ and $F_1 \in \mathcal{F}_1$ such that $F_1 \cup F_2$ is a nonmaximal extension of F_2 . Then $F_1 \cup F_2 \notin \mathcal{M}$.

Proof. Let $F_2 \in \mathcal{F}_2, F_2 \neq V_2$ and $F_1 \in \mathcal{F}_1$ such that $F_1 \cup F_2$ is a non-maximal extension of F_2 . As $F_2 \neq V_2$, there exists at least one closed set $F'_2 \in \mathcal{F}_2$ such that $F_2 \prec F'_2$. By Proposition 2 we have that $F_1 \cup F_2 \prec F_1 \cup F'_2$ in \mathcal{F} . Furthermore, $F_1 \cup F_2$ is not a maximal extension of F_2 . Therefore, there exists a closed set F'_1 in \mathcal{F}_1 such that $F_1 \prec F'_1$ and $F'_1 \cup F_2 \in \mathcal{F}$. As $\mathcal{F} \subseteq \mathcal{F}_1 \times \mathcal{F}_2$ by Theorem 1 and extension is hereditary by Lemma 2, it follows that $F_1 \cup F_2 \prec F'_1 \cup F_2$ in \mathcal{F} with $F_1 \cup F'_2 \neq F'_1 \cup F_2$. Therefore $F_1 \cup F_2$ is not a meet-irreducible element of \mathcal{F} . \Box

Lemma 4. Let $F_2 \in \mathcal{F}_2$ such that $F_2 \neq V_2$ and $F_2 \notin \mathcal{M}_2$. Then $F \notin \mathcal{M}$ for any $F \in \mathsf{Ext}(F_2)$.

Proof. Let $F_2 \in \mathcal{F}_2$ such that $F_2 \neq V_2$ and $F_2 \notin \mathcal{M}_2$. Let $F \in \mathsf{Ext}(F_2)$ and $F_1 = F \cap V_1$. As $F_2 \notin \mathcal{M}_2$, it has at least two covers F'_2, F''_2 in \mathcal{F}_2 . By Proposition 2, it follows that both $F'_2 \cup F_1$ and $F''_2 \cup F_1$ are covers of F in \mathcal{F} . Hence $F \notin \mathcal{M}$. \Box

These lemmas suggest that meet-irreducible elements of \mathcal{F} arise from maximal extensions of meet-irreducible elements of \mathcal{F}_2 . They might also come from meet-irreducible extensions of V_2 since $\mathsf{Ext}(V_2)$: $V_1 = \mathcal{F}_1$. As V_2 has no cover in \mathcal{F}_2 , Proposition 2 cannot apply. These ideas are proved in the following theorem which characterize meet-irreducible elements \mathcal{M} of \mathcal{F} .

Theorem 2. Let $\mathcal{H} = (V, \mathcal{E})$ be a dihypergraph with an acyclic split (V_1, V_2) . Meet-irreducible elements \mathcal{M} of \mathcal{F} are given by the following equality:

 $\mathcal{M} = \{ M_1 \cup \mathcal{V}_2 \mid M_1 \in \mathcal{M}_1 \} \cup \{ F \in \mathsf{max}_{\subset}(\mathsf{Ext}(M_2)) \mid M_2 \in \mathcal{M}_2 \}$

Proof. First we show that $\{M_1 \cup V_2 \mid M_1 \in \mathcal{M}_1\} \subseteq \mathcal{M}$. Let $M_1 \in \mathcal{M}_1$. By Lemma 1, we have that $M_1 \cup V_2 \in \mathcal{F}$, as $h \in V_2$ for any (B, h) in $\mathcal{H}[V_1, V_2]$. Let F', F'' be two covers of $M_1 \cup V_2$ in \mathcal{F} . First, observe that F' and F'' differ from $M_1 \cup V_2$ only in V_1 as they both contain V_2 . By Theorem 1, $\mathcal{F} \subseteq \mathcal{F}_1 \times \mathcal{F}_2$, so $F' \cap V_1$ and $F'' \cap V_1$ are closed sets of \mathcal{F}_1 . Furthermore $\mathsf{Ext}(V_2)$: $V_1 = \mathcal{F}_1$ by Lemmas 2 and 1. Therefore, both $F' \cap V_1$ and $F'' \cap V_1$ cover M_1 in \mathcal{F}_1 . Since M_1 is a meet-irreducible element of \mathcal{F}_1 , we conclude that F' = F'' and $M_1 \cup V_2 \in \mathcal{M}$.

Next, we prove that $\{F \in \max_{\subseteq} (\operatorname{Ext}(M_2)) \mid M_2 \in \mathcal{M}_2\} \subseteq \mathcal{M}$. Let $M_2 \in \mathcal{M}_2$ and $F \in \max_{\subseteq} (\operatorname{Ext}(M_2))$ with $F = F_1 \cup M_2$. Since $M_2 \in \mathcal{F}_2$, it has a unique cover M'_2 in \mathcal{F}_2 . By Proposition 2, we get $F \prec M'_2 \cup F_1$ in \mathcal{F} . Let $F'' \in \mathcal{F}$ such that $F \subset F''$. Recall that $\mathcal{F} \subseteq \mathcal{F}_1 \times \mathcal{F}_2$ by Theorem 1, so that $F'' \cap V_1 \in \mathcal{F}_1$ and $F'' \cap V_2 \in \mathcal{F}_2$. Furthermore, $F \in \max_{\subseteq} (\operatorname{Ext}(M_2))$, therefore $F \subset F''$ implies that $M_2 \subset F'' \cap V_2$ and hence that $M'_2 \subseteq F'' \cap V_2$ as $M_2 \in \mathcal{F}_2$. Since $F_1 \subseteq F'' \cap V_1$, we get $F \prec M'_2 \cup F_1 \subseteq F''$ and $F \in \mathcal{M}$ as it has a unique cover.

Now we prove the other side of the equation. Let $M \in \mathcal{M}$. As $\mathcal{F} \subseteq \mathcal{F}_1 \times \mathcal{F}_2$, $M \cap V_2 \in \mathcal{F}_2$ and we can distinguish two cases. Either $M \cap V_2 = V_2$ or $M \cap V_2 \subset V_2$. Let us study the first case and let $M_1 = M \cap V_1$. Let M' be the unique cover of M in \mathcal{F} . We show that $M'_1 = M' \cap V_1$ is the unique cover of M_1 in \mathcal{F}_1 . By Theorem 1 and Lemma 2, we have that $M_1 \prec M'_1$ in \mathcal{F}_1 . Let F_1 be any closed set of \mathcal{F}_1 with $M_1 \subset F_1$. Recall that $\mathsf{Ext}(V_2)$: $V_1 = \mathcal{F}_1$ by Lemmas 1 and 2. Hence $F_1 \cup V_2$ is closed and $M \subseteq F_1 \cup V_2$. As $M \in M$, we also deduce $M' \subseteq F_1 \cup V_2$. Therefore, $M'_1 \subseteq F_1$, and M'_1 must be the unique cover of M_1 in \mathcal{F}_1 . So, $M_1 \in \mathcal{M}_1$ and for any $M \in \mathcal{M}$ such that $V_2 \subseteq M$, we have $M \in \{M_1 \cup V_2 \mid M_1 \in \mathcal{M}_1\}$.

Now assume that $M \cap V_2 \subset V_2$. Let $M_1 = M \cap V_1$ and $M_2 = M \cap V_2$. Then by contrapositive of Lemma 3 we have that $M \in \mathsf{max}_{\subseteq}(\mathsf{Ext}(M_2))$ as $M_2 \neq V_2$. Similarly we get $M_2 \in \mathcal{M}_2$ by Lemma 4.

This theorem hints a strategy to compute meet-irreducible elements in a recursive manner, using a hierarchical decomposition of \mathcal{H} with acyclic splits, as proposed in the next section.

5 Recursive application of acyclic splits

In this section, we discuss an algorithm to compute \mathcal{M} from a dihypergraph \mathcal{H} based on Theorem 2. First, note that we have both $|\mathcal{M}| \geq |\mathcal{M}_1|$ and $|\mathcal{M}| \geq |\mathcal{M}_2|$. Furthermore, each $M \in \mathcal{M}$ arise from a unique element of $M' \in \mathcal{M}_1 \cup \mathcal{M}_2$, and each $M' \in \mathcal{M}_1 \cup \mathcal{M}_2$ is used to construct at least one new meet-irreducible element $M \in \mathcal{M}$. Therefore, we deduce an algorithm whose output is precisely \mathcal{M} , where each $M \in \mathcal{M}$ is given only once. Furthermore, the space needed to store intermediate solutions is bounded by the size of the output \mathcal{M} which prevents an exponential blow up during the execution. The algorithm proceeds as follows. For c-factors of \mathcal{H} , we use algorithms such as in [19] to compute \mathcal{M} . When c-factors are singletons, the unique meet-irreducible to find is \emptyset and hence no call to other algorithm is required. Otherwise, we find an acyclic split (V_1, V_2) of \mathcal{H} and we recursively call the algorithm on $\mathcal{H}[V_1]$ and $\mathcal{H}[V_2]$. Then, we compute \mathcal{M} using $\mathcal{M}_1, \mathcal{M}_2$ and Theorem 2.

Computing \mathcal{M} from \mathcal{M}_1 , \mathcal{M}_2 requires to find maximal extensions of every meet-irreducible element $M_2 \in \mathcal{M}_2$. We will show that finding maximal extensions of a closed set is equivalent to a *dualization problem* in closure systems. First, we state the extension problem:

Problem: FIND MAXIMAL EXTENSIONS WITH ACYCLIC SPLIT (FMEAS) **Input:** A triple $\mathcal{H}[V_1]$, $\mathcal{H}[V_2]$, $\mathcal{H}[V_1, V_2]$ given by an acyclic split of a dihypergraph \mathcal{H} , meet-irreducible elements $\mathcal{M}_1, \mathcal{M}_2$, and a closed set F_2 of $\mathcal{H}[V_2]$.

Output: The maximal extensions of F_2 in \mathcal{F} , i.e., $\max_{\subset}(\mathsf{Ext}(F_2))$.

Let \mathcal{B}^+ , \mathcal{B}^- be two antichains of \mathcal{F} . The dualization in lattices asks if two antichains \mathcal{B}^- , \mathcal{B}^+ are *dual* in \mathcal{F} , that is if

$$\downarrow \mathcal{B}^+ \cup \uparrow \mathcal{B}^- = \mathcal{F} \text{ and } \uparrow \mathcal{B}^- \cap \downarrow \mathcal{B}^+ = \emptyset.$$

Note that \mathcal{B}^- and \mathcal{B}^+ are dual if either $\mathcal{B}^+ = \max_{\subseteq} \{F \in \mathcal{F} \mid F \notin \uparrow \mathcal{B}^-\}$ or $\mathcal{B}^- = \min_{\subseteq} \{F \in \mathcal{F} \mid F \notin \downarrow \mathcal{B}^+\}$. If \mathcal{F} is given, the question can be answered in polynomial time. In our case however, \mathcal{F} is implicitly given by \mathcal{M} and \mathcal{H} . More precisely we use the next generation problem:

Problem: DUALIZATION WITH DIHYPERGRAPH AND MEET-IRREDUCIBLE (DMDUAL)

Input: A dihypergraph $\mathcal{H} = (V, \mathcal{E})$, the meet-irreducible elements \mathcal{M} of \mathcal{F} , and an antichain \mathcal{B}^- of \mathcal{F} .

Output: The dual antichain \mathcal{B}^+ of \mathcal{B}^- .

This problem has been introduced in [3] in its decision version, where authors show that it is not harder than finding a (minimum) dihypergraph from a set of meet-irreducible elements. In general however, the problem is open. When \mathcal{H} has no arcs, DMDUAL is equivalent to hypergraph dualization as there are |V|meet-irreducible elements which can easily be computed by taking $V \setminus \{x\}$ for any $x \in V$. This latter problem can be solved in output quasi-polynomial time using the algorithm of Fredman and Khachiyan [10].

We show that FMEAS and DMDUAL are equivalent under polynomial reduction. First, we relate maximal extensions of a closed set with dualization. Let $F_2 \in \mathcal{F}_2$. Recall that $\mathsf{Ext}(F_2)$: V_1 is an ideal of \mathcal{F}_1 . Hence, the antichain $\mathsf{max}_{\subseteq}(\mathsf{Ext}(F_2): V_1)$ has a dual antichain $\mathcal{B}^-(F_2)$ in \mathcal{F}_1 , i.e., $\mathcal{B}^-(F_2) = \mathsf{min}_{\subseteq}\{F_1 \in \mathcal{F}_1 \mid F_1 \notin \mathsf{Ext}(F_2): V_1\}$.

Proposition 3. Let $F_2 \in \mathcal{F}_2$, and $F_1 \in \mathcal{F}_1$. Then, $F_1 \in \mathcal{B}^-(F_2)$ if and only if $F_1 \in \min_{\subseteq} \{B^{\mathcal{H}[V_1]} \mid (B,h) \in \mathcal{H}[V_1,V_2], h \notin F_2\}.$

Proof. We show the if part. Let $F_1 \in \min_{\subseteq} \{B^{\mathcal{H}[V_1]} \mid (B,h) \in \mathcal{H}[V_1, V_2], h \notin F_2\}$. We show that for any closed set $F'_1 \subseteq F_1$ in \mathcal{F}_1 , F'_1 contributes to an extension of F_2 . It is sufficient to show this property to the case where $F'_1 \prec F_1$ as $\mathsf{Ext}(F_2)$: V_1 is an ideal of \mathcal{F}_1 . Hence consider a closed set F'_1 in \mathcal{F}_1 such that $F'_1 \prec F_1$. Note that such F'_1 exists since $\emptyset \in \mathcal{F}_1$ and no arc (B,h) in \mathcal{H} has $B = \emptyset$ so that $\emptyset \subset B^{\mathcal{H}[V_1]}$ for any arc (B,h) of $\mathcal{H}[V_1, V_2]$ such that $h \notin F_2$. Then, by construction of F'_1 , for any (B,h) in $\mathcal{H}[V_1, V_2]$ such that $h \notin F_2$, we have $B^{\mathcal{H}[V_1]} \notin F'_1$. As $(.)^{\mathcal{H}[V_1]}$ is a closure operator, it is monotone and $B^{\mathcal{H}[V_1]} \notin F'_1^{\mathcal{H}[V_1]} = F'_1$ entails $B \notin F'_1$ for any such arc (B,h). Therefore $F'_1 \in \mathsf{Ext}(F_2)$: V_1 and $F_1 \in \mathcal{B}^-(F_2)$.

We prove the only if part. We use contrapositive. Assume $F_1 \notin \min_{\subseteq} \{B^{\mathcal{H}[V_1]} | (B,h) \in \mathcal{H}[V_1, V_2], h \notin F_2\}$. Then we have two cases. First, for any arc (B,h) in $\mathcal{H}[V_1, V_2]$ such that $h \notin F_2$, $B^{\mathcal{H}[V_1]} \nsubseteq F_1$. As $(.)^{\mathcal{H}[V_1]}$ is a closure operator, it is monotone, and since F_1 is closed in \mathcal{F}_1 , we have $B \nsubseteq F_1$ and $F_1 \in \mathsf{Ext}(F_2)$: V_1 by Lemma 1. Hence $F_1 \notin \mathcal{B}^-(F_2)$. In the second case, there is an arc (B,h) with $h \notin F_2$ in $\mathcal{H}[V_1, V_2]$ such that $B^{\mathcal{H}[V_1]} \subseteq F_1$ which implies $F_1 \notin \mathsf{Ext}(F_2)$: V_1 . If $B^{\mathcal{H}[V_1]} \subset F_1$, then clearly $F_1 \notin \mathcal{B}^-(F_2)$ as $B^{\mathcal{H}[V_1]} \in \mathcal{F}_1$ and $B^{\mathcal{H}[V_1]} \notin \mathsf{Ext}(F_2)$: V_1 . Hence, assume that $F = B^{\mathcal{H}[V_1]}$. Since $F_1 \notin \min_{\subseteq} \{B^{\mathcal{H}[V_1]} \mid (B,h) \in \mathcal{H}[V_1, V_2], h \notin F_2\}$ by hypothesis, there exists another arc $(B', h') \in \mathcal{E}(\mathcal{H}[V_1, V_2])$ such that $h \notin F_2$ and $B'^{\mathcal{H}[V_1]} \subset F_1$. Hence $B'^{\mathcal{H}[V_1]} \notin \mathsf{Ext}(F_2)$: V_1 and $F_1 \notin \mathcal{B}^-(F_2)$ as it is not an inclusion-wise minimum closed set which does not belong to $\mathsf{Ext}(F_2)$: V_1 .

Observe that for any $F_2 \in \mathcal{F}_2$, $\mathcal{B}^-(F_2)$ can easily be computed using $\mathcal{H}[V_1, V_2]$ and Lemma 1. Therefore we prove the following theorem.

Theorem 3. FMEAS and DMDUAL are polynomially equivalent.

Proof. First we show that DMDUAL is harder than FMEAS. Let $\mathcal{H} = (V, \mathcal{E})$ be a dihypergraph, and $(\mathcal{H}[V_1], \mathcal{H}[V_2], \mathcal{H}[V_1, V_2], \mathcal{M}_1, \mathcal{M}_2, F_2)$ be an instance of FMEAS. By Proposition 3, finding $\max_{\subseteq} (\mathsf{Ext}(F_2))$ amounts to find the dual antichain of $\mathcal{B}^-(F_2) = \min_{\subseteq} \{B^{\mathcal{H}[V_1]} \mid (B,h) \in \mathcal{H}[V_1, V_2], h \notin F_2\}$ in \mathcal{F}_1 . Note that $\mathcal{B}^-(F_2)$ can be computed in polynomial time in the size of $\mathcal{H}[V_1]$ and $|\mathcal{B}^-(F_2)| \leq |\mathcal{E}(\mathcal{H}[V_1, V_2])|$. Therefore, the instance of FMEAS reduces to the instance $(\mathcal{H}[V_1], \mathcal{M}_1, \mathcal{B}^-(F_2))$ of DMDUAL.

Now we show that FMEAS is harder than DMDUAL. Let $(\mathcal{H}, \mathcal{M}, \mathcal{B}^-)$ be an instance of DMDUAL. Let z be a new gadget vertex and consider the bipartite dihypergraph $\mathcal{H}[V, \{z\}] = (V \cup \{z\}, \{(B, z) \mid B \in \mathcal{B}^-\})$. Let $\mathcal{H}_{new} = \mathcal{H} \cup \mathcal{H}[V, \{z\}]$. Clearly, \mathcal{H}_{new} has an acyclic split $(V, \{z\})$ such that $\mathcal{H}_{new}[V] = \mathcal{H}, \mathcal{H}_{new}[\{z\}] = (\{z\}, \emptyset)$ and $\mathcal{H}_{new}[V, \{z\}] = \mathcal{H}[V, \{z\}]$. The closure system associated to $\mathcal{H}_{new}[\{z\}]$ has only 2 elements: its unique meet-irreducible element \emptyset and $\{z\}$. We obtain an instance FMEAS where the input is $\mathcal{H}, \mathcal{H}_{new}[\{z\}],$ $\mathcal{H}[V, \{z\}], \mathcal{M}, \{\emptyset\}$ and where the closed set of interest is \emptyset . Moreover this reduction is polynomial in the size of $(\mathcal{H}, \mathcal{M}, \mathcal{B}^-)$ as we create a unique new element and $|\mathcal{B}^-|$ arcs. According to Proposition 3, maximal extensions of \emptyset are given by the antichain dual to $\mathcal{B}^-(\emptyset) = \min_{\subseteq} \{B^{\mathcal{H}} \mid (B, z) \in \mathcal{H}[V, \{z\}]\}$. However, we have $\mathcal{B}^-(\emptyset) = \mathcal{B}^-$, so that maximal extensions of \emptyset are precisely elements of the dual antichain \mathcal{B}^+ of \mathcal{B}^- .

We can deduce a class of dihypergraphs where our strategy can be applied to obtain meet-irreducible elements in output quasi-polynomial time. Let us assume that \mathcal{H} can be decomposed as follows. Its c-factors are singletons. If \mathcal{H} is not itself a singleton, it has an acyclic split (V_1, V_2) with $\mathcal{H}[V_1] = (V_1, \emptyset)$. Hence, DMDUAL reduces to hypergraph dualization and can be solved in output-quasi polynomial time using the algorithm of [10]. Recursively applying hypergraph dualization, we get \mathcal{M} for \mathcal{H} in output-quasi polynomial time. This class of dihypergraph generalizes ranked convex geometries of [8].

The closure system represented by a dihypergraph \mathcal{H} is a ranked convex geometry if there exists a full partition V_1, \ldots, V_n , of V such that $\mathcal{H}[V_i] = (V_i, \emptyset)$ for any $1 \leq i \leq n$ and for any arc (B, h) in \mathcal{H} there is a j < k such that $B \subseteq V_j$ and $h \in V_{j+1}$. All c-factors of \mathcal{H} are singletons. Choosing the acyclic split $(V_i, \bigcup_{j=i+1}^n V_j)$ at the *i*-th step of the algorithm yields a decomposition which satisfies conditions of the previous paragraph.

6 Conclusion

In this paper we investigated the problem of finding meet-irreducible elements of a closure system represented by a dihypergraph. In general, the complexity of this problem is unknown and harder than hypergraph dualization. Using a partitioning operation called an acyclic split on the dihypergraph, we gave a characterization of its associated meet-irreducible elements. Acyclic splits lead to a recursive algorithm to find meet-irreducible elements from a dihypergraph.

With our algorithm, we reach new classes of dihypergraphs for which meetirreducible elements can now be computed in output quasi-polynomial time. In particular, we improve previous results on ranked convex geometries [8].

Acknowledgment Authors are thankful to reviewers for their helpful remarks.

References

- AUSIELLO, G., AND LAURA, L. Directed hypergraphs: Introduction and fundamental algorithms—a survey. *Theoretical Computer Science* 658 (2017), 293–306.
- [2] BABIN, M. A., AND KUZNETSOV, S. O. Computing premises of a minimal cover of functional dependencies is intractable. *Discrete Applied Mathematics* 161, 6 (2013), 742–749.
- [3] BABIN, M. A., AND KUZNETSOV, S. O. Dualization in lattices given by ordered sets of irreducibles. *Theoretical Computer Science* 658 (2017), 316– 326.
- [4] BEAUDOU, L., MARY, A., AND NOURINE, L. Algorithms for k-meetsemidistributive lattices. *Theoretical Computer Science* 658 (2017), 391– 398.
- [5] BERTET, K., AND MONJARDET, B. The multiple facets of the canonical direct unit implicational basis. *Theoretical Computer Science* 411, 22-24 (2010), 2155–2166.
- [6] BIRKHOFF, G. Lattice theory, vol. 25. American Mathematical Soc., 1940.
- [7] DAVEY, B. A., AND PRIESTLEY, H. A. Introduction to lattices and order. Cambridge university press, 2002.
- [8] DEFRAIN, O., NOURINE, L., AND VILMIN, S. Translating between the representations of a ranked convex geometry. arXiv preprint arXiv:1907.09433 (2019).
- [9] DEMETROVICS, J., LIBKIN, L., AND MUCHNIK, I. B. Functional dependencies in relational databases: a lattice point of view. *Discrete Applied Mathematics* 40, 2 (1992), 155–185.
- [10] FREDMAN, M. L., AND KHACHIYAN, L. On the complexity of dualization of monotone disjunctive normal forms. *Journal of Algorithms 21*, 3 (1996), 618–628.
- [11] GALLO, G., LONGO, G., PALLOTTINO, S., AND NGUYEN, S. Directed hypergraphs and applications. *Discrete applied mathematics* 42, 2-3 (1993), 177–201.
- [12] GANTER, B., AND WILLE, R. Formal concept analysis: mathematical foundations. Springer Science & Business Media, 2012.
- [13] GUIGUES, J.-L., AND DUQUENNE, V. Familles minimales d'implications informatives résultant d'un tableau de données binaires. *Mathématiques et Sciences humaines 95* (1986), 5–18.
- [14] HABIB, M., AND NOURINE, L. Representation of lattices via set-colored posets. Discrete Applied Mathematics 249 (2018), 64–73.
- [15] KAVVADIAS, D. J., SIDERI, M., AND STAVROPOULOS, E. C. Generating all maximal models of a boolean expression. *Information Processing Letters* 74, 3-4 (2000), 157–162.

- [16] KHARDON, R. Translating between horn representations and their characteristic models. Journal of Artificial Intelligence Research 3 (1995), 349– 372.
- [17] LIBKIN, L. Direct product decompositions of lattices, closures and relation schemes. Discrete Mathematics 112, 1-3 (1993), 119–138.
- [18] MAIER, D. Minimum covers in relational database model. Journal of the ACM (JACM) 27, 4 (1980), 664–674.
- [19] MANNILA, H., AND RÄIHÄ, K.-J. The design of relational databases. Addison-Wesley Longman Publishing Co., Inc., 1992.
- [20] MARKOWSKY, G. Primes, irreducibles and extremal lattices. Order 9, 3 (1992), 265–290.
- [21] NOURINE, L., AND VILMIN, S. Hierarchical decompositions of dihypergraphs. arXiv preprint arXiv:2006.11831 (2020).
- [22] WILD, M. Computations with finite closure systems and implications. In International Computing and Combinatorics Conference (1995), Springer, pp. 111–120.
- [23] WILD, M. The joy of implications, aka pure horn formulas: mainly a survey. Theoretical Computer Science 658 (2017), 264–292.