
Interval-based sequence mining using FCA and
the NextPriorityConcept algorithm

Salah Eddine Boukhetta, Jérémy Richard, Christophe Demko, and Karell
Bertet

Laboratory L3i, La Rochelle University, La Rochelle, France

Abstract. In this paper, we are interested in sequential data analy-
sis using GALACTIC, a new library based on Formal Concept Analysis
(FCA) for calculating a concept lattice from heterogeneous and com-
plex data. Inspired by the pattern structure theory, data in GALACTIC

are described by predicates according to their types and a system of plu-
gins allows an easy integration of new characteristics and new descrip-
tions. We present new ways to analyse interval-based sequences, where
items persist in time. Here we address the question of mining relevant
sequential patterns, describing a set of sequences, by maximal common
subsequences, or shortest supersequences. Experimentation on two real
sequential datasets shows the effectiveness of our plugins in term of size
of the lattice and of running time.

Keywords: Formal concept analysis · Lattice · Pattern structures · Interval-
based sequences · Maximal common subsequences · Shortest common superse-
quences

1 Introduction

Sequences appear in many areas: sequences of words in a text, trajectories, surf-
ing on the internet, or buying products in a supermarket. A sequence is a suc-
cession 〈xi〉 of symbols, sets or events. Sequence mining is a topic of data mining
which aims at finding frequent patterns in a dataset of sequences. Many algo-
rithms have been proposed for mining sequential patterns, such as GSP [25],
PrefixSpan [24], CloSpan [29], etc. These algorithms take as input a dataset of
sequences and a minimum support threshold, and generate all frequent subse-
quences. Some algorithms mine time-point sequences 〈(ti, xi)〉, where an item xi
occurred at a timestamp ti, for example for discovering episodes in a long time-
point sequence [23, 26]. In real world applications, events may persist in time,
or in an interval of time (ti, ti), we call these sequences, interval-based sequences
〈(ti, ti, Xi)〉, where Xi is an itemset. They are mostly analysed using Allen’s in-
terval relations [1]. To quote from Kam and Fu’s work on discovering temporal
interval sequences [18], the patterns discovered are of type ”event A’s occurrence
time overlaps with that of event B and both of these events occur before event
C appears”. Other works also used Allen’s relations to discover interval based
patterns [17, 28].

Copyright c©2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Formal Concept Analysis (FCA) appears in 1982 [27], then in the Ganter
and Wille’s 1999 work [14], it is issued from a branch of applied lattice theory
that first appeared in the book of Barbut and Monjardet in 1970 [2]. The lattice
property guarantees both a hierarchy of clusters, and a complete and consistent
navigation structure for interactive approaches [11]. The formalism of pattern
structures [13, 20] and abstract conceptual navigation [10, 9] extend FCA to deal
with non-binary data, where data is described by patterns such that the pat-
tern space must be organised as a semi-lattice in order to maintain a Galois
connection between objects and their descriptions. By FCA framework, pattern
lattice and bases of rules are defined, where a concept is composed of a subset
of objects together with their common patterns, and a rule possesses patterns in
premises and conclusions. However, pattern lattices are huge, often untractable
[19], and the need for approaches to drive the search towards the most relevant
patterns is a current challenge. Logical Concept Analysis [12] is a generaliza-
tion of FCA in which sets of attributes are replaced by logical expressions. The
power set of attributes mentioned by the Galois connection is replaced by an
arbitrary set of formulas to which are associated a deduction relation (i.e., sub-
sumption), and conjunctive and disjunctive operations, and therefore forms a
lattice. Inspired by pattern structures, the NextPriorityConcept algorithm,
introduced in a recent article [8] proposes a user-driven pattern mining approach
for heterogeneous and complex data as input. This algorithm allows a generic
pattern computation through specific descriptions of objects by predicates. It
also proposes to reduce predecessors of a concept by the refinement of a set of
objects into a fewer one through specific user exploration strategies, resulting
in a reduction of the number of generated patterns. Some algorithms appear
within FCA framework for analysing sequence data; we can mention works for
mining medical care trajectories using pattern structures [5, 6], sequence mining
to discover rare patterns [7], and other studies on demographic sequences [15,
16]. But for discovering interval-based sequence using FCA methods, we found
fewer works. We can cite Kaytoue et al.’s work on gene expression data [21].

In this article, we propose a new sequence mining approaches using the
NextPriorityConcept algorithm, with descriptions and strategies dedicated
to interval-based sequences. We propose two different descriptions that describe
a subset of objects by subsequences or supersequences. We also propose five
strategies of pattern exploration in order to generate a reduction of a cluster of
interval-based sequences, i.e., its predecessors in the pattern lattice.

Section 2 introduces basic definitions related to interval sequence mining
and a short description of the NextPriorityConcept algorithm. Section 3
will be dedicated to our new interval-based sequence descriptions and strategies.
Experimental results are presented in Section 4.

2 Preliminaries

2.1 Interval-based Sequences

A sequence s is a succession of itemsets from a dictionary Σ, often in the form
of s =< Xi >i≤n, where Xi ⊆ Σ is a subset of items i.e., itemset. A temporal

sequence is a sequence where each itemset Xi must have an associated timestamp
ti. An Event (or Time frame) E, is a triple E = (t, t,X) where X ⊆ Σ is
an itemset, t is the starting time and t is the ending time, t ≤ t. For better
readability we refer to (t, t) by T .

Interval-based sequence. An interval-based sequence (or Time frame sequence)
s = 〈(Ti, Xi)〉i≤n is a list of events (or time frames), verifying ti < ti+1, thus
an interval-based sequence is a list of separate intervals containing itemsets.
The size of the interval-based sequence is the number of its time frames. We
refer to the interval-based sequence by sequence.

Consider the example in Figure 1 for an alphabet Σ = {C,M,P,H} (where C
stands for Castle, M for Museum, P for Public Garden and H for Historical
Place), the sequences represent trajectories of visits of three tourists s1, s2 and
s3. In this example, visitors may be in two or more different locations at the
same interval as the intervals are large enough and we may don’t have the exact
interval of each location.

t8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

s1
P H, M

s2
P, H M

s3
P M, C

Fig. 1. Example of interval-based sequences

Subinterval. For two intervals, T = (t, t) and T ′ = (t′, t′), we say that T is
subinterval T ′, if : t ≥ t′ and t ≤ t′ and we write T � T ′, that corresponds
to the containing relation from Allen’s relations [1].

Projections. We introduce the projection operator Φ of a sequence s, over a
given interval T , that selects all the itemsets of the sequence included in this
interval : ΦT (s) = {X ′ : T ′ � T and (T ′, X ′) ∈ s}. Dually, the projection
operator Φ, over an itemset X ⊆ Σ selects all the intervals where the items of
X may occur: ΦX(s) = {T ′ : X ′ ⊆ X and (T ′, X ′) ∈ s}. ΦΣ(s) represents
a set of all the intervals in s.

Subsequence. A sequence s, is subsequence of another sequence s′, s b s′ if
for all (T,X) ∈ s, there exists (T ′, X ′) ∈ s′ such that T � T ′ and X ⊆ X ′.
We also say that s′ is supersequence of s.

Affix. A prefix/suffix of a sequence s = 〈(Ti, Xi)〉i≤n according to a window
w, is the subsequence of s composed by the first/last w time frames of s,
prefix(s, w) = 〈(Ti, Xi)〉1≤i≤w, suffix(s, w) = 〈(Ti, Xi)〉(n−w)<i≤n.

Cardinality. For a set of sequences A, an item x ∈ Σ and an interval T , the
function card gives the number of sequences a ∈ A possessing the item x in
the projection of a over T , x ∈ ΦT (a).

card(A, T, x) = |{a : x ∈ ΦT (a), a ∈ A}| (1)

When card(A, T, x) is maximal, we denote card(A, T, x) by cardmax(A, T).
We define cardmin(A, T) in the same maner when card(A, T, x) is minimal.

From example in Figure 1 we have, Φ(10:00,11:00)(s2) = {P,H}, the prefix of s1
is 〈(08:30, 11:00), P)〉, and all three tourists were in the museum from 14:00 to
15:00, so 〈(14:00, 15:00),M)〉 is subsequence of s1, s2 and s3. For A = {s1, s2, s3}
and T = (11:00, 12:00) card(A, T, P) = cardmax(A, T) = 2.

2.2 Description of the NextPriorityConcept algorithm

The NextPriorityConcept algorithm [8] computes concepts for heteroge-
neous and complex data for a set of objects G, its main characteristics are:

Heterogeneous data as input, described by specific predicates. The al-
gorithm introduces the notion of description δ as an application to provide
predicates describing a set of objects A ⊆ G. Each concept (A, δ(A)) is com-
posed of a subset of objects A and a set of predicates δ(A) describing them.
Such generic use of predicates makes it possible to consider heterogeneous
data as input, i.e., numerical, discrete or more complex data. However, un-
like classical pattern structures, predicates are not globally computed in a
preprocessing step, but locally for each concept.

Concept lattice generation. The NextPriorityConcept algorithm is in-
spired by Bordat’s algorithm[3], also found in Linding’s work [22], that re-
cursively computes the immediate successors of a concept, starting with the
bottom concept. It is a dual version that computes the immediate prede-
cessors of a concept, starting with the top concept (G, δ(G)) containing the
whole set of objects, until no more concepts can be generated. The use of a
priority queue ensures that each concept is generated before its predecessors,
and a mechanism of propagation of constraints ensures that meets will be
computed. NextPriorityConcept computes a concept lattice and there-
fore is positioned in FCA framework, with the possibility of extraction of
rules, closure computations or navigation in the lattice, that can be useful
in many fields of pattern mining and discovery.

Predecessors selection by specific strategies. The algorithm also introduces
the notion of strategy σ to provide predicates (called selectors) describing
candidates for an object reduction of a concept (A, δ(A)) i.e., predecessors
of (A, δ(A)) in the pattern lattice. A selector proposes a way to refine the
description δ(A) to a reduced set A′ ⊂ A of objects. Several strategies are
possible to generate predecessors of a concept, going from the naive strat-
egy classically used in FCA that considers all the possible predecessors, to
strategies reducing the number of predecessors in order to obtain smaller
lattices. Selectors are only used for the predecessors’ generation, they are
not kept either in the description or in the final set of predicates. There-
fore, choosing or testing several strategies at each iteration in a user-driven
pattern discovery approach would be interesting.

The main result in [8] states that the NextPriorityConcept algorithm com-
putes the formal context 〈G,P, IP 〉 and its concept lattice (where P is the set of
predicates describing the objects in G, and IP = {(a, p), a ∈ G, p ∈ P : p(a)} is
the relation between objects and predicates) if description δ verifies δ(A) v δ(A′)

for A′ ⊆ A. The run-time of the NextPriorityConcept algorithm has a com-
plexity O(|B| |G| |P |2 (cσ + cδ)) (where B is the number of concepts, cσ is the
cost of the strategy and cδ is the cost of the description), and a space memory
in O(w |P |2) (where w is the width of the concept lattice).

3 NextPriorityConcept for sequences
In order to mine interval-based sequences with NextPriorityConcept algo-
rithm, we have to define descriptions and strategies for sequences. Consider a
set G of sequences whose size is smaller than n, defined on an alphabet Σ as
input:

A description δ is a mapping δ : 2G → 2P which defines a set of predicates
δ(A) describing any subset A ⊆ G of sequences. Predicates are of form, ”is
subsequence/supersequence of”.

A strategy σ is a mapping σ : 2G → 2P which defines a set of selectors σ(A) to
select strict subset A′ of A as predecessor candidates of any concept (A, δ(A))
in the pattern lattice.

Predicates are computed using the subsequence relation in the form ”is subse-
quence of ” or ”is supersequence of”. For better readability, the sets δ(A) and
σ(A) will be treated either as sets of predicates/selectors, or as sets of sequences,
they can reciprocally be deduced from each other.

3.1 Description for interval sequences

We define two descriptions for a subset A ⊆ G of sequences. The maximal
common time frame description MCTF refers to the classical maximal common
subsequence description [4] and corresponds to the set of maximal subsequences
of all sequences in A. The shortest supersequence time frame description SSTF

contains all minimal supersequences of sequences in A.

t8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

MCTF P M

SSTF P P,H M,H C,M,H C,M

Fig. 2. δMCTF({s1, s2, s3}) and δSSTF({s1, s2, s3}) for s1, s2 and s3 in Figure 1.

Figure 2 represents δMCTF(A) and δSSTF(A) for A = {s1, s2, s3} from Fig-
ure 1. We can observe that MCTF could be interpreted as ”conjunction” where
(14:00, 15:00, {M}) in δMCTF means that all s1, s2 and s3 contain (14:00, 15:00, {M}).
Dually, SSTF could be interpreted as ”disjunction”. More formally, MCTF and SSTF

are defined for a subset A ⊆ G of sequences by:

Maximal Common Time Frame (MCTF) description.

δMCTF(A) = {〈(T,X)〉 : ∀a ∈ A,X ⊆ ΦT (a)} (2)

Shortest Shared Time Frame (SSTF) description.

δSSTF(A) = {〈(T,X)〉 : ∀a ∈ A,ΦT (a) ⊆ X} (3)

To compute the two descriptions of a set A of sequences, we iterate on the
sequences of A, and update the resulting sequences of δ(A) with the com-
mon parts. Therefore the complexity of the description is cMCTF

δ = cSSTFδ =
O(s |A| log(|A|)) ≤ O(s |G| log(|G|)) where s is the maximal size of the computed
sequences. We have to ensure that the NextPriorityConcept algorithm gen-
erates a concept lattice. These descriptions must verify δ(A) v δ(A′) for A′ ⊆ A:
Proposition 1 For A′ ⊆ A ⊆ G, we have the following two properties:

1. δMCTF(A) v δMCTF(A′)
2. δSSTF(A) v δSSTF(A′)

Proof: Let A and A′ be two subsets of G such that A′ ⊆ A.

1. Let c ∈ δMCTF(A), i.e., c is a maximal subsequence of A. From A′ ⊆ A we
can deduce that c is also a subsequence of sequences in A′, but c is not
necessarily a maximal subsequence for A′. If c is a maximal subsequence in
A′ then c ∈ δMCTF(A′). Otherwise, there exists c′ ∈ δMCTF(A′) such that c
is a subsequence of c′. In these two cases, we can deduce that, δMCTF(A) v
δMCTF(A′).

2. Let s ∈ δSSTF(A), i.e., s is the supersequence of all sequences in A. From
A′ ⊆ A we can deduce that s is also a supersequence of sequences in A′

but not necessarily the shortest one. If s is a shortest supersequence in A′

then s ∈ δSSTF(A′). Otherwise, there exists s′ ∈ δSSTF(A′) such that s is
supersequence of s′. We can deduce that, δSSTF(A) v δSSTF(A′).

�
3.2 Strategies and selectors for time frame sequences

Strategies are used by the NextPriorityConcept algorithm to refine each
concept (A, δ(A)) into concepts with fewer objects (sequences) and more spe-
cific descriptions. It is important to clarify that a strategy must be used with a
description composed of predicates of the same kind. Recall that MCTF descrip-
tion defines ”is subsequence of” predicates whereas SSTF description defines ”is
supersequence of” predicates. We define one subseqeunce strategy for the MCTF

description and four supersequence strategies for the SSTF description.

Strategy with subsequence selectors for MCTF description: The Aug-
mented Minimum Cardinality strategy computes all the possible refinements of
a concept (A, δMCTF(A)) by adding in the events of sequences of δMCTF any item
with a minimal cardinality card(A, T, x) for each time frame T . More formally,
σAMC is defined for A ⊆ G by:

Augmented Minimum Cardinality.

σAMC(A) = {〈(T,X)〉 : ∀a ∈ A,ΦT (a) ⊆ X and ∀x ∈ X
card(A, T, x) = |A| ∨ card(A, T, x) = cardmin(A, T)} (4)

The cost for this strategy is clearly equal to the cost of MCTF description, cAMC
σ =

cMCTF
δ .

Figure 3, represents the generated Hasse diagram of sequences in Figure 1
using the MCTF description and the AMC strategy, where in each concept the

symbol $ represents the identifier of the concept, and the symbol # represents
the number of sequences inside the concept, i.e., its support. The concept $0
contains the description of the 3 visits. The concept $1 describes the two visits,
s1 and s3 as they were in the Public Garden from 08:30 to 11:00 then in the
Museum from 14:00 to 15:00.

$1: #2

s match ["[8.3;11):{'P'}", "[14;15):{'M'}"]

$0: #3

$2: #1

s match ["[10;12):{'P', 'H'}", "[14;16):{'M'}"]

['s2']

$3: #1

s match ["[8.3;12):{'P'}", "[14;16):{'C', 'M'}"]

['s3']

$4: #1

s match ["[8.3;11):{'P'}", "[13;15):{'H', 'M'}"]

['s1']

$5: #0

Fig. 3. Hasse diagram of the reduced concept lattice for the AMC strategy and the
MCTF description

Strategies with supersequence selectors for SSTF description: First, the
Simple Time Frame strategy consists in simply generating selectors by deleting
one item from each itemset on the SSTF description. More formally, σSTF is
defined for a subset of sequences A ⊆ G, and the SSTF description, by:

Simple Time Frame strategy (STF).

σSTF(A, δSSTF) = {〈(T,X\{x})〉 : ∀x ∈ X, (T,X) ∈ s, s ∈ δSSTF(A)} (5)

To implement this strategy, we have to consider any item of any sequence of the
description, thus a complexity cSTFσ = O(sm cSSTFδ) ≤ O(s |Σ| cSSTFδ) where
m is the maximal number of items in any time frame in the sequences of the
description.

$1: #2
s match ["[8.3;12):{'P'}", "[13;14):{'M',
'H'}", "[14;15):{'M', 'C', 'H'}", "[15;16):{'C',
'M'}"]

$0: #3

$2: #2
s match ["[8.3;10):{'P'}", "[10;12):
{'P', 'H'}", "[14;16):{'C', 'M'}"]

$3: #2

s match ["[8.3;10):{'P'}", "[10;12):{'P',
'H'}", "[13;15):{'M', 'H'}", "[15;16):
{'M'}"]

$4: #1

['s1']
$5: #1

['s3']
$6: #1

['s2']

$7: #0

Fig. 4. Hasse diagram of the reduced concept lattice for the STF strategy and the
SSTF description

Figure 4 represents the generated Hasse diagram using the SSTF description
and the STF strategy. Concepts $1, $2, and $3 contain descriptions of {s1, s3},
{s2, s3}, and {s1, s2}. Concept $2 shows that at least one of s2 or s3 visited P
from 08:30 to 10:00, then H or P from 10:00 to 12:00, and finally C or M from
14:00 to 16:00. The strategy constructs a lattice with all concepts, hence it is
time consuming. So, we thought about strategies that may reduce the size of the

lattice, and the time complexity. The Bounds Time Frame strategy consists in
deleting only the items of cardinalities minimal or maximal. The Window Affix
Time Frame strategy uses a window parameter w and generates the prefix and
suffix. The Alphabet Time Frame strategy, deletes one item of the alphabet from
all the time frames. More Formally, these strategies are defined for a subset A
of sequences and the description δSSTF by:

Bounds Time Frame (BTF), for an integer card:

σBTF(A, c) = {〈(T,X\{x})〉 : (T,X) ∈ s,
card(A, T, x) = c, s ∈ δSSTF(A)} (6)

In particular, we can consider σBTF(A, cardmax) and σBTF(A, cardmin)
Window Affix Time Frame strategy (WATF), for a window size w:

σWATF(A,w) = {〈(T,X)〉 : (T,X) ∈ s− prefix(s, w),

(T,X) ∈ s− suffix(s, w), s ∈ δSSTF(A)} (7)

Here the s− prefix(s, w) means s without time frames in prefix(s, w), same
for s− prefix(s, w).

Alphabet Time Frame strategy (ATF):

σATF(A) = {〈(T,X\{x})〉 : ∀(T,X) ∈ s, ∀x ∈ Σ, s ∈ δSSTF(A)} (8)

The cost of the BTF strategy is cBTFσ = O(s cSSTFδ), as it must calculate the
predicates of SSTF, then iterate on the resulting sequences. For the WATF strategy,
cWATF
σ = cSSTFδ , the w parameter is constant, so the cost is equal only to the

cost of δSSTF. For the ATF strategy cATFσ = O(s cSSTFδ).
The NextPriorityConcept allows a user-driven approach for the data

analyst to choose strategies that respond the best to the specifications of the
data. With the SSTF description, the data analyst have a choice of 4 strategies.
The BTF strategy allows a generation of predecessors where frequent or non-
frequent events may not appear (maximum and minimum cardinalities). The
WATF strategy focuses of events that appear first or last at the same interval.
The ATF strategy focuses on clusters where some events may not appear. The
use of these strategies reduces the time complexity of the lattice generation
process and generate a smaller lattice than the STF strategy.

4 Experiments

In this section, we experimentally evaluate our descriptions and strategies for
mining interval sequences. Our approach is different from previous works. We are
not mining all frequent interval-based sequences, but we use our strategies and
descriptions to mine only the relevant ones. To experimentally assess the effec-
tiveness of our descriptions and strategies, we use GALACTIC1 (GAlois LAttices,
Concept Theory, Implicational systems and Closures), a development platform

1 https://galactic.univ-lr.fr

of the NextPriorityConcept algorithm, which mixed with a system of plu-
gins, makes it possible easy integration of new kinds of data (descriptions and
strategies). We have implemented new plugins for sequences. Experiments were
performed on an Intel Core i7 2.20GHz machine with 32GB main memory. We
run our experiments on two real datasets:

GeoLuciole dataset is issued from classical GPS trajectories of people’s de-
placements in the city of La Rochelle in France. By matching the GPS co-
ordinates to districts of the city, raw data are transformed into semantic
sequences. The data have been collected by a specific application named
GeoLuciole that we have developed for the DA3T2 project. The data con-
tains only 15 trajectories with an average size of sequences equals to 23.

Wine-City dataset is issued from the museum ”La cité du vin” in Bordeaux,
France4, gathered from the visits over a period of one year (May 2016 to
May 2017). The museum is a large ”open-space”, where visitors are free to
explore the museum the way they want. The trajectories in this dataset are
of size 9 on average.

Comparison of descriptions

Here we compare our two descriptions in terms of running time and lattice
size. We use the MCTF description with the AMC strategy, and the SSTF descrip-
tion with the STF strategy. These two strategies generate all possibles subseqe-
unces/supersequences. Results for the Wine-City dataset are given in Table 1.
We can observe that MCTF is far faster than SSTF. It generates a lattice of 149
concepts in about 2 minutes from 500 sequences, while the SSTF description,
stops with 1024 concepts generated in about 30 minutes from only 10 sequences.
These descriptions are two different ways of representing the data. The SSTF

description is clearly richer than the MCTF description that is the classical max-
imal common subsequences description extended to intervals, but SSTF is not
adapted to huge datasets.

data size 4 6 10 100 500 1000

σSTF(δSSTF)
concepts 16 33 1024
time(ms) 2878 11760 1927039
time/concept(ms) 179,87 356,36 1881,87

σAMC(δMCTF)
concepts 6 12 13 67 149 132
time(ms) 267 771 838 17198 141281 246437
time/concept(ms) 44.5 64.25 64.46 256.68 948.19 1866.94

Table 1. # of concepts and execution time for δMCTF and δSSTF descriptions for the
Wine city dataset
2 System for the Analysis of Numerical Traces for the development of Tourist Territo-

ries (Dispositif d’Analyse des Traces numériques pour la valorisation des Territoires
Touristiques)

3 It was planned to collect more data during the holidays on Mars and April, but
unfortunately, this was impossible due to the world pandemic Covid-19

4 https://www.laciteduvin.com/en

Comparison of strategies

We focus now on the SSTF description to compare the four strategies; STF, BTF,
WATF and ATF. Recall that the STF strategy generates all possible supersequences
whereas BTF, WATF and ATF focus on special supersequences (prefix, suffix, ac-
cording to a window). Figure 5 shows the running time and the number of con-
cepts generated using the Wine-City dataset. Compared to the STF strategy, we
can clearly see that the other strategies are faster, and generate fewer concepts.
The WATF strategy is the best in this example, especially with w = 1, with w = 2:
the result approximates that of the BTF strategy. We run the BTF strategy with
cardmin and cardmax: we observe that the running time is better, and we ob-
tain fewer concepts with cardmin. The complexity of NextPriorityConcept
depends on the size of the lattice, therefore a reduction to more relevant con-
cepts also reduce the running time. Table 2 presents a comparaison between the

0 10 20 50

102

103

104

105

106

107

Dataset size

ti
m

e(
m

s)

0 10 20 50

101

102

103

Dataset size

#
co

n
ce

p
ts

σSTF(δSSTF)

σBTF(δSSTF cardmin)

σBTF(δSSTF cardmax)

σWATF(δSSTF w = 1)

σWATF(δSSTF w = 2)

σATF(δSSTF)

Fig. 5. Running time and size of the lattice using the δSSTF description and the four
strategies for the Wine-City dataset

four strategies of the SSTF description with the GeoLuciole dataset. The BTF,
ATF and WATF strategies are compared to the STF in terms of compression ratio
i.e., the ratio between the number of concepts obtained with the STF strategy
by the number of concepts obtained with each of the other strategies. Table 2
shows the effectiveness of our strategies in reducing the number of concepts. We
can also observe that the compression ratio is improved as we increase the size
of the data for all strategies. ATF strategy performs better and generates fewer
concepts compared to BTF. The compression ratio is low with the WATF strategy,
because the size of sequences is close to the window, and thus as we raise the
windows the number of concepts get closer to the STF strategy. The behaviour
of WATF strategy is linked to the average size of the sequences. The data analyst
can variate parameters such as the cardinality for BTF, or the window for WATF,
to generate only relevant concepts.

5 Conclusion

In this paper, we presented a sequence mining approach using the NextPrior-
ityConcept algorithm. This algorithm allows a generic pattern computation
through specific descriptions and strategies.

We presented two descriptions and five strategies for analysing interval-based
sequences. The two descriptions represent two different approaches for repre-
senting a set of sequences. The first one MCTF is the classical maximal common

dataset size 4 5 6 7 10 15

Concepts

σSTF 16 32 64 128 672 16640

Compression ratio

σBTF(cardmin) 2.28 4.57 4.92 4.74 18.66 96.18

σBTF(cardmax) 5.33 2.66 7.11 3.45 28 92.96

σATF 4 2.13 4 8.53 24.88 130

σWATF(w = 1) 1.77 3.2 3.76 10.66 32 386.97

σWATF(w = 2) 1.45 2.13 1.42 4.26 7.38 49.52

Table 2. # of concepts and compression ratio using δSSTF description and the four
strategies STF, BTF, ATF and WATF for the GeoLuciole dataset

subsequences, whereas the second one SSTF provides a richer description of in-
terval sequences. We presented one strategy for the MCTF description, and four
strategies for the SSTF description that can be tested in a user-driven approach
in order to generate fewer concepts and more relevant data. Therefore, we will
focus on reducing the time complexity of our plugins, and create more config-
urable ones that respond the best to the particularity of the data we want to
treat.

References

1. Allen, J.F.: An interval-based representation of temporal knowledge. In: IJCAI.
vol. 81, pp. 221–226 (1981)

2. Barbut, M., Monjardet, B.: Ordres et classifications : Algèbre et combinatoire.
Hachette, Paris (1970), 2 tomes

3. Bordat, J.P.: Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques et Sciences humaines 96, 31–47 (1986)

4. Boukhetta, D.C., Bertet K., R.J.: Sequence mining using FCA and NextPriori-
tyConcept algorithm. In: The 15th International Conference on Concept Lattices
and Their Applications (CLA 2020) (2020)

5. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Räıssi, C.: Fca and
pattern structures for mining care trajectories (2013)

6. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Räıssi, C.: On pro-
jections of sequential pattern structures (with an application on care trajectories)
(2013)

7. Codocedo, V., Bosc, G., Kaytoue, M., Boulicaut, J.F., Napoli, A.: A proposition for
sequence mining using pattern structures. In: International Conference on Formal
Concept Analysis. pp. 106–121. Springer (2017)

8. Demko, Ch., Bertet, K., Faucher, C., Viaud, J.F., Kuznetsov, S.O.: NextPriori-
tyConcept: A new and generic algorithm computing concepts from complex and
heterogeneous data. arXiv preprint arXiv:1912.11038 (2019)

9. Ferré, S.: Systèmes d’information logiques : un paradigme logico-contextuel pour
interroger, naviguer et apprendre. Doctorat, University of Rennes 1, France (Oct
2002)

10. Ferré, S.: Reconciling Expressivity and Usability in Information Access - From
Filesystems to the Semantic Web. Habilitation, University of Rennes 1, France
(november 2014)

11. Ferré, S.: Reconciling expressivity and usability in information access from file
systems to the semantic web (2014)

12. Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. vol. 1867,
pp. 371–384 (03 2000)

13. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: LNCS of
International Conference on Conceptual Structures (ICCS’01). pp. 129–142 (2001)

14. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical foundations.
Springer Verlag, Berlin (1999)

15. Gizdatullin, D., Baixeries, J., Ignatov, D.I., Mitrofanova, E., Muratova, A., Espy,
T.H.: Learning interpretable prefix-based patterns from demographic sequences. In:
International Conference on Intelligent Data Processing: Theory and Applications.
pp. 74–91. Springer (2016)

16. Gizdatullin, D., Ignatov, D., Mitrofanova, E., Muratova, A.: Classification of demo-
graphic sequences based on pattern structures and emerging patterns. In: Supple-
mentary Proceedings of 14th International Conference on Formal Concept Analy-
sis, ICFCA. pp. 49–66 (2017)

17. Guyet, T., Quiniou, R.: Extracting temporal patterns from interval-based se-
quences. In: Twenty-Second International Joint Conference on Artificial Intelli-
gence (2011)

18. Kam, P.s., Fu, A.W.C.: Discovering temporal patterns for interval-based events.
In: International Conference on Data Warehousing and Knowledge discovery. pp.
317–326. Springer (2000)

19. Kaytoue, M.: Contributions to Pattern Discovery. Habilitation, University of Lyon,
France (february 2020)

20. Kaytoue, M., Codocedo, V., Buzmakov, A., Baixeries, J., Kuznetsov, S.O., Napoli,
A.: Pattern structures and concept lattices for data mining and knowledge pro-
cessing. In: In Proceedings of ECML-PKDDl (2015)

21. Kaytoue, M., Duplessis, S., Kuznetsov, S.O., Napoli, A.: Two fca-based methods
for mining gene expression data. In: International Conference on Formal Concept
Analysis. pp. 251–266. Springer (2009)

22. Linding, C.: Fast concept analysis. In: Working with Conceptual Structures-
Contributions to ICC. pp. 235–248 (2002)

23. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data mining and knowledge discovery 1(3), 259–289 (1997)

24. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: icccn. p. 0215. IEEE (2001)

25. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements, edbt (1996)

26. Sun, X., Orlowska, M.E., Zhou, X.: Finding event-oriented patterns in long tem-
poral sequences. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining. pp. 15–26. Springer (2003)

27. Wille, R.: Restructuring lattice theory : an approach based on hierarchies of con-
cepts. Ordered sets pp. 445–470 (1982), i. Rival (ed.), Dordrecht-Boston, Reidel.

28. Winarko, E., Roddick, J.F.: Armada–an algorithm for discovering richer relative
temporal association rules from interval-based data. Data & Knowledge Engineer-
ing 63(1), 76–90 (2007)

29. Yan, X., Han, J., Afshar, R.: Clospan: Mining: Closed sequential patterns in large
datasets. In: Proceedings of the 2003 SIAM international conference on data min-
ing. pp. 166–177. SIAM (2003)

	Interval-based sequence mining using FCA and the NextPriorityConcept algorithm

