
OpenFaceR: Developing an R Package for the convenient 
analysis of OpenFace facial information12. 

Davide Cannata1[0000-0003-2254-2639], Sam Redfern1[0000-0002-4856-3756], and Denis 
O’Hora1[0000-0003-3776-6782] 

1 National University of Galway, Ireland 
 

d.cannata1@nuigalway.ie 

Abstract. OpenFace is an open source tool designed to extract the most com-
monly used facial information from videos including facial points, head pose, 
gaze and Facial Action Units. OpenFaceR is a tool designed to help social scien-
tists, and other researchers from less technical disciplines, who are interested in 
facial nonverbal behaviors (FNVBs), to easily use output from OpenFace 2.0. 
The output from OpenFace is one csv file for each video, with information on 
each feature for each frame of the analyzed video provided in rows.  OpenFaceR 
constitutes a set of methods to convert information in this format into relevant 
summary statistics. In this paper, we focus on the set of methods in OpenFaceR 
to extract information from a series of videos and transform the output files into 
a single dataset in which each row reports the summary values of a feature for 
one video. 

Keywords: OpenFace, R, Nonverbal Behaviors, Face, Computer Vision. 

1 Introduction 

Humans are social animals, capable of complex and variable behaviour. The face is a 
central element of human sociality[1], since it provides rich information for immediate 
social judgments through static cues (e.g. biometrics, skin colour, feminine/masculine 
features, regional traits etc..) and dynamic cues (e.g. smiles, blinks, gaze, emotion ex-
pression etc…). The latter, also called Facial Nonverbal Behaviors (FNVBs), have been 
widely studied in many fields such as display of emotions [2], lie detection [3], inter-
personal relations [4], and personality recognition [5].  Research on FNVBs can be 
further divided into two streams which require different techniques of data collection 
and data analysis. The first one is concerned with how facial expressions change in time 
within subjects (e.g. studies on mimicry or on emotional reactions [6]) and therefore 
require FNVBs data per each temporal unit. The second stream is concerned about how 
FNVBs differ between individuals (e.g. nonverbal expression of personality [7]) or 
within the same individuals in different conditions (e.g. being ingenuous vs being 

 
1 Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License 

Attribution 4.0 International (CC BY 4.0). 
2 The work has been funded by the Irish Research Council 



2 

deceitful [3]). In this second case, that is the focus of this paper, the analysis is per-
formed on summary measures of FNVBs, such as their frequency.  
 FNVBs are traditionally annotated manually, through one of the many existing 
scales (ex: Riverside Q-Sort [8]; Münster Behavior coding system [9]). One of the most 
popular is the Facial Actions Coding System (FACS) by Paul Ekman [10], which anal-
yses the smallest independent movements of the facial muscles, called Action Units 
(AUs). The FACS provides with a detailed and objective approach to the classification 
of FNVBs, but manual annotation of AUs is a demanding job which requires consider-
able amount of time of well-trained observers.[11]. Recently, progresses in computer 
vision has allowed the development of software for automatic analysis and recognition 
of facial static and dynamic characteristics [12]. Amongst those OpenFace, an open-
source software developed at Cambridge University by Baltrusaitis and colleagues [13], 
is one of the most used in the social sciences, with 753 citations by August 16, 2020. 
OpenFaceR, the GitHub repository presented in this paper, includes a set of R functions 
intended to facilitate the use of OpenFace 2.0 for social scientists. 

2 OpenFace 

The major goal of OpenFace is to provide a comprehensive, open source and free tool 
for describing facial behaviors [13]. OpenFace estimates the status of four different 
types of feature: facial landmarks; head pose; eye gaze; and facial expressions. The x, 
y and z position of 67 facial landmarks are identified using a Convolutional Experts 
Constrained Local Model [14]. Based on these values, head pose is estimated through 
the orthographic projection of an internal 3D representation of the facial landmarks 
[13]. To estimate the direction of eye gaze, OpenFace first uses a Constrained Local 
Neural Field to detect eyelids, pupils and iris. Then, an eyeball model and head pose 
information are incorporated in a complex process to estimate gaze direction [15]. Fi-
nally, OpenFace makes use of a linear kernel Support Vector approach to describe18 
AUs [16] (e.g., movement of the lip corner puller, the muscle we use to smile). For each 
AU it estimates its intensity (e.g. a number between 0 and 1 describing how much the 
lip corner puller is contracted) and its presence  (e.g,, if the movement of the lip corner 
puller is large enough for being observed as a smile). OpenFace 2.0 has been tested 
through two different datasets achieving state of the art performance, despite compara-
tively low computational demands [13]. The software can be run through the command 
prompt to analyse a single video or multiple videos stored in a folder. The output, for 
each video, is a Comma Separated Values (CSV) file including 538 values for each 
frame:  

 
- frame number 
- timestamp  
- confidence (how accurate the analysis of the frame is likely to be) and success 

(whether confidence is high enough) 
- x, y and z coordinates of the gaze for each eye 
- z and y polar coordinates of the gaze angle 



3 

-   56 by 2 (x and y) 2D eye landmark positions 
- 56 by 3 (x, y and z) 3D eye landmark positions 
- x, y and z coordinates of the head position 
- Roll, pitch and yaw of the head 
- 68 by 3 (x, y and z) facial landmarks positions 
-   18 by 2 (presence and intensity) AUs 

3 Fitting OpenFace data to social scientists’ needs 

The output from OpenFace is rich and detailed, but, for just this reason, it is not ideal 
for data analysis by most social scientists. When OpenFace processes a video (usually 
depicting one person’s participation), a long CSV document is produced, in which each 
row reports the 538 values noted previously for each frame. OpenFace typically anal-
yses videos at a 30Hz frame rate, so the standard output is a csv with a number of rows 
equal to 30 times the duration of the video in seconds. Such data are perfectly suitable 
for time series analysis [17] but many social scientists are not trained in such techniques 
and wish to test hypotheses concerning summary statistics (e.g. frequency or mean and 
standard deviation) of FNVBs per each person (in a between-subjects design) or per 
each person in each condition (in a within-subjects design).  

To provide data more suitable for the needs of social scientists, we employed the 
‘tidy’ framework proposed by Hadley Wickham for easier data analysis and visualiza-
tion [18]. Datasets are defined as tidy if each row corresponds to an observation, each 
column corresponds to a variable and each type of observational unit forms a table [18]. 
The challenge for social scientists using OpenFace, therefore, is how to transform 
frame-level output into a tidy dataset with output per person or condition. Figure 1 
shows an example in which 60 second videos of three people have been analysed with 
OpenFace to annotate true smiles and blinks. The left of the figure represents the Open-
Face output with one person per dataset, one frame per row and with each column rep-
resenting the absence or presence of a facial action unit. On the right, there is a tidy 
dataset in which each row represents a person and each column is a summary of the 
person FNVBs, in this case the frequency of true smiles and blinks. 

 



4 

Fig. 1 Conceptual example of transformation from  OpenFace output (on the left) to a tidy dataset 
(on the right) in which each row correspond to a person. AU_6 (cheek raiser)  and AU_12 (lip 
corner puller) in combination signal a true smile. AU-45 represents a blink. 

The main goal of OpenFaceR is to provide a set of tools and a workflow for the 
creation of such tidy datasets for social scientists. 

4 OpenFaceR workflow 

OpenFaceR assists social scientists through a workflow that leads from the analysis of 
videos to the consolidation of a tidy dataset with one person per row. Its functions make 
extensive use of the tidyverse package [19]. The tidyverse is a collection of packages 
aimed to “facilitate a conversation between a human and a computer about data” [19, 
pag.1]. It includes methods for data manipulation, data importing, data tidying, data 
manipulation and data visualisation. Notably, OpenFaceR uses and extends the func-
tions “mutate”,” filter”, “select” and “summarise” from dplyr and makes extensive use 
of the pipe sign “%>%” from magrittr. Also, OpenFaceR import and returns datasets 
as tibbles[20], a tidyverse equivalent to R base dataframes offering better performance 
and visualisation methods.  

The OpenFaceR workflow is designed to accomplish to the transformation from raw 
video material to a tidy dataset. To start the workflow, the user needs the following: 
video files of each person (or each person in each condition), the OpenFace software 
package, R [21] (we also recommend RStudio [22]), and OpenFaceR. It is easiest if the 
videos correspond to the unit of analysis. For example, in a within participants design, 
it is easiest if each condition is captured in a separate video file. However, it is possible 
to extract sections of videos by filtering which is described later. OpenFace is imple-
mented in python [23] and pyTorch [24]. Detailed instructions for Linux and MacOS 
X installation are provided at https://cmusatyalab.github.io/openface/setup/. Instruc-
tions for the installation of the executable file for windows are provided here: 
https://github.com/TadasBaltrusaitis/OpenFace/wiki/Windows-Installation. R can be 
downloaded from the CRAN repository (https://cran.r-project.org/). At present, the 
OpenFaceR toolkit can be downloaded from GitHub at https://github.com/davidecan-
natanuig/, but installation using the devtools R package will be implemented in the near 
future. OpenFaceR requires the following R packages to be installed: tidyverse [19] and 
pracma [25] .Fig. 2, below, shows the six steps of the process, which are extensively 
discussed in the next paragraphs. 



5 

 

Fig. 2 OpenFaceR workflow and an operative example 

 
To facilitate readers’ comprehension of this six-step process, we employ an example 

of a simple psychological experiment investigating the effects of positive and negative 
memories on facial behaviours. In our example, the researcher has collected videos of 
50 students telling one story about a personal success and one story about a personal 
failure in front a camera. The hypothesis is that students will smile more frequently and 
will display more intense facial activity in the success story condition. 
 
4.1 Videos to CSVs using OpenFace 

Prior to using the utility functions in OpenFaceR, users must process their videos using 
OpenFace. To help users produce the appropriate syntax for these commands in Win-
dows, OpenFaceR provides the function get_commands() that outputs the commands 
and parameters for executing OpenFace on a single video or on a set of videos contained 
in a folder. After the user runs get_commands(), the user can copy and paste the output 
of get_commands() at the command line to initiate the analysis or analyses. In the ex-
ample described above, the input_dir is the folder containing the 100 video files record-
ing the students telling their stories. The output_dir will hold the 100 csvs produced by 
OpenFace. The duration of this process is dependent on the user’s computer hardware, 
specifically the GPU, CPU and storage medium (e.g. SSD drive). 

4.2 CSVs to faces objects 

From Step 2, the remaining steps are completed in the R environment. The function 
read_faces_csv() allows the user to import all the csv files contained in a folder into an 
object of class “faces”. Faces is a new bespoken C3 class that inherits from lists, and 



6 

in fact is a list of tibbles, with each tibble representing the output from one video. In 
our example, read_faces_csv will import the 100 csv files saved in the output_dir from 
the previous step and produce a faces object containing 100 tibbles. The time for the 
machine to perform this operation, although depending by the local machine specifica-
tions, can be significant. 

4.3 Filtering 

It is often necessary to filter out certain faces or conditions due to errors in the extraction 
of data, low confidence and so on. The verb filter_faces() allows the user to filter all 
the tibbles of a faces object, with a grammar that echoes the dplyr filter method. A 
typical filter is set up for “success”, the variable indicating whether the extraction of 
data was reliably done for each frame of the video. It is also possible to standardize the 
extraction parameters of the videos by filtering. For example, to standardize the dura-
tion of videos that will be analyzed, one can filter the timestamps, restricting them to 
minimum and maximum values. In our example, the researcher wants to standardize 
the length of videos as time might also influence the production of smiles and face 
activity. They can therefore use filter_face(timestamp < 180) to take only the first 3 
minutes of each video. The result can be stored in a new filtered faces object or by using 
the pipe %>% sign, steps 3 to 6 can be conducted in a series and outputted in a tidy 
dataframe. 

4.4 Features engineering 

OpenFaceR provides two verbs to manipulate the variables of each video and engineer-
ing new features. mutate_faces() echoes dplyr::mutate(). The function trans-
form_faces() meets the need of using transformation functions that take as input a preset 
selection of variables, as opposed to the mutate method which is designed for working 
with user specified variables. The two verbs are accompanied by a growing number of 
functions specifically designed for analyzing faces. In our example the researcher uses 
mutate_faces(smile = ifelse(AU06_c + AU12_c) == 2, 1, 0) to calculate when the ex-
perimental subjects are displaying the two AUs characterizing smiles. Furthermore they 
will use the function transform_faces(“mei”, mei) for calculating the corrected average 
motion of the face region[25], a measure of facial activity. 

4.5 Selection of features 

We have implemented the verb select_faces() to select which features are eventually 
summarised, echoing the select() method from dplyr. As frame, timestamp and success 
are critical meta-variables, select_faces() always returns those in the output. In our ex-
ample the researcher will use select_faces(smile, mei) to select the two variables they 
intend to summarise. 

 



7 

4.6 Tidy dataset consolidation 

 
The function tidy_face() is designed to transform a preprocessed faces object into a tidy 
dataset with one person per row and all the most common statistics. Fig. 3 summarizes 
the function’s architecture. Here, the arrows represent the logical steps, while the boxes 
represent the methods used, including the inputs they take from the main function. First, 
tidy_face() merges all the tibbles of the faces object into one single tibble through the 
merge_faces() method. Second, it calculates the length of each video. Third, it classifies 
the variables into continuous (e.g. distance of the face from the camera) and discrete 
(events, such as blinks and smiles). Fourth, if the events parameter is set as true (default) 
all the discrete variables are summarized. Events can be summarized by simply count-
ing them (“count”), or as events per second (“eps”), events per minute (“epm”) or 
events ratio (“ratio”, the number of frames in which the event happen divided the total 
number of frames). Fifth, if the continuous parameter is set as True (default) all the 
continuous variables are summarized with a choice of methods including mean, me-
dian, standard deviation, minimum and maximum. Finally, all the summarized varia-
bles are merged into a tidy dataset. 

 

Fig. 3 Tidy_face architecture 

In our example, calling tidy_faces(events_sum = “epm”, median = TRUE) will re-
turn one data frame with 100 rows (one per video) with columns for video ID, video 
duration, mean, standard deviation and median of facial activity and the number of 
smiles per minutes. The researchers can then test their hypotheses by running t-tests, a 
repeated measures MANOVA or other statistical approaches available in R or other 
packages. 
 

 



8 

5 Conclusions 

In this paper we have outlined and explained the goal of OpenFaceR and outlined the 
main characteristics of the workflow from raw video data to a dataset that can be used 
for typical statistical analysis in social sciences. OpenFaceR is still at its infancy and 
new functions are been built, providing the most common methods of summarizing 
FNVBs. The final goal of this enterprise is to compile an R package to publish on 
CRAN. Questions, feedback, collaborations, and ideas are welcome.  

References 

1. Jack, R. E., Schyns, P. G.: Toward a social Psychophysics of Face Communication. Annu. 
Rev. Psychol. 68, 269-297 (2017). doi:10.1146/annurev-psych-010416-044242 

2. Hall, J. A., Gunnery, S. D., Andrzejewski, S. A.: Nonverbal Emotion Displays , Communi-
cation Modality , and the Judgment of Personality. J. Res. Pers. 45, 77–83 (2011). 

3. Cohen, D., Beattie, G., Shovelton, H.: Nonverbal indicators of deception: How iconic ges-
tures reveal thoughts that cannot be suppressed. Semiotica 2010, 133–174 (2010). 

4. Grahe, J. E., Bernieri, F. J.: The importance of nonverbal cues in judging rapport. J. Non-
verbal Behav. 23, 253–269 (1999). 

5. Breil, S. M., Osterholz, S., Nestler, S., Back, M. D.: Contributions of Nonverbal Cues to the 
Accurate Judgment of Personality Traits. In: Letzring, T. D., Spain, J. (eds.) The Oxford 
Handbook of Accurate Personality Judgment, pp. 1–54. Oxford University Press, Oxford, 
UK (2019). 

6. Arnold, A. J., Winkielman, P.: The Mimicry Among Us: Intra- and Inter-Personal Mecha-
nisms of Spontaneous Mimicry. J. Nonverbal Behav. 44, 195–212 (2020). 

7. Back, M. D., Nestler, S.: Accuracy of Judging Personality. In: Hall, J. A., Schmid Mast, M., 
West, T. (eds.) The Social Psychology of Perceiving Others Accurately, pp. 98–124. Cam-
bridge University Press, Cambridge, UK (2016). 

8. Funder, D. C., Furr, R. M., Colvin, C. R.: The Riverside Behavioral Q-sort: A Tool for the 
Description of Social Behavior. J. Pers. 68, 451–489 (2000). 

9. Grünberg, M., Mattern, J., Geukes, K., Küfner, A. C. P., Back, M. D.: Assessing Group 
Interactions in Personality Psychology. In: The Cambridge Handbook of Group Interaction 
Analysis 53, 602–611. Cambridge University Press, UK (2019). 

10. Ekman, P., Friesen, W. V.: Facial action coding system: A technique for the measurement 
of facial movement. Consulting Psychologist Press, Berkeley, CA (1978). 

11. Furr, R. M., Funder, D. C.: Behavioral observation. In: Robins, R. W., Fraley, C., Krueger, 
R. F. (eds.) Handbook of Research Methods in Personality Psychology. Guilford Press, NY 
(2009). 

12. Cannata, D., Simon, B., Lepri, B., Back, M. D., O’Hora, D.: Toward an Integrative Approach 
to Nonverbal Personality Detection. (In press). 

13. Baltrušaitis, T., Zadeh, A., Lim, Y. C., Morency, L.P.: OpenFace 2.0: Facial Behavior Anal-
ysis Toolkit. in 2018 13th IEEE International Conference on Automatic Face & Gesture 
Recognition (FG 2018) 59–66 (2018). 

14. Zadeh, A., Lim, Y. C., Baltrušaitis, T., Morency, L. P.: Convolutional experts constrained 
local model for 3D facial landmark detection. Proc. - 2017 IEEE Int. Conf. Comput. Vis. 
Work. ICCVW 2017 2018-Janua, 2519–2528 (2017). 



9 

15. Wood, E. et al. Rendering of Eyes for Eye-Shape Registration and Gaze Estimation Erroll. 
in Proceeding:s of the IEEE International Conference on Computer Vision, 3756–3764 
(2015). 

16. Baltrušaitis, T., Mahmoud, M. Robinson, P.: Cross-dataset learning and person-specific nor-
malisation for automatic Action Unit detection. in 2015 11th IEEE International Conference 
and Workshops on Automatic Face and Gesture Recognition (FG) 1–6 (2015). 

17. Paxton, A., Dale, R.: Frame-differencing methods for measuring bodily synchrony in con-
versation. Behav. Res. Meth., 45(2), 329-343 (2013). 

18. Wickham, H.: Tidy Data. J. Stat. Softw. 59, 1–23 (2014). 
19. Wickham, H. et al.: Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019). 
20. Müller, K., Wickham, H.: Tibble: Simple Data Frames. (2019). 
21. R Core Team: A Language and Environment for Statistical Computing. (2019). 
22. RStudio Team. RStudio: Integrated Development Environment for R. (2020). 
23. Van Rossum, G. & Drake, F. L.: Python 3 Reference Manual. (CreateSpace, 2009). 
24. Pazske, A. et al:. Automatic differentiation in PyTorch. in 31st Conference on Neural Infor-

mation Processing Systems (NIPS 2017) (2017). 
25. Brochers, H. W.: Pracma: Practical Numerical Math Functions. (2017). R package 2.0.7. 
26. Ramseyer, F. T: Motion energy analysis (MEA): A primer on the assessment of motion from 

video. J. Couns. Psychol. 67, 536–549 (2020). 
 

 


