
Machine Learning and Disk-based Methods for
Qualitative Verification of Markov Decision

Processes

Mohammadsadegh Mohagheghi1[0000−0001−8059−3691] and Khayyam
Salehi2[0000−0002−3379−798X]

1 Department of Computer Science, Vali-e-Asr University of Rafsanjan, Rafsanjan,
Iran

2 Department of Computer Science, Shahrekord University, Shahrekord, Iran
mohagheghi@vru.ac.ir

Abstract. State explosion is a well-known challenge of model checking.
In this paper, we propose several approaches to improve the standard
techniques for verifying the qualitative reachability properties of Markov
decision processes. For the first approach, we use two heuristics to re-
duce the total number of iterations of the standard iterative methods.
The second approach uses the secondary hard disks for storing the infor-
mation of a model and uses the main memory for a back-ward technique
on the standard methods. The third approach uses a machine learning
technique to classify the state space of a model to the related classes.
While this approach does not need any memory overhead, its running
time is much less than the running time of the standard approaches and
can be used to cope with the state explosion problem.

Keywords: Probabilistic model checking, Qualitative reachability, Markov
decision processs, Machine learning.

1 Introduction

Probabilistic model checking is a formal verification technique, used to verify the
correctness of computer systems with some probabilistic aspects [1]. Markov de-
cision processes (MDPs) are a well-known formalism for modeling systems that
have both non-deterministic and probabilistic behaviors [11, 9, 18]. The main
challenge of model checking is the state space explosion problem. In this prob-
lem, the number of states of the model grows exponentially in the number of
modules of the underlying system [1, 6]. Several approaches are proposed to cope
with this problem. Symbolic model checking is a well-established approach that
uses a compact data structure to store the information of a model. Binary de-
cision diagram (BDD) is one of the most successful compact data structures
that is widely used in successful model checking tools [6]. Multi-terminal BDD
(MTBDD) has been developed and widely used for verification of probabilistic
systems [17].

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

However, iterative computations required in probabilistic model checking are
computationally expensive where BDD-based data structures are used. As an
alternative, sparse matrix representation is used as an explicit approach that
stores the information of state-values and transition probabilities of the model.
A hybrid approach uses MTBDD for storing the information of transitions and
an explicit array for state-values [17].

In this paper, we focus on the verification of qualitative reachability proper-
ties of MDP models and propose several techniques to improve the performance
of standard iterative algorithms for this class of properties. A qualitative prop-
erty states that the extremal (minimal or maximal) probability of reaching a
set of states is 0 or 1 [1, 9]. Some graph-based computations are needed to com-
pute the related set of states. While BDD-based implementation for computing
qualitative reachability properties in MDPs is available in several states of the
art model checkers [10, 12], their running time is a main drawback of the BDD-
based techniques. To alleviate this drawback, we propose several improvements
for computing qualitative reachability properties of MDPs. The forward and
backward approaches for the standard iterative algorithms for computing quali-
tative reachability properties are compared in [16]. While the backward approach
is much faster than the forward one, its memory overhead is the main obstacle
for this approach. As the first contribution of the paper, we propose several
improvements to the forward approach. The general idea of these approaches
is to reduce the number of iteration of the standard algorithms. We use the
sparse explicit data structure for implementations of these improvements and
consider those models that are small enough to load overall information in the
main memory. Furthermore, we propose two approaches in the case of larger
models that can not be loaded in the main memory. As the second contribution
of the paper, we use a disk-based approach to store the transition probability
information of a model and load its graphical information to the main memory.
In this case, we apply the backward approach to reduce the running time. As
the third contribution, we apply machine learning approaches to compute the
set of states for which the extremal reachability probability is 0 or 1. For each
class of MDP models, we consider several small models for training a classifier
and use it to classify the states of a large model to the related sets. Although
this technique does not guarantee to find the exact sets, our experiments show
promising results with nearly zero error. The main benefit of this approach is its
scalability for very large models.

1.1 Related Works

The first algorithms for qualitatively verifying the reachability properties of
MDP models were proposed in [7]. The time complexity of these algorithms
is linear or quadratic in the size of the model for the minimal or maximal reach-
ability probabilities, respectively [1, 7]. BDD-based and sparse explicit imple-
mentations of these algorithms have been proposed and studied in [17]. The
worst-case time complexity for qualitative verification of maximal reachability
probability is improved in [4]. Decomposing an MDP to its strongly connected

components (SCCs) and computing reachability probabilities of the states of each
SCC has been proposed in [13]. In this case, qualitative verification is performed
implicitly for each SCC. Although this technique presents promising results in
the running time, its focus is on the computations of quantitative reachability
properties and does not guarantee the correctness for the results in the case of
qualitative verification. The backward and forward approaches for the standard
algorithms for qualitative verification of MDPs are studied and compared in
[15]. The backward approach for the sparse explicit data structure is supported
by the STORM model checker [8]. A linear-time heuristic is proposed in [16]
to approximate the qualitative reachability properties in the case of maximal
probabilities. In Section 3, we use this heuristic to reduce the total number of
iterations for the forward approach. Disk-based techniques have been used in [14]
for verification of quantitative properties of very large DTMC and MDP models.
In [3] a learning-based approach is used for statistical model checking of MDPs.
This approach reduces the visited states of a model and is implemented in the
explicit engine of PRISM. In [20], machine learning is employed to approximate
the probabilities of an unknown MDP model. In [19] machine learning is used
to extrapolate the optimal actions of MDP models. Although the proposed ap-
proach in [19] proposes some promising results, it is limited to only a case study
and its generality for other models is not explained.

2 Preliminaries

In this section, the main concepts and definitions of probabilistic model checking
and qualitative verification of reachability properties are reviewed. More details
about the probabilistic model checking and its variant are available in [1, 9, 6]

2.1 Probability Distribution and Markov Decision Process

A probability distribution on a finite set X is defined as a function Pr : X →
[0, 1] where

∑
x∈X Pr(x) = 1. We use D(x) to denote the set of all probability

distributions on X.

Definition 1. Markov Decision Processes. A Markov Decision Process
(MDP) is a tuple M = (S, s0, Act, P,G) where:

– S is a finite set of states.

– s0 ∈ S is the initial state.

– Act is a finite set of actions. For every state s ∈ S, one or more elements of
Act are defined as enabled actions and are shown by Act(s).

– P : S × Act → D(s) is a probabilistic transition function. We use (s, α, s′)
for a transition from the source state s to the destination s′ by the action
α and P (s, α, s′) for the probability of this transitions. For each state s ∈ S
and enabled action α ∈ Act(s) a probability distribution is defined.

– G ⊂ S is the (non-empty) set of goal states.

The size of X is defined as the number of its states and transitions and is shown
by |M |. MDPs are widely used in mathematics, engineering, economics, and man-
agement to model decision making under uncertainty in stochastic environments
[11, 18]. The actions of MDPs are used to model non-deterministic concepts of a
system and its related environment. The probabilistic transition function is used
to model the stochastic and probabilistic behavior of the environment.

In formal verification, a high level language is used for modeling computer
systems. Every model includes one or several modules. Some variables in a
bounded domain are defined for each module. A possible valuation of the vari-
ables in a module presents a state of the module for the system. The PRISM
language is used as the standard modeling language for probabilistic systems
[12]. The interpreter of the model checker constructs the resulting MDP (states,
actions, and transition probabilities) according to the definitions of its modules.
More details about the PRISM language are available in [17, 12].

2.2 Semantic of MDP

For an MDP M and one of its states s ∈ S, the MDP performs a transition in
two steps:

– It non-deterministically selects an enabled action α ∈ Act(s).
– It randomly selects the destination state s′ ∈ S with probability P (s, α, s′).

For any state s ∈ S and enabled action α ∈ Act(s), we use Post(s, α) for the
set of α-successors of s, Post(s) for all its possible successors, and Pre(s) for its
predecessor states:

Post(s, α)
.
= {s′ ∈ S | P (s, α, s′) > 0}, (1)

Post(s)
.
= ∪α∈Act(s)Post(s, α), (2)

Pre(s)
.
= {s′ ∈ S|s ∈ Post(s′)}. (3)

A path in M shows a possible run and is defined as a non-empty (finite or

infinite) sequence of states and actions of the form π = s0
α0→ s1

α1→ ... where
for every i ≥ 0, we have si ∈ S and αi ∈ Act(si) and si+1 ∈ Post(si, αi). We
use Paths to denote the set of all infinite paths of M that start from a state
s ∈ S. For the subset of finite paths of Paths we use FPaths. We also use π(i)
to denote the (i+ 1)− th state in the path π, i.e., π(i) = si. To reason about the
probabilistic behavior of an MDP M, one should resolve its non-deterministic
choices. To do so, a deterministic function is used that maps an action α ∈ Act
to each path of M. This function is called adversary (scheduler or policy) and is
defined as [9, 6] :
Definition 2. (Adversary). An adversary of an MDP M is a function σ :

FPaths → Act that for every finite path π = s0
α0→ s1

α1→ ...
αi−1→ si selects an

enabled action αi ∈ Act(si). An adversary σ is called memory-less if it depends
only on the last state of the path. We use FPathσS for the set of all finite paths

of the form s
σ(s)→ s1...sn−1

σ(sn−1)→ sn that start from s.

In this paper, we only use memory-less adversaries that are sufficient for anal-
ysis of reachability properties. We use AdvM for the set of all (memory-less)
adversaries of M .

2.3 Reachability Probabilities

The main class of properties that are used in the probabilistic model checking of
MDPs includes the reachability properties. The computation of these properties
is usually reduced to the computation of the reachability ones. For MDPs, a
reachability probability is defined as the extremal (minimal or maximal) prob-
ability of reaching a goal state. For an adversary σ ∈ AdvM and a state s ∈ S,
we define reachσs (G) as the set of all finite paths, starting from s ∈ S, ending in
G, and selecting actions due to the adversary σ. Formally we define:

reachσs (G) = {π ∈ FPathσs | last(π) ∈ G, and ∀i < |π| : π(i) /∈ G} (4)

where last(π) is the last state in π. For an adversary σ and a path π ∈ FPathσs ,
a probability measure prσ(π) is defined as the product of probabilities of tran-
sitions between the states of π:

prσ(π) = Πn−1
i=0 P (si, σ(si), si+1) (5)

This probability measure is used to formally define the extremal reachability
probabilities. For any state s ∈ S, the minimal and maximal probability of
reaching G from s over AdvM are denoted by Prmins (♦G) and Prmaxs (♦G) and
are formally defined as:

prmins (♦G) = infσ∈AdvMPr(reach
σ
s (G)), (6)

prmaxs (♦G) = supσ∈AdvMPr(reach
σ
s (G)) (7)

where Pr(reachσs (G)) is used for the total probability of reaching G from s under
the adversary σ and is formally defined:

Pr(reachσs (G)) =
∑

π∈reachσs (G)

Prσ(π) (8)

Graph-based computations are used to detect the set of states of an MDP
for which the extremal reachability probability is exactly 0 or 1. The properties
that relate to the computation of these states are called qualitative reachability
properties. On the other hand, the properties related to the computations of
reachability probabilities for the remaining states are called quantitative reach-
ability properties.

2.4 Qualitative Reachability Properties

The following sets are defined for the extremal qualitative reachability probabil-
ities:
S0
min = {s ∈ S|Prmins (♦G) = 0}, S1

min = {s ∈ S|Prmins (♦G) = 1},
S0
max = {s ∈ S|Prmaxs (♦G) = 0}, S1

max = {s ∈ S|Prmaxs (♦G) = 1}.
The computation of these sets are necessary for qualitative verification of

MDPs. For quantitative reachability probabilities, there is no need to have these
sets but they can improve the precision of the computed values [9]. For the case
of extremal expected rewards (where the maximal or minimal expectation of ac-
cumulated rewards until reaching a goal state is considered), the computations
of the S0

max and S1
max are needed to guarantee the convergence of the com-

puted values. Graph-based iterative methods, which only consider the graphical
structure of the underlying models are used to compute these sets. Iterative nu-
merical methods are used for the computation of quantitative properties [1, 6].
Algorithm. 1 and Algorithm. 2 describe the standard iterative algorithms for
computing the S0

max and S1
max [9].

Algorithm 1 The standard algorithm for computing S0
max

Input: MDP M = (S, s0, Act, P,G)
Output: The set S0

max = {s ∈ S | prmax
s (♦G) = 0}

1: R := G;
2: repeat
3: R′:= R;
4: R := R′ ∪ {s ∈ S | post(s) ∈ R′};
5: until R 6= R′;
6: return S \R;

In each iteration, the Algorithm. 1 adds a state s ∈ S/R to R if at least one
state s′ ∈ Post(s) has been added to R in the previous iteration. The algorithm
continues until the case where no new state is added to R. The last set R is the
fixed point of the computations and contain all states that can reach to at least
one of the goal states. For each s ∈ R we have Prmaxs (♦G) > 0. The remaining
states (S/R) are those that can not reach to any goal states and correspond to
the definition of S0

max.

For Algorithm. 2, two nested loops are used to compute the S1
max set. The

outer loop starts with S and iteratively removes those states s ∈ S for which
Prmaxs (G) < 1. For these outer loop iterations, a sequence of Ri sets are induced
where S = R0 ⊂ R1 ⊂ ... ⊂ Rn = S1

max. To compute each Ri set the inner loop
starts from G (line 6 of Algorithm. 2) and iteratively adds each state s′ ∈ S to
Ri if s′ can reach to one of the goal states with probability one via the states of
Ri−1. The remaining states after reaching the fixed point (the states in S/Rn) do

Algorithm 2 The standard algorithm for computing S1
max

Input: MDP M = (S, s0, Act, P,G)
Output: The set S1

max = {s ∈ S | prmax
s (♦G) = 1}

1: R := S;
2: repeat
3: R′:= R;
4: R:= G;
5: repeat
6: R′′:= R;
7: R := R′′ ∪ {s ∈ S | ∃α ∈ Act(s).(post(s, α) ⊂ R′ ∧ post(s, α) ∩R′′ 6= ∅)};
8: until R 6= R′′;
9: until R 6= R′;

10: return R;

not belong to S1
max. The correctness of the standard algorithms for qualitative

reachability properties are available in [1, 7].
For an MDP M with |S| states, the time complexity of algorithms 1 and 2 are

in O(|M |) and O(|M | · |S|) respectively. In these cases, we suppose that for each
state s ∈ R′ the algorithms can determine any states of Pre(s) in a constant
time [1]. For this purpose, an standard approach is to restore the information of
the model in a backward approach, i.e. for each state s ∈ S the method should
restore the list of states in Pre(s).

The main drawback of the backward approach is its memory overhead which
limits it to small models. On the other hand, the forward implementation of these
algorithms is proposed and used in PRISM [12]. The forward approach need not
any additional memory, but may increase the number of iterations and the run-
ning time of the computations. The memory consumption and running time of
the forward and backward approaches for the standard algorithms of qualita-
tive verification of MDPs are compared in [16]. In this paper, we only consider
the maximal qualitative reachability properties. The standard algorithms for the
minimal case can be found in [1, 9]. All proposed techniques of this paper can
also be applied to the case of minimal reachability properties.

3 The Proposed Methods for Accelerating Qualitative
Verification of MDPs

In this section, we propose three approaches to improve the performance of the
standard algorithms for computing qualitative reachability properties in MDPs.

3.1 Reducing Iterations of the Forward Approaches

We use two heuristic techniques to reduce the number of iterations of the for-
ward implementation of the standard algorithms for qualitative verification of

reachability properties in MDPs. Although the idea of these heuristics has been
used in the previous works for other classes of properties for MDPs, to the best
of our knowledge, they were not applied for computing qualitative reachability
properties.

The first heuristic (called h1 for the remaining parts) is to merge separate
sets of the standard algorithms to one set. One drawback of the algorithms 1
and 2 (which are proposed in [1, 9]) is that they separate the computed sets in
the current iterations from the set of the previous iteration. The Algorithm 1
uses two sets R and R′ while it can keep all added states to one set R. In the
latter case, any added state in each iteration can be used to add (probably) some
other states in the same iteration. In Algorithm 2, the R and R′′ of the inner
loop can be merged to one set.

The second heuristic (called h2) reduces the total number of iterations us-
ing a good state ordering for selecting the remaining states of each algorithm.
Several state ordering techniques have been proposed in the previous works for
quantitative reachability properties [5] or discounted accumulated rewards [21].
In both cases, the proposed methods use the Pre(s) states of each state s. To
avoid the memory overhead of the information of the Pre sets, we use a forward
approach for state ordering. The idea of this approach is to consider the graph of
the model in a forward manner and perform a breadth-first search on the graph.
The visited states of the model (nodes of the related graph) are stored in a list
and the iterative methods use the list in reverse order. The algorithm of this
method is proposed in Algorithm. 3. This algorithm uses an array StateOrder
to store the selected states. In each step, it selects a state from the beginning
of the array and adds its non-selected successor states to the end of the array.
The algorithm terminates when all states of the model have been added to the
StateOrder array. The main advantage of our proposed state ordering is that it
does not need to store any additional information of the model and as a result
it does not have any memory overhead. Note that the backward approach does
not need to compute the state ordering explicitly. It considers states for adding
to the R sets in the right way.

The iterative methods should use the states in the StateOrder array in reverse
order (from end to the beginning of the array). In general, this state ordering can
reduce the number of iterations of the iterative methods because it accelerates
the propagation of the related information between the states of the model. This
state ordering is used in line 4 of Algorithm. 1 and line 7 of Algorithm. 2 where
the algorithms update the R sets in each iteration.

3.2 Disk-based Backward Technique for Qualitative Verification

To compensate the memory overhead of the backward approach, the secondary
storage can be used. The idea of this approach is shown in Algorithm. 4. It
first uses the MTBDD-based approach to construct the model and directly store
the information of the model to the hard disk. Furthermore, it computes the
information of the backward graph and loads them into the main memory. This
structure does not include the information of transition probabilities and is used

Algorithm 3 Forward method for state ordering

Input: MDP M = (S, s0, Act, P,G)
Output: A state ordering array Stateorder[]

1: l := 0;
2: h := 1;
3: Stateorder[l] := s0;
4: while l < h do
5: s := Stateprder[l];
6: for all si ∈ post(s) do
7: if si ∈ Stateorder then
8: Stateorder[h] := si;
9: h := h+ 1;

10: end if
11: end for
12: end while
13: return ;

to compute the S0
max and S1

max sets. Finally, the information of the remaining
states (S/(S0

max∪S1
max)) will be loaded into the main memory if they are needed

for quantitative verification. The main advantage of this approach is avoiding
any memory overhead while it uses the backward approach for qualitative ver-
ification. However, this approach applied only to those models for which the
information of the backward graph can be loaded into the main memory.

Algorithm 4 The Disk-base Approach

Input: An MTBDD representation for an MDP M = (S, s0, Act, P,G)
Output:The sets S1

max and S0
max

1: Store the information of M from MTBDD to the hard disk;
2: Compute the backward graph of M and load it to the main memory;
3: Apply the backward technique for computing the sets S1

max and S0
max;

4: Free the memory of the backward graph;
5: Load the information of M for the remaining states to the main memory;

3.3 Using Machine Learning for Qualification Verification of MDPs

Machine learning plays an important role in nowadays life. Classification is a act
of categorizing a given set of data into classes. In machine learning, classifica-
tion is supervised learning in which it infers from the data given to it and makes
new observations or classifications based on the pattern extracted from training
data [2]. There are many algorithms used in classifying new data. Some types of

classification in machine learning can be summarized as Naive Bayes, Stochastic
Gradient Descent, K-Nearest Neighbors, Decision Tree, Random Forest, Artifi-
cial Neural Network, Support Vector Machine, and so on.

As the main contribution of this paper, we propose a new approach which
uses machine learning techniques to verify the qualitative reachability properties
of MDPs. Our technique uses the fact that some parameters define the bound
of some variable domains of MDP modules. The size of MDPs for a high-level
definition changes according to the values of these parameters. In Fig.1 the initial
definition of the Consensus model is proposed. This model includes four modules
(N = 4). Each module contains two variables (pc1 and coin1). A counter is
defined as a global variable. The model has a parameter (K) which determines
the range of the counter variable. According to the values of this parameter, we
can have some models with different size.

Fig. 1. A high-level definition of an MDP model in PRISM environment

In general and for each class of models, we can consider small values for its
parameters and have some small MDPs. A standard method can compute the
qualitative reachability properties of these small models. As a result, the set S
of state of a model are classified into the S0

max, S1
max, and S?

max = S/(S0
max

∪ S1
max) sets. We use the small models for training a classifier. Furthermore,

it is used to classify the state space S of a large model to its S0
max, S1

max,
and S?

max sets. We consider the variables and parameters of each model as its
properties and its states as the samples for training. Also, for each variable with
parametric domain (like the counter variable in Fig.1), we consider a property as
the difference between its domain bound and its values. This additional property
helps the classifier to improve its performance.

4 Experimental Results

To show the feasibility and applicability of the proposed approaches, we consider
several test case models. These test cases are selected from the PRISM standard
case studies and are widely used in the literature [9]. For the forward approach,
we implement our improvements in the PRISM model checker. We use its sparse
engine, which is implemented in C. We use a machine with a Core-i7 Intel pro-
cessor with 8GB of RAM. In Table 1, the experiments for computing S0

min and
S0
max sets are demonstrated. The first column of the table presents the model’s

name. For Consensus, Zeroconf, and Wlan classes, we consider a maximal reach-
ability property and for the Firewire class, we consider a minimal reachability
property. More information about these classes are available in [12]. The MDP
size of each model is the number of its states and transitions.

We consider the running time and the number of iterations of Algorithm. 1
for the MTBDD-based method as is used in PRISM. We also demonstrate the
running time of the sparse implementation of this algorithm. For our proposed
heuristics, we report the running time and the number of iterations of the forward
method with these heuristics. The running time in all tables are in seconds.

Table 1. Case study models, number of iterations and running times for computing
S0
min and S0

max sets

Model Parameter MDP MTBDD sparse forward with h1 forward with h2
(parameters) values Size time iters time time iters time iters

6 , 18 604K 2.25 979 1.1 .47 511 .01 7
Consensus 8 , 18 2378K 10.9 1305 6.3 4.3 681 .1 8

N,K 10 , 10 4725K 14.8 911 7.5 7.1 477 .3 9

10 9787K 6 140 3.7 1.6 98 2.14 12
Zeroconf 14 14.4M 7.5 156 3.9 2.14 110 4.9 12

K 18 17.8M 10.1 172 8.6 122 4.9 12 4.4

e 4,2500 7052K 18.4 207 .7 .26 76 .8 65
Wlan 5, 1000 8905K 10.4 399 1.24 .44 140 1.39 129

(K,ttm) 6, 200 18264K 17 783 2.2 .73 268 2 257

firewire 12,600 28.35M 30 373 13.6 12.4 368 3.1 5
(delay, 30,400 115M 161 409 52.7 48 404 9.7 4

deadline) 30,600 227.7M 345 409 110.3 100.5 404 25.3 4

In Table. 2, we show the running time for the standard iterative method and
our heuristics for computing the S1

min and S1
max sets. For Disk-based technique,

the running times include the time for writing a model in the secondary disk,
constructing the backward graph, computing qualitative reachability properties
using the backward graph, and finally loading the information of the remaining
part of each model (for the S? sets) to the main memory. For the case of S0 sets,
all running times are less than 1 second and we do not separate their running
times.

Table 2. Case study models, number of iterations and running times for computing
S1
min and S1

max sets

Model Parameter MTBDD sparse forward with h1 forward with h2 Disk-based
(parameters) values time iters time time iters time iters time

6, 18 323 94.6K 141 85 56.5K 2.6 1118 7.2
Consensus 8, 18 1513 169K 1934 1359 101K 35.3 1788 17.7

(N,K) 10, 10 1738 88K 1767 1551 52.5K 113 1486 24

10 121 2357 104 30.1 1200 66.1 213 4.9
Zeroconf 14 184.3 2525 74.9 36.6 1385 52.4 209 5.1

(K) 18 128.4 2665 97.9 58.6 1481 107.8 192 6.5

s 4 , 2500 58.3 414 9.2 3.3 226 3.1 65 2.2
Wlan 5, 1000 30.8 798 17.2 5.5 418 4.1 206 2.7

(K,ttm) 6, 200 39.1 1566 29.2 9.1 802 8 256 2.9

firewire 12,600 33 261 11.2 9.7 255 .96 4 6.3
(delay, 30,400 74.2 169 14.3 11.4 156 2.1 3 17.9

deadline) 30,600 189 253 54.6 51.5 244 5.2 4 31.4

The results of Table 1 and 2 show that our proposed heuristics for the for-
ward implementation of the standard algorithms improves their performance for
computing qualitative reachability properties of MDPs. The best results are for
the Consensus and firewire cases. For the wlan and zeroconf models, our heuris-
tics reduce the number of iterations by one or two orders of magnitude. In most
cases, the Disk-based method outperforms the others. Note that this approach is
more useful for large models, where the information of a model cannot be loaded
to the main memory.

To apply machine learning for computing qualitative reachability properties
of MDPs, we use Scikit-learn package of Python. For each class of models, we
consider two or three small models for training and use decision tree classifier of
Python. For each training MDP samples, PRISM is used to separate the state
to the S1

max, S0
max and S?

max classes. We use the exportstates PRISM command
to store the state-property information of states to related files. The inputs
to the training phase are the state-separed and state-property files. To test the
precision of this technique, we consider several test cases for each class of models.
The results of this technique are proposed in Table. 3.

To compare the running time of the proposed methods for computing the
S1
max sets we consider several models of the Consensus example with N=6 and

different values for the K parameter in range [20,100]. The results are proposed
in Fig. 2 where the horizontal axix shows the value of K and the vertical axis
shows the running time in logarithmic mode. The results show that our proposed
heuristics reduce the running times by at leat two orders of magnitude.

5 Conclusion and future work

In this paper, we propose several techniques to improve the performance of the
iterative computations for the qualitative reachability properties of MDPs. We

Table 3. Experimental results of the proposed machine learning approach for comput-
ing S0

max and S1
max sets

Model Param Sample Reading Training Test test Precision False
(parameters) value parameters samples time time parameter time iters detects

Consensus 6 K=3,4 .9 .1 K = 50 82 100% 2
N 8 K=3,4 2.4 .27 K = 35 17.1 100% 2

Zeroconf - K=2,3 6.2 .62 K = 14 2.14 99.8% 26,070

Wlan 5 ttm=50,100 43 5.9 900 18.7 100% 0
(K) 6 ttm=50,100 89.5 11.3 600 26.5 100% 0

firewire 12 ddl=200,250 7.2 2.2 ddl=800 57 100% 0
(delay) 30 ddl=200,250 48.4 11 ddl=600 145.8 100% 0

Fig. 2. The running times for computing S1
max sets for the Consensus case studies.

first propose two heuristics for the forward implementation of the standard algo-
rithms. The running times of our experiments show promising results for these
heuristics. Because of the memory limitation of the explicit methods, we propose
a disk-based method to save memory for graph-based computations. As the main
contribution, we propose a method using machine learning to classify the state
space of a model to the related classes. The experiments show promising results
for this technique. For future works, we plan to extend our machine learning
method to other problems of probabilistic model checking. As an example, this
technique can be used to approximate the optimal policy of a large MDP model,
which can be used for improving the current techniques for statistical model
checking.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

2. Bishop, C.M.: Pattern recognition and machine learning. springer (2006)

3. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Křet́ınskỳ, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: International Symposium on Automated Technology for Verification
and Analysis. pp. 98–114. Springer (2014)

4. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete
Algorithms. pp. 1318–1336. SIAM (2011)

5. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model
checking markov decision processes. In: 2008 Fifth International Conference on
Quantitative Evaluation of Systems. pp. 45–54. IEEE (2008)

6. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of model checking,
vol. 10. Springer (2018)

7. De Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University (1997)

8. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: A modern
probabilistic model checker. In: International Conference on Computer Aided Ver-
ification. pp. 592–600. Springer (2017)

9. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: International School on Formal Methods for the
Design of Computer, Communication and Software Systems. pp. 53–113. Springer
(2011)

10. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: IscasMC: a web-based
probabilistic model checker. In: International Symposium on Formal Methods. pp.
312–317. Springer (2014)

11. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 31–45
(2016)

12. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: International conference on computer aided verification. pp.
585–591. Springer Berlin Heidelberg (2011)

13. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for
markov decision processes. In: 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN). pp. 359–370. IEEE (2011)

14. Mehmood, R.: Disk-based techniques for efficient solution of large Markov chains.
Ph.D. thesis, University of Birmingham Birmingham (2004)

15. Mohagheghi, M.: Improving pre-computation for verification of markov decision
processes. International Journal of New Technologies in Science and Engineering
5(5) (2018)

16. Mohagheghi, M., Salehi, K.: Improving graph-based methods for computing qual-
itative properties of markov decision processes. Indonesian Journal of Electrical
Engineering and Computer Science 17(3), 1571–1578 (2020)

17. Parker, D.A.: Implementation of symbolic model checking for probabilistic systems.
Ph.D. thesis, University of Birmingham (2003)

18. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons (2014)

19. Rataj, A., Woźna-Szcześniak, B.: Extrapolation of an optimal policy using sta-
tistical probabilistic model checking. Fundamenta Informaticae 157(4), 443–461
(2018)

20. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L∗-based
learning of markov decision processes. In: International Symposium on Formal
Methods. pp. 651–669. Springer (2019)

21. Wingate, D., Seppi, K.D.: Prioritization methods for accelerating mdp solvers.
Journal of Machine Learning Research 6(May), 851–881 (2005)

