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Abstract. The results of studies of the properties of random permutations car-

ried out with the participation of the authors are generalized. It is shown that 

random substitutions overwhelmingly have good cryptographic, and in particu-

lar, algebraic properties. The prospects of using random S-blocks to build block 

symmetric ciphers with improved dynamic rates of arrival to random substitu-

tion are substantiated. A refined model of random substitution and the corre-

sponding criteria are proposed, with the help of which one can verify the suita-

bility of substitutions generated randomly for use in modern cipher designs. It is 

a check, since with a very high probability the checked substitutions will be 

suitable.  
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1 Introduction 

In accordance with the new methodology for assessing the strength of symmetric 

block ciphers, developed in [1], BSC strength indicators are independent of S-blocks 

included in the cipher cyclic functions. Substitution transformations (S-blocks) affect 

only the number of cycles the ciphers arrive at the state of random substitution, and 

then only within, as a rule, one cycle. A huge number of publications devoted to the 

construction of S-blocks with high cryptographic performance are aimed at practically 

winning one cycle in the encryption procedure and increasing other cryptographic 

performance of ciphers according to the authors' assumptions. In particular, they 

strive to apply S-blocks with the smallest possible values of differential and linear 

probabilities (random S-blocks have increased values of differential and linear proba-

bilities and therefore require an additional cycle to arrive at a random substitution). 

It turns out that the used constructions of cycle functions provide activation on the 

first cycles of far from the whole set of S-blocks. 

We also note that in accordance with the new methodology for assessing the 

strength of block symmetric ciphers, all ciphers after several initial encryption cycles, 
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regardless of the S-blocks used, become random substitutions: For example, Rijndael-

128 comes to the state of random substitution for four cycle [2]. 

A natural question arises. And why all this colossal work on the selection and con-

struction of “optimal” S-blocks, if as a result, in all cases, regardless of the S-blocks 

used, the same result is obtained (the same values of the maximums of differential and 

linear probabilities are obtained)? 

Thus, it turns out that the price of using S-blocks with special properties is actual-

ly reduced only to reducing the number of cycles of arrival of ciphers to the state of 

random substitution (for one cycle). Other special indicators are also leveled when 

ciphers acquire random substitution properties. 

So the idea came up to build an encryption transformation (cipher) with more effi-

cient cyclic functions, allowing increasing the number of activated S-blocks in the 

first cycles in comparison with traditional methods and thereby switch to using ran-

dom S-blocks in ciphers without any loss of strength any significant selection. In fact, 

we are talking about using S-blocks directly from the output of the random permuta-

tion generator. 

This idea was implemented in the SHUP cipher (our work [3]). The loop function 

in this cipher is constructed using controlled settings. In this case, the substitution of 

the cyclic function is connected in a chain, so that the sum of two current segments of 

the input (folded with the corresponding segment of the cyclic key) and the output of 

the previous S-block is fed to the input of the current S-block, and the output of the 

last S-block modulo two with the output of the first or all previous S-blocks. 

As a result, the definition of the very concept of a random S-block becomes rele-

vant and evaluations of its cryptographic performance. 

2 Formulation of the problem 

In our works, we have long turned to the study and discussion of approaches to the 

design of S-blocks with high cryptographic indicators and ourselves conducted 

searches and studies in this direction. Note that to date; we can already count a huge 

number of publications devoted to this problem [4-6] and many others. There is simp-

ly not enough space to mark them. An approach based on algebraic methods for de-

scribing such constructions can be considered the most developed. 

The analysis performed in our work [7-9] and others showed that, despite the beau-

tiful mathematical apparatus that allows us to carry out a rigorous justification of a 

number of properties of the constructed S-blocks, the proposed approaches either give 

solutions oriented to certain classes of ciphers (for example, DES-like), often not 

without weaknesses, or turn out to be quite difficult for practical implementation, not 

to mention their inherent limitations. For example, the method works only for odd-

degree S-blocks or for asymmetric S-blocks. Moreover, it is practically impossible to 

build S-blocks with simultaneously high all the indicators noted above. For a number 

of them, the constructed S-blocks are far from optimal. 

In our works (here you can point to a work of a generalizing nature [7,9]) at the 

time, a different approach to the construction (selection) of suitable S-blocks was jus-



tified, based on the selection of random permutations using a system of criteria. In our 

subsequent studies of the properties of random permutations [10-11, etc.], this ap-

proach was further developed. 

In this work, the task is to summarize the available information on random permu-

tations and justify the prospects of their use in constructing symmetric block ciphers 

with improved dynamic rates of arrival at random permutations. 

3 Literature review 

It should be noted that there are practically no foreign publications devoted directly to 

random S-blocks in Google. There are only publications with our participation [7-9] 

and work with references to the use of random permutations in ciphers. The bulk of 

the work is the work devoted to the methods of forming S-block structures with im-

proved cryptographic indicators [12-14] and many others. In work [15], a large num-

ber of publications in this direction were analyzed in sufficient detail. In the cited 

works, new techniques for the formation (construction) of S-blocks with improved 

cryptographic indicators are considered, and there are even works on the selection of 

random substitutions using a system of criteria close to our proposals. Only all the 

same, in these works we are talking about the selection of permutations according to 

strict criteria. And we will be talking about checking (control) substitutions from the 

output of the random substitution generator, and our criteria will be significantly 

milder than the proposed ones. Returning to the results of the analysis of the results of 

the noted works, we will again use the materials of [7], which fix our position at the 

time of their implementation. They come down to the following: 

1. The current approaches to the construction of S-blocks for symmetric block ci-

phers are primarily aimed at ensuring minimum values of the differential DPmax and 

linear probabilities LPmax. And in this direction significant success has been achieved. 

S-block constructions with limit and theoretically minimum possible values of DPmax 

and LPmax close to them were implemented. 

2. There is a thoroughly developed apparatus for evaluating cryptographic indica-

tors (properties) of Boolean functions, with the help of which you can describe the 

transformations carried out by S-blocks. The approaches and rules by which the re-

sulting cryptographic indicators of individual Boolean functions included in 

S-block can be converted into indicators of the entire transformation (S-block) as a 

whole. Although very much attention is paid in the literature to the development and 

application of Boolean functions of the mathematical apparatus of the mathematical 

apparatus of S-blocks for evaluating cryptographic indicators, nevertheless, this alge-

braic approach for S-block constructions actually used in ciphers has not become de-

cisive. Moreover, the S-block constructions used in modern ciphers have far from the 

best in some indicators, and in some of them even low cryptographic properties of the 

Boolean functions included in them. Therefore, the main (main) indicators are actual-

ly optimized, to the detriment of the secondary ones. These basic indicators include 

the values of the maxima of the differentials and displacements (-uniformity and 



non-linearity), as well as the values of the algebraic degree and, more recently, the 

values of algebraic immunity. 

If the values of the maxima of the differentials and displacements (-uniformity 

and non-linearity) can be determined without the apparatus of Boolean functions, then 

the last two indicators, algebraic degree and algebraic immunity, already require the 

use of the mathematical apparatus of Boolean functions. 

3. The results obtained indicate that “good S-blocks (S-blocks with high crypto-

graphic indicators), at least with respect to the main group of the marked criteria), as a 

rule, can be obtained by exhaustive search methods for S-blocks of degree 256 (byte 

S-blocks) is very difficult (requires significant computing resources). Therefore, all 

real developments to build large (byte) S-blocks were initially based on methods that 

could most likely be considered regular. So in our works of that time it is noted that 

the use of separate sentences available in publications, in particular, proposals of K. 

Nyberg [13], looks more progressive for building S-blocks. They found practical ap-

plication in designs 

S-blocks used to create many modern block symmetric ciphers (Rijndael, Camellia, 

ADE, Labyrinth and some others). In the IDEA NXT cipher, we took the path of 

building byte S-blocks based on the use of a three-byte composition -blocks, followed 

by the selection of the best candidate and the like. The elapsed time has made adjust-

ments to the current state of the issue. The time has shown that random S-blocks real-

ly deserve more serious attention, as was noted above. 

It is worth recalling here that when developing the new standard of Ukraine for the 

Kalina cipher, the developers have already taken the path of using S-blocks selected 

from randomly generated permutations with higher non-linearity indicators compared 

to Rijndael ciphers. 

We supplement these conclusions with one more. 

4. The experiments performed show that almost all S-blocks used in modern ci-

phers do not fit into the frames of S-blocks of a random type. 

Our interest is focused on using directly randomly generated S-blocks in block 

symmetric ciphers without any restrictions. The developed approach is based on ideas 

from [1], devoted to the development of a new methodology for assessing the re-

sistance of block symmetric ciphers to attacks of differential and linear cryptanalysis. 

The main result of research in this direction was the substantiation of the position 

that the resistance indicators of modern block symmetric ciphers to attacks of differ-

ential and linear cryptanalysis do not depend on the properties of the used S-blocks 

(with the exception of their degenerate structures). S-block indices influence even 

within a single cycle the minimum number of cycles the cipher arrives at the state of 

random substitution (to the stationary values of the maximums of the differential and 

linear probabilities of the cipher). 

The central point of the developed approach is the construction of new construc-

tions of cyclic functions of block symmetric ciphers, which allow increasing the num-

ber of activated S-blocks in the first encryption cycles [3] and others. It is the increase 

in the number of activated S-blocks in the first cycles that allow substitution struc-

tures of a random type to be used in ciphers without decreasing the strength. In this 

work, it is supposed to describe the main stages of the birth of the methodology for 



using random S-blocks when constructing ciphers and defining the concept of random 

substitution. 

4. A brief overview of our results. 

This section contains materials on the justification (study) of the properties of random 

permutations and methods (criteria) for their selection, obtained with the participation 

of the authors of this work. Materials are combined under the general idea of forming 

a random substitution model. 

The following are extracts from our work. 

We first recall the results of studying the laws of the distribution of inversions, in-

creases and cycles of random permutations of degree n ≥ 4 and reduced to 16-bit in-

puts of models of modern ciphers (our works [16]). It was found that they are distrib-

uted in accordance with the theory of random permutations according to the normal 

laws of probability distribution with corresponding numerical characteristics deter-

mined by the degrees of permutations [17]. 

On the basis of these results, the concept of random permutation was introduced, 

which was associated with checking the correspondence of combinatorial exponents 

of substitutions (the number of inversions, increases, and cycles) with the numerical 

characteristics of the asymptotic distribution laws of these exponents for random per-

mutations [7,9,18]. 

Next, the distribution laws of differential and linear exponents of permutation 

transformations [19,20] were established with a refinement [21]. We recall here the 

theorems proved in [20-21] that determine the distribution laws of transitions XOR of 

random permutation tables and the distribution laws of displacements of linear ap-

proximation tables of random permutations. From the work [19]: 

Statement 1. For any non-zero fixed X , 2
mY Z  , assuming that the substitution 
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Here, X and Y − are the input and output differences of the encryption conver-

sion. 



In [22] it is shown that formulas (1) and (2) correspond to an approximation in the 

form of a Poisson law of probability distribution of XOR transitions of tables of ran-

dom substitutions: 

 ( ) 1/2 1
Pr ( , ) 2

2 !k
X Y k e

k


−   = = 


. 

From our work [20]: 

Theorem 1: Let ( , )    be a random number that corresponds to the value of the 

cells of the linear approximation table of the substitution when the substitution π is 

chosen equally from the set 2
nS  and the mask ,   nonzero. Then ( , )    for whole 

values of k , 10 2nk −   it takes only even values and the probability ( , ) 2k   =  

determined by the expression 
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In the robot [23], it is shown that formulas (3) are approximated by the normal law, 

which can be considered Theorem 3 of the robots. Here you will go for number 2. 

Theorem 2: For a random n-bit substitution with n ≥ 5 the imbalance Imb (v, u) of 

the approximation is a random value with a distribution that can be approximated as 

 Pr(Imb(v, u) = z) ≈ 
( 2)/2
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for z even and zero for z odd 

If we substitute z = 2x in (4), then it can be rewritten as 

 Pr(Imb(v, u) = 2x) ≈
( 4)/22 n

x
Z
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that is, the imbalance Imb(v, u) = z at z = 2k corresponds to the value of the cell in the 

LAT table k2)( =  

On the basis of these results, a model of random substitution was substantiated and 

studied in the form of a set of criteria for the proximity of combinatorial indices, as 

well as the laws of the distribution of transitions of differential and displacement ta-

bles of linear approximations of substitutions to the standard ones, which were con-

sidered by the corresponding laws of random substitutions [24]. 

Much attention has been paid to the use of algebraic methods for describing substi-

tution transformations using the Boolean mathematical apparatus. In particular, the 

algebraic indices of the S-blocks of most known ciphers were determined. 

As a result, was concluded that, although in the modern literature, much attention 

is paid to the development and application for the estimation of cryptographic indices 

of S-blocks of algebraic methods based on the mathematical apparatus of Boolean 



functions, nevertheless, this algebraic the approach for many known S-block designs 

has not been decisive. Moreover, the S-block constructions used in modern ciphers do 

not have much better, but rather a number of indicators and rather low cryptographic 

properties of Boolean functions included in them. The real designs of S-blocks are 

built, rather, on the basis of indicators that can be determined (calculated) without the 

involvement of the Boolean function apparatus (although there is a direct relationship 

of some of these indicators with the properties of Boolean functions of S-blocks). 

It turned out that the use of substitutions selected using the developed randomness 

criteria did not lead to any noticeable advantages. 

Finally, we note the work on the construction of laws for the distribution of maxi-

ma of XOR table transitions and offsets of linear approximation tables [25,26]. For 

the byte substitutions, the corresponding extremal log-Weibull distributions were con-

structed. Using them, the values of the maxima of the differential tables and the off-

sets of the linear approximations of the byte random substitutions were substantiated. 

For differential tables of byte substitutions, the values of the maxima that occur most 

times are 8-10, and for the linear approximation tables it is 32-34. 

However, it was not possible to find any particular advantages of substitutions se-

lected with even rigid criteria used. By their cryptographic index, which are deter-

mined by known methods, including algebraic, they are not particularly distinguished 

against the background of other known structures. Therefore, all considered criteria 

for the selection of random substitutions in the submitted version had to be aban-

doned. 

We then conclude that the Boolean function of the Boolean function is poor in rela-

tion to the use of S-blocks in modern ciphers. 

Today, however, it can be noted that S-blocks of the Kalina-2 cipher, and some 

other modern ciphers, as the developers themselves noted, were chosen from random 

substitutions. S-blocks with high nonlinearity (125) and high algebraic immunity of 3 

[27] have been sought, that is, the use of the Boolean algebra mathematical apparatus 

and is now receiving much attention when evaluating the cryptographic indices of  

S-blocks. 

 

5. Algebraic indicators of random S-blocks. 

 

However, we have chosen another way to choose S-blocks to use in ciphers. So, in the 

end, we move to a more refined mathematical model of random substitution, built on 

the properties of a sample of random substitutions (this model incorporates the found 

differential and linear laws of the distribution of transitions of the corresponding sub-

stitution tables) and constructed the extremal distributions of the XOR tables of tran-

sitions. 

Therefore, attention is further focused on the use of random substitutions in the ci-

phers, that is, directly S-blocks from the output of the random substitution generator. 

It will be shown that they are likely to have good cryptographic performance from the 

list above. 

The studies performed so far [3] have indeed proved that the deterioration of the 

differential and linear parameters of the S-blocks used in the ciphers can be compen-



sated by the increase in the minimum number of activated S-blocks on their first cy-

cles. In particular, the design of a cipher is proposed, whose cycle function is built 

using large-scale controlled S-blocks, called SL transforms, which allow activating 

almost all S-blocks of the second and subsequent cycles [3]. It is shown that due to 

this, the cipher and with random S-blocks becomes a random substitution on the dif-

ferential and linear indices on the third cycle (128-bit Rijndael becomes a random 

substitution on the differential and linear indices on the fourth cycle [2]). 

However, some experts object to the use of random S-blocks in ciphers; they be-

lieve that accidentally taken S-blocks will not guarantee high resistance to algebraic 

cryptanalysis methods, and therefore in the cryptographic literature the task of finding 

S-blocks with high cryptographic indicators are allocated in a separate direction for 

improving the ciphers. The question arises whether the indicators of algebraic immun-

ity and algebraic degree of random S-blocks to the conditions for ensuring high rates 

of stability of modern ciphers? Is there a correlation between these indicators? 

Some answers to our questions were found in the publication of the journal "Dis-

crete Mathematics" [28]. From the article cited in this edition, А.А. Horodilov, dedi-

cated to the presentation of Boolean properties and their relation to the methods of 

cryptanalysis, we want to highlight a few theorems (results), which are given below. 

A mess about the non-linear functionality of functions. In the designations of ro-

bots [28] Theorem 6. Here you will go after number 3. 

Theorem 3. (nonlinearity of the random function Nf). There is a constant c < 1 

such that for almost all Boolean functions f of n variables, the condition holds 
1 /2 12 2 2n n

fN c n− − − . 

For example, for n = 8,  с < 0.7 is obtained  128 32fN  − . The most probable 

nonlinearity of a random byte S block obtained in experiments is 128 − 34. 

It is known that the nonlinearity of an arbitrary balanced function is the case, find-

ing specific functions with high nonlinearity is a nontrivial problem. Use some kind 

of time-bound very complex methods o 1 /2 12 2n n
fN − − − − 2. For n = 8 it turns out 

118fN  , but it is noted in [28], as is often f constructing such functions (methods of 

Sebery, K. Nyberg and others [1]). Today, we are following the path of filtering (se-

lecting) random S-blocks using sufficiently large computing resources. 

Our position is to find out that we want to realize realizable boundary values of the 

linear (that differentiation) levels of the LAT table, and also the XOR table does not 

require (recall that nonlinearity is uniquely related to the maximum offset value of the 

LAT table). Numerous experiments have shown that when stocked among the activat-

ed S-blocks in the first cycles, you can use randomly generated S-blocks in ciphers, 

even without checking their properties. A non-trivial task becomes trivial. As for oth-

er indicators of the main group of criteria, they remain at an acceptable level for ran-

dom S-blocks, judging by the results of experiments. As for the other indicators of the 

main group of criteria, they remain at an acceptable level according to the results of 

the experiments for random S-blocks. 

Let us focus, for example, on indicators of algebraic immunity of chance S-blocks. 

The cited work provides such well-known facts. 



It is noted that the algebraic degree deg f  is a natural upper bound for the 

algebraic immunity of the AI Boolean function f In addition, the following upper 

bound of algebraic immunity depends on the number of variables n of the Boolean 

function. This is Theorem 11 in [28]. Here she will go to number 4. 

Theorem 4. (top estimate for AI). For an arbitrary Boolean function f from n vari-

ables, the condition AI( ) / 2f n    , where де k   − is an integer part of the number 

k is satisfied. 

It is known that this estimate is achievable. For n = 8, AI(f)  4 is obtained. 

Although there are examples of functions with maximum algebraic immunity, it is 

known that this class of functions is very small. However, an interesting fact is that 

the algebraic immunity of arbitrary (random) function is quite high. 

We also give Theorem 13 from [28]. Here she will go to number 5. 

Theorem 5. (AI of a random function). For any α < 1 and for almost all Boolean 

functions of n variables, the condition is satisfied 

AI( )> / 2 / 2 ln( / (2 ln 2))f n n n −  . 

For n = 8, α = 0.7, AI(f) > 4−2,9 = 1,1 is obtained. 

Theorem 14 of [28] gives a known exact lower estimate of the nonlinearity of a 

function due to its algebraic immunity. Here she will go to number 6. 

Theorem 6. (link AI and Nf). The Boolean function f of n variables is a fair esti-

mate. 
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For n = 8, it turns out 58fN  . 

Unfortunately, the results appear to be very blurred, but we could not find anything 

more specific. 

In [28], a very important conclusion is drawn for us: the theoretical results show 

that in a random Boolean function, most cryptographic parameters are close to opti-

mal ones. 

6. Experiments 

Above it is established that the distribution of even differences of random substitu-

tions obeys Poisson law, and the displacements of the linear approximation tables are 

normal. Here are the results of the estimation of the randomness indices of the byte  

S-blocks from the output of the random permutation generator obtained by calculation 

and experimentally. 

Table 1 shows the distribution of maximum values for the 256 bit substitutions cal-

culated using the theoretical law of the distribution of the values of the XOR maxima 

of the sampling differences obtained in our work [3], and the results of the experi-

ment.  



Table 1. The distribution of the values of the maximums of the sample XOR differences of the 

substitutions of degree 28 obtained by calculation and experimentally 

k* (X1, X2) 

Pr(k*) Estimated value  

Experiment 

Estimated value  

Experiment 

8 0,00004 0,01 0 

10 (10,8) 0,368 − 0,00004 = 0,368 94 92 

12 (12,10) 0,905 − 0,368 = 0,537 137 147 

14 (14, 12) 0,9901 − 0,905 = 0,008 22 14 

16 (16,14) 0,9967 − 0,9901 = 0,0066 1,71 3 

18 (18,16) 0,9999− 0,9967 = 0,0032 0,819 0 

 

From the presented results it follows that theoretical and experimental results prac-

tically repeat each other. This means that for the distribution of differentials of byte 

substitutions the Poisson probability distribution law, which was used in constructing 

the integral law of distribution of maxima for these substitutions, is indeed fulfilled. 

Table 2, also borrowed from our work [3], presents the law of the distribution of 

the values of the maximum displacements for the plurality of byte substitutions ob-

tained by calculation and experimentally. 

It can be seen that in this case the results of the experiments practically repeat the 

results of the calculations. Note here that experiments in both the first and the second 

case were performed on substitutions taken from the output of the random permuta-

tion generator without any filtering. 

Therefore, it can be assured that the values of the XOR maxima of the differences 

for the differential byte substitution tables are in most cases 8-10, and the values of 

the displacements maximums of the linear approximation tables are 32-34. 

Moreover, according to the results of the substitution results with XOR maxima, 

differences of less than 12 are 99% (less than 10 are 93%). 

Table 2. The distribution of values of the maximums of displacements for the set of byte sub-

stitutions, calculated 28 obtained by calculation and by experiment 

k* (X1, X2) Pr(k*) Estimated value Experiment 

26 3.41 10-7 0 0 

28 (28,26) 5,6 10-4− 3,4110-7 = 5,6 10-4 0,14 0 

30 (30,28) 0,064 − 5,6 10-4 = 0,0638 16,3328 10 

32 (32,30) 0,368−0,064 = 0,304 77,824 86 

34 (34,32) 0,692 − 0,304 = 0,388 99,328 98 

36 (36,34) 0,874 − 0,692 = 0,181 46,336 46 

38(38,36) 0,9518 − 0,874 = 0,078 19,968 10 

40 (40,38) 0,9821 − 0,9518 = 0,03 7,68 6 

42 (42,40) 0,9933 − 0,9821 = 0,011 2,816 0 

44 (44,42) 0,9975 − 0,9973 = 0,00028 0,07 0 

 

In most cases, the offset maximums for linear tables of byte substitutions are 32-

34. From the presented results, it follows that substitutions with a maximum dis-

placement value of less than 36 are 94% (less than 34 are 76%). 



Finally, it will be appropriate to give the results of experiments with random byte 

S-blocks obtained in [27], which are shown in Table 3 (with notations from this 

work). 

Table 3. Cryptographic properties of randomly generated byte  

Criterion The value of % generated S-blocks 

Maximum DDT 8 0,004 

 

Max Lat (Nonlinearity) 

32(96) 11 (34) 

30(98) 0,15 (0,04) 

28(100) 0 (0,05). 

The minimum degree of BF 7 30 

Algebraic immunity 3 100 

 

10 million random substitutions were generated. The table in brackets also shows 

our experimental results, but not for all criteria. We are particularly pleased with the 

indicators of algebraic immunity. According to our data, the S-block of the AES ci-

pher has algebraic immunity 2. 

However, there were experts who expressed doubts about the values of algebraic 

immunity. 

Therefore, we developed our own program for calculating algebraic immunity [29]. 

The results obtained with its help, fully confirmed that all 100% accidental S-blocks 

have algebraic immunity equal to 3. 

7. Discussion 

The results of the studies confirmed that the substitutions from the output of the ran-

dom permutation generator are likely to be good S-blocks. But given the still little 

experience of using random substitutions to build ciphers and being quite critical of 

this model for some specialists, it is suggested that an advanced random substitution 

model be considered as a random substitution from the output of a random substitu-

tion generator, which passes a positive check for compliance with at least four indica-

tors 

S-block and Boolean functions that form it: 

1. The maximum value of the XOR junction is in the range of 8-10; 

2. The maximum value of the displacement of the LAT is in the range 32-34 (i.e. 

the nonlinearity is 94-96); 

3. The algebraic degree of Boolean functions of the S-block is not less than 7; 

4. Algebraic immunity index of S-block is not less than 3. 

It is a random substitution obtained without restriction, very likely to be suitable 

from the point of view of cryptographic applications. They have provided the best 

dynamic output of ciphers with strong linear transformations (which use at least one 

cycle function with controlled substitutions) to asymptotic indices of random substitu-

tions The cipher of such construction, which allows to increase the minimum number 

of activated S-blocks of the second cycle almost to the maximum, is offered in [3]. 



Thus, the scientific novelty of the work is seen in the fact that for the first time the 

possibility of using S-blocks for the construction of ciphers from the output of the 

random substitution generator is substantiated. 

8. Conclusions 

There is a long way to go about justifying the criteria for the selection of random sub-

stitutions from the simplest combinatorial to sufficiently rigid additionally developed 

criteria, which are built on the use of estimates of the closeness of laws of distribution 

of XOR tables and displacements of tables of linear approximations to theoretical 

laws. 

However, it was not possible to find any particular advantages of substitutions se-

lected using even rigid criteria. By their cryptographic index, which are determined 

by known methods, including algebraic, they are not particularly distinguished against 

the background of other known structures. Therefore, all considered criteria for the 

selection of random substitutions in the considered version had to be abandoned. We 

have moved to a more refined mathematical model of random permutation based on 

the properties of a sample of random substitutions (this model incorporates and found 

the differential and linear laws of the distribution of transitions of the corresponding 

substitution tables and the corresponding laws of the distribution of maxima). 

At the same time, we recognize that permutations are one of the important ele-

ments in the designs of modern encryption transformations, playing the role of an 

additional, if not the main, and mechanism for effective random mixing of data 

blocks. 

The main result of the work is a refined model of random substitution. According 

to this model, a substitution is considered random if it belongs to an ensemble of sub-

stitutions whose maxima of XOR tables and offsets of linear approximation tables 

obey the law of distribution of Fisher-Tippet extreme values (log-Weibul). This al-

lows random (byte) substitutions in ciphers to be used directly by substitutions 

formed by a random permutation generator. 

The refinement concerns the use of additional selection criteria which, as it turned 

out, do not substantially limit the many substitutions formed by the random generator. 

An important conclusion is that for a random Boolean function, most of its crypto-

graphic parameters are close to optimal. It will be natural this conclusion to random  

S-blocks: for a randomly-taken S-block, most of its cryptographic parameters are 

close to optimal. 

As a result, the problem of constructing ciphers in which random S-blocks can be 

used without loss of stamina becomes relevant, which found its first solution in our 

work [3] and in several others.  
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