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Abstract. The market price for electricity at the energy exchange is mainly determined 

by supply and demand. For many market participants, electricity price forecasting is an 

important competitive factor. Previous research primarily predicted based on demand. 

In times of renewable energies this mantra is no longer sustainable. This study primarily 

looks at the supply-side prediction of the electricity price with the help of deep learning 

artificial neural networks and thus makes a contribution to the literature. Autoregressive 

models and regressions serve as benchmarks. 
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1 Introduction 

Due to the global increase in population and the rise in the general standard of living, a 

reduction in electricity demand is not foreseeable [2]. Fossil fuels continue to be the 

foundation of the global energy supply: coal, natural gas and crude oil. Worldwide, renewable 

energies such as hydropower and biomass contribute around 18% to covering electricity 

demand [35]. 

With about 70% of imported raw materials, Germany is one of the largest energy 

consumers worldwide. For this reason, the German government's goal is to increase the share 

of renewable energies in primary energy consumption from 14% (as of 2018) to 40-45% by 

2025 [3]. Despite this, coal and nuclear energy have been very important energy sources for 

decades, even though their share in electricity generation has fallen from 84% in 1990 to 

currently less than 50% [33]. 

On the European electricity exchange (EEX), the price for electricity is determined by 

supply and demand. It should be noted that this is only a peak balancing, as most participants 

in the electricity market cover themselves by means of long-term electricity supply contracts 

with the power plant operators. Only short-term peaks are balanced via the electricity 

exchange. 

It is essential for market participants in the electricity market to be able to make 

substantive statements about future electricity price developments. Above all producers and 

traders can gain great competitive advantages through accurate electricity price forecasts. 

In the past, electricity supply largely followed demand. In order to ensure network 

stability, the amount of electricity fed into the grid must always be adapted to demand. This 

is ensured by using peak load power plants, such as gas turbine power plants. The latter 

produce comparatively expensive electricity compared to base load power plants such as 

coal-fired and nuclear power plants. These types of power plants can be adapted very quickly 
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to fluctuating electricity demand, whereas base-load power plants have a very high time 

latency. Due to the increasing use of renewable energies, such as wind and solar power, and 

the resulting displacement of base-load power plants, the problem of maintaining grid 

stability remains, but the electricity mix is constantly changing and with it the electricity 

price. The final consequence of this is that the supply of electricity can no longer be fully 

derived from the demand for electricity, and consequently the supply of electricity is a factor 

influencing the price of electricity. However, the latter is still not independent of the demand 

for electricity, so that collinearities and endogeneities arise. 

The forecast of the electricity price has also been a relevant topic in the literature for many 

years. In this respect, a large number of authors have taken up this challenge. However, the 

focus of most studies is on the demand side of electricity price forecasting. A recent research 

has detected 105 papers that are dedicated to a demand-side electricity price forecast. In 

contrast, 11 papers (see Error! Reference source not found.) clearly underrepresented the 

supply-side electricity price forecast. 

This paper examines and explains the development of electricity prices by means of a 

supply mix. It covers feed-in quantities of biomass, lignite, hard coal, gas, oil, oil shale, peat, 

geothermal energy, waste, water, solar, wind and other renewable energies. The methods 

used are multivariable linear regression, ARIMA(X) [4] and artificial neural networks 

(KNN). For KNNs, a distinction is made between classical feed-forward networks, in the 

form of a single-layer perceptron (SLP) and multi-layer perceptron (MLP), and recurrent 

networks (Hopfield 1982), or more precisely long-short term memory networks (LSTM) 

[17]. The two variants MLP and LSTM are designed as deep learning networks. Deep 

learning generally stands for a special form of KNN, which is characterized by well thought-

out successive layers with a higher number of units each [30, 13]. In MLP as well as in 

LSTM, the activation of units into the hidden layer is done by means of rectifiers [15, 16], 

which achieve better training results especially in deep networks [12]. The regression as well 

as the ARIMA(X) model serve as benchmarks for the comparison with the KNN. 

The work is structured as follows: The second chapter reports on the state of research. The 

third chapter presents the sample and methodology. In the fourth chapter the models and the 

resulting results per model are presented and explained. The article closes with a summary. 

2 Prior Research 

For European markets, the electricity price is determined by supply and demand. A large 

number of papers already exist on demand-side electricity price forecasts. Weron [34] 

provides a general overview of a variety of methods and proposals as well as an outlook for 

the next decade. The author divides the models into five categories: multi-agent models, basic 

(structural) models, models in reduced form (quantitative, stochastic), statistical models and 

computer-aided intelligence models. With artificial neural networks, one, if not the 

heavyweight of artificial intelligence in electricity price forecasting is becoming increasingly 

important. An up-to-date and detailed overview in this respect is provided by Meier et al. 

[25], who take the electricity price forecast of the European market as a starting point, using 

different models such as ARIMAX, regressions and different KNNs, mainly using 

autocorrelative and non-linear correlative time series characteristics such as day, week and 

year related seasonalities. For probabilistic electricity price forecasts, Dudek [9] proposes an 

approach based on feed-forward networks. Unlike Dudek, Zhang [36] combines the 



advantages of a non-linear KNN and a linear ARIMA model to leverage the strengths of both 

methods and provide greater predictive power. In the same way, Filho et al [10] follow a 

hybrid approach tailored to the Brazilian market. The results of this approach are compared 

with classical models such as ARIMA, GARCH, Exponential Smoothing and KNN. For a 

forecast period of 24 and 36 weeks, the hybrid model clearly outperforms the forecast 

accuracy of the other models mentioned. However, the lack of general validity for other 

markets remains to be mentioned. Raviv et al [28] examine the forecast accuracy of uni- and 

multivariate models for hourly electricity prices of the North Pole market. The forecasts are 

based on average prices for the next 24 hours. The multivariate models perform significantly 

better, according to an up to 15-20% lower RMSE. Here too, the question of general 

transferability to other markets remains open. 

Relatively few studies deal with a supply-side electricity price forecast. Huisman et al [19] 

deal with hourly electricity prices on several day-ahead markets. When looking at hourly 

electricity prices, the authors, like Raviv et al. [28], also consider the simultaneous 

submission of electricity prices and the formation of an average price for 24 hours on one 

day to be inappropriate, since hourly electricity prices do not follow a time series process. 

For this reason they model a panel model with 24 cross-sectional hours. 

Nowotarski and Weron [26] use a quantile regression for electricity price forecasts. In 

contrast to other statistical analysis methods, quantile regression allows the use of many 

distributions without restrictions. This flexibility also makes this approach suitable for 

forecasts, which is reflected in low forecasting errors. Díaz et al. [8], who use quantile 

regression, also use an hourly electricity price forecast for the Spanish market. 

Contreras et al [6] use ARIMA(X) models for price forecasts of the Spanish and 

Californian markets. The central result of this work is the effect of the strength of the 

correlation between the price and the explanatory variable on the inclusion of other 

explanatory variables as well as on the forecast accuracy. In case of a strong correlation, the 

average daily mean error is between 5% and 10%. If the correlation is weak, additional 

explanatory variables have no significant effect on the forecast. 

For the Colombian market with hourly electricity prices, Marin et al. [24] find that 

ARMAX and NARX (non-linear autoregressive neural networks) lead to similar prognosis 

values. 

ARIMA(X) models are often used in the literature as a benchmark to make the results of 

KNN approaches transparent. Keles et al. [21] investigate the advantages of MLP compared 

to ARIMA(X), whereby the KNN has lower prediction errors. 

Singhal and Swarup [31] also believe that an MLP is the most appropriate means of daily 

electricity price forecasting. This is characterised by the mastery of complex 

interrelationships of given factors such as price and historical load. 

Gökgöz and Filiz [14] are setting up 400 MLP models for the Turkish market, which differ 

in the number of units and various activation functions. The most suitable model has an 

average absolute percentage error (MAPE) of 9.76%. 

Li et al. [23] also focus on the investigation of the properties of MLP for forecasting price 

time series. For shorter time intervals the KNN provide a higher accuracy of the forecast 

values than comparable ARIMA models. Overall, the forecast accuracy of the MLP amounts 

to more than 80%. 

The following Error! Reference source not found.the statements once again in a clear 

manner. 



Table 1. Literature review of supply-side electricity price forecasts 
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Marín et al (2018) ●   ●     ●   ◌    ●    ●  ●    

Nowotarski and Weron 

(2015) 

●     ●               ● ●    

Contreras et al (2003) ● ●  ●                 ● ●    

Díaz et al. (2019) ● ●   ●                  ● ●  

Huisman et al. (2007) ● ●    ●               ● ●    

Keles et al (2016) ● ●  ●    ●    ◌    ● ●   ● ● ● ●   

Peng et al (2017) ● ●        ●  ◌    ● ●    ● ●    

Trotter and Kemfert (2007) ● ●    ●                ● ●   

Singhal & Swarup (2011) ● ●      ●    ◌   ●  ●    ● ●    

Gökgöz and Filiz (2016) ● ●      ●    ◌    ● ●    ● ●    

Catalão et al (2007) ● ●      ●    ◌   ●  ●     ●    

Weron (2014)  ●                        

Raviv et al (2015)  ●  ● ●   ● ●   ◌        ● ● ●    

Al-Saba and El-Amin (1999)  ●  ●    ●    ◌   ◌ ◌ ◌     ●    

Dudek (2016)   ●      ●    ◌   ● ●         ● 

Meier et al (2019)  ●  ● ●   ●    ◌   ●  ●   ● ● ●    

Filhoa et al (2014)  ●  ●    ●    ◌    ●      ●    

Zhang (2003)  ●  ●    ●    ◌    ●       ●   

Legend: ● used ◌ subordinated 

3 Sample and Methodology 

3.1 Data 

The Association of European Transmission System Operators for Electricity, ENTSO-E for 

short, represents 43 electricity transmission system operators from 36 countries, including 

Germany, Spain and France. Since the introduction of Regulation (EU) No 543/2013 of 14 

June 2013, data providers and owners of data from the European Member States have been 

required to present information on electricity generation, use, transmission and balancing on 

the ENTSO-E transparency platform. 

The energy quantity data required for the forecast models are taken from the ENTSO-E 

transparency platform. The data is derived from the query settings "Generation" and "Actual 

Generation per Production Type" as well as "DE-AT-LU" for the period from 01.01.2015 to 

31.01.2018. The sample comprises the quarter-hourly available feed-in quantity in megawatts 

(MW) of 20 energy types: biomass, lignite, gas produced from coal, gas, hard coal, oil, oil 

shale, peat, geothermal energy, hydropump storage, run-of-river power plant, water reservoir, 



marine, nuclear, other, solar, waste, other renewable energies as well as wind offshore and 

wind onshore. The corresponding hourly electricity prices are from the European Energy 

Exchange EEX. Due to the different compression levels of the feed-in quantity (quarter-hour) 

and the electricity price (hour), the average of the quarter-hourly feed-in quantities is formed 

for the respective feed-in quantity per hour for the purpose of temporal adjustment on an 

hourly basis. To take the time component into account as a predictor, dummy values are 

integrated for the hour, weekday, and month. 

The following Fig 1. shows the course of the electricity price. 

 

Fig 1.  Course of the electricity price of the entire data volume 

3.2 (Pre-) Processing of the Data 

The entire data volume is first subjected to pre-processing. Missing values are imputed on 

the basis of spline interpolation. The time predictors month, weekday, and hour are extracted 

from the date and dummyfied. This results in 11 dummy variables for the month (January to 

November), 6 dummy variables for the weekday (Sunday to Friday) and 23 dummy variables 

for the hour (0:00 to 22:00). The data set is then divided into a training data set and a test 

data set, as usual for KNN. 

For the training data set, a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is performed, 

which provides the number of differentiations to establish stationarity. The electricity price 

of the training and test data set is differentiated once according to the result of the KPSS test. 

A partial autocorrelation function (PACF) analysis of the training data yields a significant 

number of lags (period-weighted time series) of 5. The use of Auto-ARIMA [20] confirms 

these results. The course of the electricity price differences can be seen in the Fig. 2. 



 

Fig. 2:  Course of the electricity price differences of the training data volume 

Then both sets of data are normalized using min-max scaling to transform the values of 

all predictors - except the dummy variables - into the range 0 to 1. For the test data set, the 

scaling factors (min, max) of the training data set must be used. The dummy variables, on the 

other hand, are subjected to an effect coding. The usual procedure in statistics for dealing 

with categorical characteristics using 0/1 coded dummy variables may prove problematic for 

KNNs and lead to suboptimal solutions in the adaptation of a KNN. Strictly speaking, the 

number 0 is regarded as critical. A mathematical proof can be found in Sarle [29]. Instead, 

he argues for an effect coding with -1/1 coded dummy variables. 

Within the framework of the investigation of the training data set for model maintenance, 

a k-fold cross validation [7, 11, 22] in the form of a "sliding window" is used to optimize the 

hyper-parameters of the CNN. In k-fold cross validation, the entire training data set is broken 

down into k individual, equally sized parts, the so-called folds. Usually the folders are 

selected randomly. In time series, however, data sets of the training data set that follow each 

other directly must always be combined into a fold, since the order of the data sets is decisive 

and must not be confused. With the Form Sliding Window, when training a KNN one fold 

per iteration is successively used as training data set and the immediately following fold as 

validation data set and the MAE (mean absolute error) per epoch is calculated. After the end 

of the training of a KNN, the average of all MAE values per epoch can be determined. From 

the visualization of these values (x-axis: epoch; y-axis: Ø-MAE), the number of epochs for 

which the MAE is minimal can be read. This number of epochs is considered the optimum 

number of epochs. Subsequent epochs should not be taken into consideration, as the 

increasing MAE value indicates an overfitting. The optimal number of epochs is used to 

generate the final or generalized model based on the total amount of training data. 

The RMSE (root mean square error) is used to compare the prediction quality of the 

respective final models, ARIMAX, Regression, SLP, MLP and LSTM, with the test data set. 

This metric is considered the standard measure for metric quantities in the literature[34]. 



4 Results 

The first KNN is an SLP, which can be regarded as a classical regression model substitute. 

The 4-fold cross-validation has resulted in an optimal epoch number of about 30. Repeated 

training of the SLP yields an RMSE of 4.07 for the training data set and 4.77 for the test data 

set. The results are shown in theFig. 3 

 

  

Fig. 3: Results SLP, left the cross validation, right the forecast 

The second KNN is a deep learning MLP with three hidden layers (128, 64 and 32 units) 

and respective rectifier activations. The 4-fold cross-validation has resulted in an optimal 

number of epochs of about 60. Repeated training of the MLP yields an RMSE of 2.88 for the 

training data set and 4.13 for the test data set. The results are shown in the Fig. 4. 

 

  

Fig. 4:  MLP results, cross-validation on the left, forecast on the right 

The third KNN is a Deep Learning LSTM with also three hidden layers (128, 64 and 32 

units) and respective rectifier activations. The 4-fold cross-validation has resulted in an 

optimal number of epochs of about 50. Repeated training of the LSTM provides an RMSE 

of 2.79 for the training data set and 4.09 for the test data set. The results are shown in the 

Fig. 5 



  

Fig. 5:  Results LSTM, left the cross validation, right the forecast 

The following Error! Reference source not found.the results and presents the RMSE 

values of all models used for different amounts of test data. A one-week test period is selected 

for each quarter to take into account seasonal variations in the test data sets. The four test 

datasets cover the periods 1.1.-7.1.2017, 1.4.-7.4.2017, 1.7.-7.7.2017 and 1.10.-7.10.2017. 

Table 2. RMSE values of all models 

 RMSE for test periods   

Model Jan 2017 Apr 2017 Jul 2017 Oct 2017 total 

ARIMAX 4,37325 2,51524 2,24350 4,61178  

Regression 4,32585 2,55180 2,23342 4,63412  

SLP 4,81282 2,67128 2,38036 4,82037 4,77 

MLP 4,06866 2,25496 2,27558 4,69374 4,13 

LSTM 4,29037 2,36789 1,97528 4,99047 2,79 

In the regression analysis, the variables lignite, gas, hard coal, oil, hydropump storage, 

water, solar, wind offshore, wind onshore, months 5-8, all days of the week and all hours are 

significant predictors for the forecast model.  

In the overall view of the prognosis models, none stands out as dominant, even if MLP 

and LSTM deliver noticeably better results than the simpler prognosis methods, this seems 

to vary with the seasons, as already known from other studies.  

5 Conclusion 

This paper examines and explains the supply-side electricity price development, taking into 

account a large number of fed-in electricity quantities as well as relevant time factors in the 

form of month, weekday and hour. ARIMAX, regression and different KNN are used. The 

best forecast results are achieved by the LSTM, which, as expected, is best able to deal with 

time series. However, depending on the season to be forecast, it is not yet completely 

convincing. 

Since supply-side electricity price forecasts are still very much underrepresented in the 

literature, the present study can serve as a basis for further replication and comparison studies. 
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