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Abstract. Nowadays, educators often use different computer algebra systems for 
teaching advanced math topics for CS students, and as a tool for solving math 
problems and providing research. Computer algebra systems allow the students 
to practice skills both programming and mathematics, that help to develop main 
components of computational thinking (decomposition, pattern recognition, 
abstraction, and algorithms). We provide the example of the use one of CAS 
(Mathematica) for the mathematical research on the D(s)-function associated 
with Riemann Zeta function. For solving this problem, we need to find the 
algorithm in order to get a mathematically correct results generated by 
Mathematica. 
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1 Introduction 

Today technically competent young people can easily use digital devices, know how to 
connect to GPRS, GPS and start streaming video. At the same time, educators say that 
traditional forms of educational cognitive activity have fallen. In the 20th century the 
core skills, that every person needed, were the abilities to read, to write and to count – 
so-called “3R’s” (Reading, wRiting, aRithmetic). In the 21st century another core skill 
– Computational Thinking (CT) – was added to these 3R’s. CT, which implies a new 
way to solve emerging problems with the methods of computer science and 
engineering, information technology, information systems. First the term 
“Computational thinking” was introduced in [1]. Seymour Papert discussed new 
pedagogical approaches in mathematical education in the paper [1]. This term denoted 
a way of thinking for the algorithmic solution of complex mathematical problems. Later 
Jeannette M. Wing in the paper [2] developed the computational thinking approach 
beyond mathematics. 

In the paper [3] authors outlined that research team at MIT had developed computing 
environments designed to facilitate computational thinking (Logo, Scratch) and the use 
of computer as a computational object. Main components of computational thinking are 
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decomposition, pattern recognition, abstraction, and algorithms. Decomposition 
demonstrates how to divide complex problems into smaller problems. Pattern 
recognition shows how to find connections between similar problems and how to use 
previous experience. Abstraction helps to focus only on the important information 
without irrelevant details. Using algorithms, we can develop a step-by-step solution to 
the problem, or the road map to solve the problem. 

Computational thinking and programming allow students to learn not only math and 
programming languages but help them to learn in order to become successful. 

For some aspects of computer science students need to know mathematics that is a 
fundamental course in the educating process of CS professionals. Math helps 
programmers to solve a problem in an efficient way. Discrete math (set theory, logic, 
combinatorics), number theory (cryptography and security), geometry (geometric 
objects, transformations, rotations), linear algebra (matrices, series, differential 
equations), game theory etc. are math fields that are most important and commonly 
using in computer science. Math is not directly used in computer science. But computer 
science students have to think logically and analytically for being good programmers. 
These are the same types of thinking in solving difficult mathematical problems. 
Without math, students will face a longer learning curve in programming and vice 
versa. 

In the papers [4], [5], [6], [7] authors provided an overview of educational aspects 
of math teaching and learning with integrated platforms and computer aided learning 
software. 

Studies related to the effect of computer algebra systems (CAS) on learning 
efficiency of computer science students presented in papers [8], [9], [10]. The papers 
[11], [12], [13], [14], [15] presented how to use Mathematica and other CAS for solving 
math analytical and numerical problems. The ways of using Mathematica as a tool for 
visualization of the results of the different types of mathematical researches are 
described in [16], [17], [18], [19], [20], [21], [22], [23]. Some issues about organization 
of the workspace of a computational system are presented in [24]. There is a 
bibliography of publications about the Mathematica symbolic algebra language in the 
[25]. Special advanced math researches using Mathematica as a tool for computing are 
presented in papers [26], [27], [28], [29], [30]. Topics of the instability that is related 
to the well-known Gibbs phenomenon [31], [32] and is not in the specifics of the CAS, 
are presented in [26], [27], [28]. 

The paper is organized as follows. Section 2 details the advantages of using a 
computer algebraic software for solving math problems and presents a brief review and 
comparison of computer algebraic systems. Section 3 presents an advanced math 
problem that was solved using Mathematica as a main tool. In this section we illustrate 
the methods and results. 

2 Programming, math and computer algebra systems 

One way to implement the paradigm of the computational thinking is the use CAS for 
teaching mathematics and programming at CS departments. 



 

Computer algebra system is a software that helps to manipulate mathematical 
expressions and mathematical objects, to provide symbolic or numeric computations, 
to plot different graphics and to visualize math objects. CAS may be divided into two 
classes: 

─ specialized, that can be used for solving specific problems of mathematics or 
statistics; 

─ general-purpose that can be used for a scientific domain that requires manipulation 
of mathematical expressions or objects. 

The main features of general-purpose CAS are 

─ a user interface, allowing to enter math formulas or data, and graphics capability; 
─ a programming language and interpreter; 
─ a memory manager and garbage collector; 
─ a rewrite system for simplifying mathematics formulas; 
─ a large library of mathematical algorithms, special functions, efficient data 

structures; 
─ an arbitrary-precision (bignum) arithmetic, needed for calculations are performed on 

the huge size numbers; 
─ a fast kernel. 

You can see a comparison of most popular CAS in the table 1. 
Maple [33] was released by Maplesoft in 1982 as a symbolic and numeric computing 

environment. It is based on a kernel (written in C) and has libraries (written in Maple 
language) for performing technical and numeric computations. For storing symbolic 
expressions Maple uses such data structure as directed acyclic graphs. Maple’s 
interfaces are written in Java. Maple software allows to analyze, explore, visualize, and 
solve mathematical problems. It can be used in mathematics, smart document 
environment, application areas, application development, high performance computing, 
connectivity and education. 

Mathcad [34] is computer software product of the Parametric Technology 
Corporation (PTC) first introduced in 1986. It is used for engineering calculations; 
results are stored as a notebook. Equations and expressions are created in a worksheet 
and manipulated in the same graphical format. 

The Mathcad functionality contains: 

─ numerous numeric functions covering such areas as statistics, data analysis and 
image processing; 

─ systems of equations (including ordinary and partial differential equations); 
─ roots of polynomials and functions finder; 
─ symbolical calculation and manipulation of math expressions; 
─ parametric, 2D and 3D plotting; 
─ vector and matrix operations (including eigenvalues, eigenvectors); 
─ statistical functions, regression analysis on experimental datasets. 



Table 1. Popular computer algebra systems 

Name of CAS / 
creator 

First / 
Latest 

releases 

Latest 
version Price License Notes 

Maple / 
Maplesoft 

1984 / 
2020 

2020.0 
(March 
2020) 

$2,390 (Commer-
cial), $2,265 (Go-
vernment), $995 

(Academic), $239 
(Personal Edition), 
$99 (Student), $79 

(Student, 12-
Month term) 

Proprie-
tary 

For symbolic and numeric 
computing. 
Written in С, Java, Maple 

Mathcad / 
Mathsoft, PTC 

1985 / 
2019 

6.0.0.0 
(October 

2019) 

$1,600 (Commer-
cial), $105 (Stu-

dent), Free 
(Express Edition) 

Proprie-
tary 

Includes some of the ca-
pabilities of CAS. For nu-
merical computing of the 
engineering problems 

Mathematica / 
Wolfram 
Research 

1988 / 
2020 

12.1.0 
(March 
2020) 

$2,495 (Professio-
nal), $1095 (Edu-
cation), $295 (Per-

sonal), $140 
(Student), $69.95 
(Student annual 
license), free on 

Raspberry Pi hard-
ware 

Proprie-
tary 

For solving problems in 
many technical, scientific, 
engineering, mathema-
tical, and computing fi-
elds. 
Written in Wolfram Lan-
guage, C/C++, Java 

SageMath / 
William Arthur 

Stein 

2005 / 
2020 

9.1 
(May 
2020) 

Free GNU 
GPL 

Open-source system with 
features covering many 
aspects of mathematics, 
including algebra, 
combinatorics, graph 
theory, numerical analy-
sis, number theory, calcu-
lus and statistics. 
Written in Python, Cy-
thon 

Symbolic Math 
Toolbox 

(MATLAB) / 
MathWorks 

2008 / 
2020 

R2020a 
(March 
2020) 

$3,150 (Commer-
cial), $99 (Student 
Suite), $700 (Aca-
demic), $194 (Ho-

me) 

Proprie-
tary 

For solving and manipula-
ting symbolic math ex-
pressions and performing 
variable-precision arith-
metic. 

SymPy / Ondřej 
Čertík 

2007 / 
2020 

1.6 
(May 
2020) 

Free 

mo-
dified 

BSD li-
cense 

Open-source Python lib-
rary for symbolic compu-
tation. 

Wolfram|Alpha / 
Wolfram 
Research 

2009 / 
2020 2020 

Pro version: $4.99 
per month, Pro 
version for stu-
dents: $2.99 per 

month 

Proprie-
tary 

Online computational 
platform or toolkit that en-
compasses computer al-
gebra, symbolic, nume-
rical computation, visua-
lization. 

 



 

Wolfram Mathematica [35] is an application for mathematical symbolic calculations 
that consists of two parts – kernel (back end) and interface (front end). In general, 
Mathematica is a great tool for solving problems, it integrates all functionalities such 
as symbolic calculations, manipulations with equations, numeric and graphical outputs. 
Mathematica offers predefined functions for mathematics, physics, economy, biology 
and other areas. It is used for calculations in the scientific, engineering, mathematical 
and computer fields. The Mathematica is also called the CAS Mathematica uses the 
Wolfram Language. Wolfram Language is a multi-paradigm programming language 
developed by Wolfram Research for symbolic computing, functional and logical 
programming, which allows the implementation of arbitrary data structures. 

SageMath [36] is free and an open source, python-based alternative to Mathematic, 
Mathcad, Maple. It uses many python packages, for example, Numpy, Matplotlib, 
Scipy, Pylab. SageMath has features covering many parts of mathematics – algebra, 
combinatorics, graph theory, numerical analysis, number theory, calculus and statistics. 

MATLAB (MATrix LABoratory) [37] is a software package for high performance 
numerical computation. It provides an interactive environment with hundreds of built 
in functions for technical computation, graphics and animation and easy extensibility 
with its own high-level programming language. MATLAB contains a lot of tools for 
linear algebra computations, data analysis, signal processing, optimization, numerical 
solution of Ordinary Differential Equations (ODEs), quadrature and many other types 
of scientific computations. MATLAB also provides matrix manipulations, parametric, 
2D and 3D plotting of functions and data, algorithms implementation, creation of GUI, 
and interfacing with programs written in other programming languages (C, C++, C#, 
Java, FORTRAN, Python). 

SymPy [38] is an open-source library for symbolic computation that completely 
written in Python. It provides computer algebra (algebra, matrices, etc.) capabilities 
either as a standalone application, as a library to other applications, or live application 
on the web. The SymPy library is split into a core with many optional modules 
(polynomials, calculus, solving equations, discrete math, matrices, geometry, plotting, 
physics, statistics, combinatorics, printing). 

Wolfram|Alpha [39] is a computational knowledge engine (answer engine) 
developed by WolframAlpha LLC. Wolfram|Alpha is an online service like a fact-
based engine. It answers factual queries directly by computing the answer and does not 
provide a list of documents or web pages like search engine. Wolfram|Alpha uses 
technologies that can be divided into four key general areas: a data curation pipeline, 
an algorithmic computation system, a linguistic processing system, an automated 
presentation system. 

CAS can run under different operating systems natively without emulation. Like 
most modern apps, Mathematica (except mobile OS), SageMath (except mobile 
Android OS), MATHLAB (except mobile OS), SymPy run on almost all commonly 
used OS. Maple, Mathcad do not have versions that run under Android, iOS and SaaS. 
Moreover, Mathcad does not have versions running under masOS, Linux. We provide 
a list of OS supporting CAS discussed above (Table 2). 

To demonstrate the development of CT skills in teaching CS students advanced 
topics of mathematics, as well as the development of a heuristic, logical and algorithmic 



thinking, we used Mathematica 12.0 to solve math problems, which may result in 
meaningful mathematical problems that lie outside the capabilities of the Wolfram 
Mathematica, or programming problems will appear that also lie outside the scope of 
the Wolfram Mathematica, which the CS student have to learn how to solve. 

Table 2. Operating systems supporting CAS 

CAS 
OS 

DOS Windows macOS Linux Android iOS SaaS 
Maple – + + + – – + 
Mathcad + + – – – – – 
Mathematica – + + + – – + 
SageMath – + + + – + + 
Symbolic Math Toolbox (MATLAB) – + + + + – + 
SymPy – + + + + + + 

 

3 Math project “On the function D(s) associated with 
Riemann Zeta function” 

We used CAS (Mathematica 12.0 [35]) for investigating the D(s)-function associated 
with Riemann Zeta function. Results of the project are presented in paper [26]. 

Let us consider the function D(s) of the complex argument s=+it, formed with the 
use of a certain procedure of a transition to the limit: 
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It is obvious that for σ>1 the limit of the sum in (1) turns into the Riemann zeta function, 
and, accordingly: 

   ),(1 ssD(s)    1Re s . (2) 
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s  is Riemann zeta function. 

In the paper [26] was showed that for Re s<1: 

 1D(s)  (Re s<1). (3) 

Therefore, the function D(s), defined by formula (1) in the entire complex plane (with 
the exception of the straight line =1), in the right-hand half-plane (>1) in accordance 
with formula (2) differs from the Riemann zeta function only by the factor (1–s), and 
in the left half-plane, in accordance with formula (3), it is equal to one. Formula (1), in 



 

a certain sense, extends the Riemann series 






1n

sn  to the entire complex plane s 

(except for the straight line =1). 
It is convenient to divide the real and imaginary parts of the function D: 
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  and   are the real Riemann series: 
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It follows from (6) that the series  t,  and  t,  have very simple asymptotics for 
large values of : 
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Consequently, in accordance with formulas (5), the asymptotics of D(s) for .  
and fixed t has the following form: 
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When calculating the function D(s) in the right half-plane of the complex argument s 
(for >1) we used finite-dimensional approximations of the oscillating real Riemann 
series (6). Instead of formulas (6) containing the limiting transition N , we used 
finite sums: 
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When computing the sums AN and BN we usually fix N in the range between N = 105 
and N = 106. A calculation with a smaller value of N introduced noticeable distortions 



in the results. Computations with large values N required an unacceptably high time-
consuming result. For N in the range 65 1010   one calculation, – for example, plotting 
the dependence of )(tR  for fixed  and 500  t – requires, depending on  and N 
from several tens of minutes to several work hours for Mathematica. You can see codes 
of plotting the R-function at listing 1, and symbolic results at Fig. 1. 

Listing 1. Codes for plotting the R-function as the function of the argument t for >1. 

 

 
Fig. 1. Symbolic results of the R-function of the argument t for =1.05 (N=6105). 

Fig. 2 demonstrates, in addition to real “slow” t-oscillations of sufficiently large 
amplitude, also the presence of an interesting effect of short-period “parasitic” 
oscillations of small amplitude. This effect (we called it the “zeta effect”) is generated 
by a sharp break in the Riemann series (6) for a finite (albeit sufficiently large) value 
of n, equal to the “cut-off parameter” N  65 1010 N . In Fig. 2, these zeta 
oscillations significantly deform the dependence )(tRR   up to 15t , but are also 
noticeable at t>15. 

A qualitative explanation of the nature of the “zeta effect” is given in the paper [26]. 
In some extent, this “zeta effect” is one of the version of the Gibbs phenomenon related 
to the Fourier series theory [32]. 

How can we suppress these parasitic zeta-oscillations generated by the termination 
of infinite Riemann series (5)? 

To suppress the zeta effect, we used “exponential β-damping”, replacing each term 
in the Riemann sums (7) with its “damped” expression: 
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Where β is the damping parameter: 1 . (In the calculations, we used the value β=5). 

 
Fig. 2. The R-function as the function of the argument t for =1.05 (N=6105). 

Exponential β-damping (8) does not significantly affect the contribution of the majority 
of “low-frequency” harmonics with Nn   and substantially reduces the contribution 
of terms with large numbers n, approaching to n=N. This method smooths out the effect 
of a sharp break in the Riemann series (5) for n=N. 

Fig. 3 demonstrates the effect of exponential β-damping on the numerical results of 
calculating the function D(s). This figure shows the same graph shown earlier in Fig. 2: 
dependence of the function R  on the argument t for =1.05 and 5106 N . In Fig. 3 
this dependence is calculated by the formulas (14), taking into account β-damping 
(β=5). The “smoothed” function )(tR  in this figure completely repeats the function 
R(t) of Fig. 2 in all that concerns real large-scale slow oscillations, but is practically 
free of parasitic oscillations generated by the zeta effect. The trace of these parasitic 
oscillations remained only for small t (t < 1). The suppression of the zeta-effect in the 
region of small t requires an increase in the damping parameter β. An increase in β can 
cause distortion in real large-scale oscillations of the function R(t). Here, the researcher 
must compromise, determining what is more important in a particular task – total 
suppression of the zeta-effect at small t or preservation of correct results for large t. 



 
Fig. 3. The dependence of the function R of argument t for =1.05 (N=6105). The dependence 

is calculated using the exponential β-damping procedure described in the article for β=5. 

4 Conclusions 

Of the many problems that the author had to solve (on her own or in collaboration with 
colleagues and students) using various CAS packages, the author chose one problem 
here for purely illustrative purposes. In this task, the mathematics package used by itself 
works flawlessly, but you need to reflect on the algorithm in order to get a 
mathematically correct result using this package that suppresses some kind of pure 
instability. This instability is inherent in the task itself, and not in the specifics of the 
Mathematics package. In some sense, this instability is related to the well-known Gibbs 
phenomenon, which consists in a certain instability of the process of numerical 
summation of Fourier series in some situations. 

In other problems, there may be situations where Wolfram Mathematica cannot 
perform certain actions at all (for example, plotting a curve containing cusp [27]) or 
perform calculations with the necessary accuracy in a reasonable time (for example, 
constructing fractal curves defined by Riemann-Weierstrass series). 
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