
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Capstone Projects Aimed at Contributing to

Consolidated Open Source Projects: a Practical

Experience

Juanan Pereira

Escuela de Ingeniería de Bilbao,

UPV/EHU

Calle Rafael Moreno Pitxitxi, 2-3

juanan.pereira@ehu.eus

 0000-0002-7935-3612

Abstract—Due to time constraints (one term or quarterly

subjects) software projects used in university classes of Software

Engineering are usually limited to small developments, with few

people involved and without any previous code base to build

upon, that is, without taking into account important aspects like

software maintenance or software evolution. Open source

software (OSS) is currently being considered as a way of

involving students in the realities of professional software

development, confronting them with a constantly evolving code

base, maintenance, portability problems (compatibility with

multiple operating systems), localization and programming

styles. It is also remarkable the amount of learning obtained by

collaborating in a distributed software development, carried out

among a group of developers from different parts of the world.

This in turn, allows students to be trained in communication

skills to be able to interact with the OSS community. The

problem is that, again, it is difficult to integrate this OSS

project-based learning into a quarterly course. This work

advocates a more feasible scenario, proposing that students that

have to develop their capstone projects build them by

contributing to consolidated OSS applications. In this context, a

practical experience developed with 3 capstone students is

shown, detailing the benefits obtained, both from the point of

view of the students and the project itself. A series of

recommendations are also presented, provided by the students

and the teacher involved, so that any interested teacher can

replicate the experience with a higher guarantee of success.

Keywords: Open Source, OSS, FLOSS, Software Engineering,

Capstone Projects

I. INTRODUCTION

In Software Engineering university classes, Free Libre and
Open Source Software (FLOSS) or similarly Open Source
Software (OSS) is being considered as a way to immerse
students in the realities of software development [1]–[3]. This
effort is relevant to address the lack of commitment that can
arise when students do not perceive the real usefulness of the
subjects of the study program. To combat this lack of
motivation, teachers are seeking to integrate course
assignments and syllabi within the development of an OSS
project.

The benefits are manifold. Reading the project
documentation and exploring its source code enables students
to learn about programming style, feature design, and other
good development practices. Working on OSS projects also
allows them to have practical experience in issues related to
code maintenance and evolution, portability, localization and
internationalization. Students must strive to ensure that their
contributions are compatible with the current project design,
maintaining its evolution rules.

Also noteworthy is the learning obtained by collaborating
in a distributed software development, seen as a collaborative
process, carried out among a group of developers distributed
throughout the world. This allows students to be trained in
communication skills that they must put into practice to
interact with the OSS community.

All these benefits have made teachers promote the use of
OSS in the classroom. In Spain, it is worth highlighting the
Free Software University Contest [4], a national initiative in
which, since 2006, students from Spanish universities have
participated in developing free systems.

However, instructors warn of potential problems. One of
the drawbacks is that there are not yet enough integration
experiences [2], which makes it difficult to develop the entire
software engineering syllabus based on OSS. Another initial
pitfall is selecting the appropriate OSS project to contribute to
[5].

Problems related to the size of the task (contributing to an
OSS project) versus the duration of the course (quarterly) and
the students' prior knowledge are also cited [6]. It is difficult
to fit all the pieces.

With the aim of exploring new ways of supporting the
teaching of software engineering based on contributions to
OSS projects, as well as looking for an alternative to its use in
class (where time restrictions and prior knowledge condition
its use), this work documents a practical framed within three
Capstone Projects (FDP, Final Degree Projects) where three
students contributed features to a single OSS project.

The rest of this work has been divided into four parts. The
following section details the context in which the FDPs were
developed and how the project on which the contributions
were made was selected. Section three details the benefits
obtained by the students and the project in this. In the fourth
section, a compendium of recommendations is made for those
who are interested in repeating the experience and in the last
section the overall conclusions are reflected.

II. CONTEXT AND PROJECT SELECTION

Every year at the Bilbao School of Engineering, 4th grade
students in Computer Engineering must develop their Final
Degree Project (FDP). Many times the project consists of
implementing some type of application, usually from scratch.
Something that does not match what they will find in the labor
market [7]–[9].

There are usually very good jobs but the vast majority end
up in the drawers of the library or online repository.

One way to motivate students to develop their knowledge
of software engineering is to involve them in the development
and maintenance of consolidated open source software
projects [10], [11]. In the 2019/2020 academic year this author
decided to test that option with three final degree projects and
document the experience in this article.

The idea was to convince three brilliant students so that
their FDP was aimed at improving an open source application
used internationally. The first problem is choosing a good
project. We can talk at length about what constitutes a good
OSS project to use in the area of software engineering
education [2], [6].

In the case at hand, the project had to meet several
requirements: be a live project (have commits - code
contributions - distributed throughout the year), be developed
in Java (the language that students master during the career),
not be a trivial project (the one used as the basis of the TFG
contains almost 800 Java classes and 95000 lines of code) and,
if possible, be a project known to the students. GanttProject
(https://github.com/bardsoftware/ganttproject) has all these
characteristics and it has also been used as a tool in previous
subjects for Gantt chart designing.

Three students, O., A., and U. had been hard at work
selecting and fixing bugs from the GanttProject bug list.
Working to improve a free software application has brought
us multiple benefits, both for the students and for the project
itself. The next section details this list of benefits.

A. Benefits for the student

1) Learn how to work with the Github Flow

The first thing they have learned is to work with the GitHub

Flow workflow

(https://guides.github.com/introduction/flow/), a lightweight,

branch-based workflow that helps manage input from code of

distributed teams and workgroups. Specifically, they studied

how to create a fork, how to keep it updated with the original

version (upstream, see Fig. 1), how to create branches and

how to generate Pull Requests. They had never implemented

this workflow before (the most used among open source

projects).

Fig. 1. Learning how to create Pull Requests, Issues or keeping the

branches of a fork updated with the main repository are just some

of the tasks that they learn in these FDPs.

2) Defend and discuss ideas

Students learn to cope with the review of their code by

external programmers (see Fig. 2) each time they propose a

contribution in the form of Pull Request. This type of

informal code review, known as modern code review[12],

simplifies the formal review process, complementing it with

automation and bug detection tools and allowing the lead

developers of the project to analyze contributions (Pull

Requests) as soon as they these are proposed. On many

occasions the code that the students contribute works

correctly but the main developers find elements for

improvement and suggest refactorings to make the code more

readable, maintainable and reusable (non-functional

requirements that in many cases go unnoticed by the students

during the grade)

Fig. 1. The quality control of the consolidated open source projects

includes a review of the code of the contributions. For the students,

this was the first time that an external developer reviewed their

contributions in detail..

3) Automatic tests

GanttProject includes an automated tests section (see Fig. 3)

as part of the continuous integration process for

contributions. Students should understand how tests work

and learn how to use them on their own code before

submitting their contribution as a PullRequest.

Fig. 2. The tests include the verification of functionalities on

different platforms (Windows, macOS, Linux), something that is not

always worked on in academic environments.

4) Communicate with external developers

Communicating in English and proposing corrections or

designs for new functionalities in the platform's support

forum has been another novel task for the students involved

(see Fig. 4).

Fig. 3. Before solving a problem or beginning an implementation,

students should comment on their intentions in the forum.

B. Benefits for the project

Finally, GanttProject itself, as an open source project, has

also benefited from the following gains.

1) Get reusable documentation

One of the students' goals was to create documentation that

will really serve the future. Specifically, it was aimed so that

other developers (future students) can begin to contribute

with a smoother learning curve than these three pioneers.

Among this documentation are the classic UML diagrams

(class, sequence, communication ...) but also especially

useful diagrams that mix the graphical interface with the Java

classes that implement the. An example can be seen in Figure

5.

Fig. 4. This type of diagram with screenshots of the application

labeled with the name of the main classes that implement some of

the components can be of great help for new contributors.

The diagrams have been collaboratively generated between

the 3 students who have formed the initiative.

2) New features or bug fixes

These are the commits in the master branch of each of the

students (which in turn serve to polish their curriculum with

the possibility of public verification). All links correspond to

the repository https://github.com/bardsoftware.

 /commits?author=Anaitz98 (8 commits) (3 accepted

PRs)

 /commits?author=oihanealbizuri (7 commits) (3

PRs, 2 accepted and 1 rejected)

 /commits?author=urtzipu

 /commits?author=upuente001 (4 commits) (3 PR, 2

accepted and 1 rejected)

In Table 1 we can see the complete list of Pull Requests sent.

III. TEACHER RECOMMENDATIONS

After the experience, we gather below some reflections
and suggestions that may be of help to anyone who wants to
replicate the same process of development of FDPs based on
improvement of FLOSS applications:

 The teacher must involve himself / herself in the
project before his / her students. They have to dive
into the code, trying to understand the basic
architecture. Fix an issue, create a PR themself and
meet the main developers. That will help smooth out
the entry to new programmers. Example:
https://github.com/bardsoftware/ganttproject/commi
ts?author=juananpe

 It is advisable to help students to analyze the list of
project issues to locate a small collection of
“feasible” errors, in the sense that they can be
corrected in 3 months (approximately the duration of
the FDP). The author selected a couple of issues for
each student, but they were asked to further analyze
the whole list and create a set of 4 or 5 each. The goal
was that after discussing them in a group, they aimed
to implement at least 3 of them. And they succeeded.

 The selected issues must be ordered by difficulty:
easy, medium, difficult. Some projects have easy
issues labeled with labels such as beginner-friendly,
easyfix, beginner, easy, difficulty / low, etc.

It is recommended that students initially get involved
with an easy-to-solve issue, such as eliminating dead
code and generating a PR with that patch, so that they
learn the basic rudiments of GitHub Workflow and
the workflow of the OSS project in particular.

 If possible, the first time, students should be guided
with an outline of the solution of any of the issues to
be corrected. A sketch of the solution design would
suffice. It involves a lot of work for the teacher, but
it should be seen as an investment that can be reused
in the future and as a measure to ward off possible
fears from the students.

 Create a group on Telegram - or another instant
messaging tool - with the students who joined the
initiative. They will help each other, a sense of
community will be created and students will feel
supported [13].

IV. STUDENT RECOMMENDATIONS

At the end of the projects, the three FDP students
completed a survey asking for recommendations for future

students. Specifically, students were asked to answer these
questions:

 What aspect(s) of the project have you found
most complex(s)?

 What recommendations would you give to next
year's students who want to carry out their FDP
improving GanttProject or another free software
project?

 With what aspect of the project have you noticed
the most learning?

A. More complex aspects of the project

“The most complex of all, in my opinion, has been finding
the exact point where the error was located or the place where
the improvement should be developed”

“Initially, prepare the development environment, thus
being able to compile the application. ”

“- Understanding of the project structure (and code)

- 'Break' the fear barrier and take the initiative to
collaborate on a real project ”

B. Recommendations for students of future courses

 “Perhaps choosing another OSS software that does not
have so many classes and allows you to get a more
general picture of the project, since there are many
aspects of GanttProject that I still do not know despite
having worked on it. ”

 “Understand from the beginning the structure of the
application with which you are going to work, prepare
the development environment well and carry out well-
planned work, without leaving everything for last. ”

 “I think it would be a good idea to start with a task that
is something like a current code analysis, in which each
student does research on the project by generating or
expanding parts of a previously provided class
diagram. ”

C. Aspects of the project that provided the greatest

opportunities to learn

 “As I have progressed in development, I have

realized that understanding other people's code and

locating parts of the code has become easier and

easier for me, and I have done it in less time. ”

 “The use of tools such as Git and sdkman - a tool to

easily manage different versions of the Java

Development Kit and Gradle-, as well as the use of

the debugger to see the application processes and

thus understand the function of various methods and

classes in a large project.”

 “To read the project structure, management with git

and versions and to use different data structures

from those studied in class.”

V. CONCLUSIONS

A practical experience has been analyzed with three students

who have focused their final degree projects in software

engineering towards the development of improvements to a

consolidated OSS project. In this first approach, it has been

the teacher who has helped to choose the target project to

contribute to (GanttProject). Each student had to complete the

development or fixing of three issues and follow the usual

workflow in order to integrate their contributions into the

master branch of the project. The benefits are multiple, both

for students (learning to understand and locate features of a

project with hundreds or thousands of classes, passing code

quality controls, defending design ideas in work groups,

working with a distributed version control system,. ..) as for

the chosen OSS project itself (get reusable documentation,

get fixes or new functionalities).

Specific recommendations have been proposed, both by the

teacher and the students involved, so that anyone interested

can replicate the process.

Among the most complex aspects of the project (which

coincides with the most valued factor in student learning) is

the understanding of foreign code structures and locating

those parts of the code that affect the error to be corrected or

functionality to be implemented. It is therefore important to

focus on the study of foreign code (not your own) in subjects

of the degree in computer science, something in which the

study of open source software can be of great help. Analyzing

how to achieve this integration between the study of open

source applications and the teaching plan of a subject (such

as the Software Engineering subject) is precisely one of the

lines of future work. The teaching objectives and

competences to be obtained in the subject must be linked with

possible exercises, tasks and interactions related to the project

to which they will contribute, taking into account the time

limitations inherent to a four-month course or the different

degree of initial knowledge exhibited by the students.

TABLE I. CONTRIBUTIONS TO

HTTPS://GITHUB.COM/BARDSOFTWARE/GANTTPROJECT

Student Issue URL

oihanealbiz

uri

Sort resources by name

/commit/2
a92442aa

e078d001

f7c40392
5b2a1a1af

a2aaf5

oihanealbiz

uri
Refactor

/commit/7
d1cbe3fbe

affcf322c

d082c4a2
98f6895ec

dd84

oihanealbiz

uri

Option to change cost
display format #1659 (not

merged yet)

/issues/16

59

upuente001 Tck1665keyboardshortcuts

/commit/9
09af9063

29323adcf

4e5e767c
d0c36bba

5b8809

upuente001 Remove unused code

/commit/d
7cac4250

ca77d4df7

28b183ca
660a90fb

3ab49e

upuente001
Tkt 1610 change logo
without restart (not merged

yet)

/ganttproj
ect/pull/1

723

Anaitz98 coderefactor

/commit/7

48a9cea5
7282fc37

2f36c61d

Student Issue URL

d270b98b
ee34650

Anaitz98 ExportCSVtestsolving

/commit/2

bee42e34

347c279f
89b24e0b

de2d571f

91d9b18

Anaitz98
tkt1667rememberLastImport
Folder

/commit/f

a9f3df2f8

45d4c53e
2285dff0c

27e90d83

bf3b5

REFERENCES

[1] D. M. Nascimento et al., “Using Open Source Projects in software
engineering education: A systematic mapping study,” in 2013 IEEE

Frontiers in Education Conference (FIE), 2013, pp. 1837–1843, doi:

10/gf8h86.
[2] G. H. L. Pinto, F. Figueira Filho, I. Steinmacher, and M. A. Gerosa,

“Training software engineers using open-source software: the

professors’ perspective,” in 2017 IEEE 30th Conference on Software
Engineering Education and Training (CSEE&T), 2017, pp. 117–121,

doi: 10/gf4m2v.

[3] A. Sarma, M. A. Gerosa, I. Steinmacher, and R. Leano, “Training the
future workforce through task Curation in an OSS ecosystem,” in

Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2016, pp. 932–
935, doi: 10/gf8h89.

[4] P. Neira Ayuso and M. Palomo Duarte, “Innovación educativa con

software libre,” Actas de la VI Jornadas Internacionales de
Innovación Universitaria (JIIU 2009). Villaviciosa de Odón

(Universidad Europea de Madrid), 2009.

[5] K. Toth, “Experiences with open source software engineering tools,”
IEEE software, vol. 23, no. 6, pp. 44–52, 2006, doi: 10/b6rx2s.

[6] T. M. Smith, R. McCartney, S. S. Gokhale, and L. C. Kaczmarczyk,

“Selecting Open Source Software Projects to Teach Software
Engineering,” in Proceedings of the 45th ACM Technical Symposium

on Computer Science Education, New York, NY, USA, 2014, pp.

397–402, doi: 10/gf4m2r.
[7] H. J. C. Ellis, G. W. Hislop, and M. Purcell, “Project selection for

student involvement in humanitarian FOSS,” in 2013 26th

International Conference on Software Engineering Education and
Training (CSEE T), May 2013, pp. 359–361, doi: 10/gf4m3f.

[8] H. Ellis, R. A. Morelli, and G. Hislop, “Support for educating

software engineers through humanitarian open source projects,” in
2008 21st IEEE-CS conference on software engineering education

and training workshop, 2008, pp. 1–4, doi: 10/c8xwdd.

[9] C. Chavez, A. Terceiro, P. Meirelles, C. Santos Jr, and F. Kon,
“Free/libre/open source software development in software

engineering education: Opportunities and experiences,” Fórum de

Educaçao em Engenharia de Software (CBSoft’11-SBES-FEES),
2011.

[10] R. Marmorstein, “Open source contribution as an effective software

engineering class project,” in Proceedings of the 16th annual joint

conference on Innovation and technology in computer science

education, 2011, pp. 268–272.

[11] M. Müller, C. Schindler, and W. Slany, “Engaging students in open
source: Establishing foss development at a university,” 2019, doi:

10/ghchgq.
[12] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German,

“Contemporary peer review in action: Lessons from open source

development,” IEEE software, vol. 29, no. 6, pp. 56–61, 2012, doi:
10/ghcmww.

[13] J. Pereira, “Motivating users to online participation. A practice-based

comparison between moodle forums and telegram groups,” The
International journal of engineering education, vol. 35, no. 1, pp.

409–416, 2019.

