
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Plagiarism Detection in Algorithms - a Case Study

Using Algorithmi

António Manso

Techn&Art - Instituto Politécnico de

Tomar, Portugal

manso@ipt.pt

Célio Gonçalo Marques

Techn&Art - Instituto Politécnico de

Tomar, Portugal

celiomarques@ipt.pt

Vitor Alencar

Degree Programme in Computer

Engineering

Instituto Politécnico de Tomar,

Portugal

student 21737@ipt.pt

Paulo Santos

Techn&Art - Instituto Politécnico de

Tomar, Portugal

psantos@ipt.pt

Abstract—Learning to program is crucial in computer

science degree programmes. For students to gain this skill, they

need to practise a lot, since programming is a difficult and

complex process and practice improves it. The courses

"Algorithmics" and "Introduction to programming" have

therefore become almost insurmountable barriers with high

failure rates. To overcome these barriers, researchers have

sought to find new ways of teaching. For their part, students

have looked for ways to succeed with less effort by repeatedly

resorting to plagiarism. The need for classes to be taught

remotely due to the pandemic has further aggravated this

problem. To fight it, we created the Algorithmi tool and

equipped it with a plagiarism detection module. This tool

promotes stand-alone study by allowing self-correction of the

exercises whilst validating authorship. This paper presents a

case study on the application of the plagiarism module to the

exercise resolutions submitted by the students in their personal

repository. Through the analysis of the results obtained we can

conclude that there was a high rate of plagiarism. The current

version of the tool needs to be extended with new features, not

only to become more accurate, but above all to prevent

plagiarism from happening.

Keywords: Algorithmi, Learning Systems, Programming

Languages, Algorithms, tutor, assessment, plagiarism detection

I. INTRODUCTION

Programming is the art of making computers to solve

problems automatically. For this to happen the programmer

needs to have knowledge of problem-solving and

computational logic and master the programming language. A

task which is “considered difficult, complex and categorised

as part of the seven grand challenges in computing education”

[1]. We are therefore facing a challenge that is not met by most

students in the introductory programming modules, leading to

high failure rates [2]. A situation that affects student

willingness to participate and makes class management

increasingly difficult. Introductory programming modules

already have many students due to the demand for

professionals in these areas and school failure further

aggravates the problem.

This scenario has led many researchers to look for new

methodologies, strategies and tools to overcome the problem

[3].

 Simultaneously, students also try to find other ways to

succeed in the module, including plagiarism.

Several studies indicate that academic misconduct, and in

particular plagiarism, is particularly problematic in the

courses of programming [4].

Plagiarism is defined as the action of copying someone

else's work or ideas without giving them credit for it.

 The existence of the Internet with original contents indexed,

searchable and cloneable makes plagiarism accessible at the

distance of a click. On the other hand, the existence of

equipment and instantaneous communication applications

such as smartphones facilitates the plagiarism of exercises

with the transmission of answers to questions between

students in an irregular way. In a regular classroom context,

these factors can be eliminated or at least diminished through

the presence and control of the lecturers. When their presence

is not possible (as was the case during the confinement

induced by the COVID-19 outbreak), these factors contribute

to the increase of plagiarised works from the original sources

and among the students.

Intensive practice is the best way for students to learn how

to program correctly because it improves abstract thinking for

complex problem solving. The need to perform many

exercises in conjunction with overcrowded classes means that

validation of the authorship of the exercises cannot be done

manually by the lecturers in charge. This makes plagiarism

the fastest and easiest way for students to succeed.

The pandemic outbreak caused by COVID-19 and the

need for classes to be held remotely has further aggravated this

situation, leading to the need for a tool that allows stand-alone

coursework and detects plagiarism. It is in this scenario that

the Algorithmi's plagiarism detection module appears.

This paper presents a case study of the use of the

Algorithmi tool in students' answers to programming

exercises in the course “Introduction to Programming” of the

school year 2019/2020.

We start by addressing the issue of plagiarism, and then

explain how Algorithmi detects plagiarism. The case study

and the research conclusions are described below.

II. PLAGIARISM

According to [5], there are four categories of plagiarism:

accidental, where there is no knowledge both of the attitudes

characterised as plagiarism and the understanding of

practices of citation and/or reference practised by the

different educational institutions; unintentional, where the

great amount of information available can, in a certain way,

"influence thoughts and the same ideas can arise through

spoken or written expressions"; intentional, where the

complete work or part of the work of another person is

intentionally copied without mentioning the original author

and; autoplagiarism, where the author uses his/her own

complete work or part of it already published for other

purposes without citing the original.

There are several implications regarding the practice of

plagiarism, some of these implications in the academic field,

according to [6] are: reputation of faculty members and

students, legal issues, financial implications and plagiarised

research. In other words, in general, the act of plagiarism is

considered illegal and can result in severe punishment, such

as the imposition of fines, restriction of professional practice

in a certain position and even imprisonment.

The project Impact of Policies for Plagiarism in Higher

Education Across Europe (IPPHEAE), which took place

from October 2010 to September 2013, makes a comparison

of policies for academic integrity in Higher Education in the

European Union [7]. In this study, a "maturity level" was

calculated for each country using an Academic Integrity

Maturity Model (AIMM). Portugal was ranked 12.79/36,

18th out of the 27 countries involved in the study. In addition,

it was found that: 1) Many of the faculty members and

students who responded to the survey did not understand very

well what is considered plagiarism; 2) few Portuguese

Universities use software to verify the originality of the work

submitted by students; and 3) 77% of the faculty members

and 79% of the students interviewed showed interest in

having more training and information to avoid plagiarism and

academic fraud.

The scenario where students and faculty have no

knowledge about conduct that may constitute plagiarism or

fraud is worrying, because in addition to the legal

implications, plagiarism can also affect student learning,

considering that the simple fact of "copying and pasting"

inhibits critical thinking and the development of logical

reasoning. According to [8], in students' perception, the

practice of plagiarism occurs because: they think that their

practice of plagiarism will not be detected; it is very easy to

copy and paste information from the Internet; ignorance

about how to quote and provide references, the objective is to

complete the coursework rather than focusing on learning;

not being able to express other people's ideas and other

coursework in their own words; not being able to deal with

the workload; not being aware of the penalties related to

plagiarism; not having control on the part of the lecturer

regarding the detection of plagiarism; among other causes.

In addition, [9] identified possible negative

emotions that can predict plagiarism conduct such as stress,

depression or anxiety.

The most common methods of plagiarism according

to [5], are: copy and paste a certain content word by word,

plagiarise an idea, reaffirm the same content using synonyms

or changing the order of sentences, artistic plagiarism, not

citing or referencing the original work, not using quotation

marks (“ ”) when the content used is exactly the same as the

original content, use of incorrect or non-existent sources and

references, translation of content without reference to the

original work and, finally, plagiarism of source code, the

main focus of this work.

A. Plagiarism Detection in Source Code

As already mentioned, plagiarism does not occur only in

textual documents, or image files, but also in source codes.

According to [10], beginner programmers often send

plagiarised codes in practical tasks during the introductory

programming modules.

The possible reasons for the practice of plagiarism as

described by [11] and [12] are: 1) difficulty level of the

exercise higher than the student's programming level; 2)

interest of the student in minimising a large amount of the

task by plagiarising the task of the colleagues; 3) insufficient

time for the completion of the exercises; 4) fear of failure, 5)

lack of interest on the part of the student regarding practical

tasks; 6) lack of merit/recognition and 7) inadequate

resources such as hardware, software, library, teaching staff,

among others.

There are several approaches in the literature regarding

the detection of plagiarism, varying in implementation style

and source code. Above all, it is important to emphasise

initially the difference between detecting plagiarism in text

files and in files derived from codes and algorithms.

According to [13] the verification in text files consists

essentially in looking for direct similarities, verifying the

similarity "line by line" in relation to some other text.

Text file detectors are not effective for verifying

similarities between source files because this approach

cannot verify changes made to the copied code such as

changing variables and possible changes to the structure of

the document [13]. When checking for plagiarism in files

defined as "source code", which are described by languages

and code structures, they are notoriously different and need

to undergo a modelling process in order to be able to compare

them with other source files.

This modelling process usually follows some pre-defined

steps that are established based on each objective and need.

These factors may vary depending on the wide variety of

plagiarism detectors available on the market. The most

common practices for plagiarising source code files imply

changing the code. Such practices range from changing the

name of variables to inserting redundant code snippets.

Figure 1 illustrates some of the most common techniques in

source code plagiarism. In literature, these practices are

characterised by "blinding methods", where the plagiarist

aims to hide code snippets that are originally from another

person.

Figure 1 - Source code obfuscation techniques

Determining the level of similarity between two source

codes is a difficult task and several automatic tools have been

developed to help lecturers in the arduous task of detecting

cases of plagiarism. Examples of these software tools are

MOSS (Measure of Software Similarity) [14] and Jplag [15].

These tools use advanced techniques to compare small

fragments of source code at the syntactic level, calculating

the fingerprint of a code segment, using the winnowing

algorithm. These tools implement mechanisms that allow the

detection of plagiarism using the obfuscation techniques

presented in Figure 1.

III. PLAGIARISM DETECTION IN ALGORITHMI

Algorithmi is an information system to support

learning programming consisting of a multi-platform

application (IDE) designed to help students take their first

steps in programming and a server which provides various

services that can be accessed directly from a web browser,

Figure 2.

Figure 2 - Information system architecture of Algorithmi

The application is available for free at

www.algorithmi.ipt.pt, and allows students to encode the

algorithms using flowcharts or pseudocodes. The application

internally uses a marker-based language, GAL (Generic

Algorithm Language) [16], which is translated into the

student's natural language for editing and viewing. This way

the algorithm can be viewed and edited in different natural

languages such as Portuguese, English or Chinese.

 The GAL language supports the definition of simple and

indexed variables of several types: integer, real, logical and

text; it has I/O console instructions; it allows to control the

execution flow through decisions and iterations and supports

the definition of subalgorithms which can be recursive. This

set of instructions allows coding complex algorithms through

a set of tools designed for teaching and learning algorithms.

The algorithm can be edited in both languages and its

visualisation can be displayed simultaneously as shown in

Figure 3.

Figure 3 - Simultaneous editing and display of an

algorithm.

The IDE not only shows and allows editing the

flowchart and pseudocode, but also allows the display in

several programming languages (Python, Java, C, C++, C#,

PHP and JavaScript), Figure 4.

The server component is available through registration

and authentication in the same domain. The server used was

implemented with open-source technologies Apache,

MySQL and PHP that allow the provision of various features

to the information system. This server provides services that

access a common database: Backoffice - a web application

used by faculty, Frontoffice - a web application where

students can find solved problems and their score, and an API

- a set of REST web services ttha includes plagiarism

checker.

Figure 4 – Automatic translation of the algorithm to

Java language and Javascript language

The backoffice component is used by faculty to create and

make available programming exercises that can be accessed

through the IDE, provided that the student is authenticated in

the information system. The programming exercises can be

corrected automatically and, in case of errors, the IDE

provides a description of the errors made by students. This

feature is particularly important in order to promote

autonomous learning by students, as the IDE helps students

verify that their algorithms are correct, and provides clues for

their resolution.

After solving the exercises, the students submit them to

the server that stores them in the student's personal

repository. The student can visualise the resolution of their

exercises in a web environment using the same tools as the

IDE: flowchart, pseudocodes or programming languages; and

can also execute them by translating them into Javascript

embedded in a web page.

a)

b)

Figure 5 - Programming exercise: a) Problem

Statement; b) Automatic correction of the exercise by the

IDE.

A. Plagiarism control in Algorithmi

Algorithmi encourages stand-alone programming through

the exercise assessment tool and the tutorial system that

identifies errors. Problem repository is one of the forms of

assessment that can be used to assign a score to students, and

the provision of a roll of honour listing the names of the

students with the highest scores. Gamification is a key

component in learning environments to maintain students’

motivation to solve more complex exercises [16] [17].

The pressure to get a good score in the repository and the

opportunity to belong to the roll of honour make students

plagiarise some coursework. The IDE provides some tools

that limit source code plagiarism. The exercises provided by

the server to the IDE are marked with the username which

prevents other students from taking them as their own. The

exercise delivery and assessment module is only available for

authenticated users and the programs of that user. The other

tool that prevents plagiarism is the cut and paste tool. Pasting

from software programmes within and outside Algorithmi are

only allowed within software programmes of the same user.

This way we prevent the source code from being shared

between users.

With the help of these two features we can ensure that the

algorithm was built by the authenticated user, but we can not

ensure that it was not copied from another user.

In order to inform the lecturer of this type of plagiarism,

we introduced the plagiarism detection module in the

information system to compare the similarity between the

resolutions of the students submitted in their repository. The

module was developed using JPlag (sources available at

https://github.com/jplag/jplag) which communicates with the

information system through a web service. Due to the

Algorithmi's ability to convert the algorithm into various

programming languages, we use the Java language to

compare source codes and detect plagiarism.

 The service receives as passing parameter two

programmes in Java and returns a number in the interval

[0.100] that represents the plagiarism prevalence rate. The

results are presented through the backoffice with the results

of the plagiarism prevalence rate for each programming

exercise and with aggregate information for each worksheet

and for each student.

IV. CASE STUDY

This section analyses the application of the plagiarism

module to the exercises submitted in the course “Introduction

to Programming” of the CteSP programme in Information

Systems Technologies and Programming offered at the

Escola Superior de Tecnologia de Tomar - Instituto

Politécnico de Tomar. The course covers the basic

programming concepts: variables, operators, functions and

control flow. One of the assessment components of the course

is made based on the portfolio of programming exercises

submitted by students. The exercises are divided into 15

worksheets with a total of 480 different exercises which cover

the various subject contents. In each worksheet, the exercises

have difficulty levels:

o Demonstration - Solved exercises and problems that

are provided to students to demonstrate a new concept.

These exercises are crucial for stand-alone learning

and students can edit them in order to check the

outcome of these changes.

o Easy - Exercises that are easy to solve and are usually

variants of demonstration exercises.

o Normal - Medium-difficulty exercises

o Difficult - High-difficulty exercises where algorithmic

techniques are explored, especially in the limit cases.

o Challenging - Challenging exercises whose resolution

depends on the combination of several complex

algorithmic techniques

The greater the difficulty of resolution, the more points

the student earns, improving his ongoing assessment

component and consequent rise in the roll of honour position.

Plagiarism in demonstration exercises is almost 100%. The

lecturer-in-charge provides the resolution, the students can

then execute and submit it and consequently the resolutions.

Figure 6 gives the plagiarism prevalence rate of an easy

exercise solved by 18 identified students from S01 to S018,

and whose plagiarism indexes were provided by the

plagiarism detection module. The numerical information is

presented in tabular form with the plagiarism prevalence rate

between each of the submissions for the same exercise,

together with a colour that ranges between green and red for

easier reading of the results. By the empirical analysis of the

preliminary results we consider that two algorithms are

plagiarised if their similarity is equal to or higher than 90%.

This information is presented in the last row and in the last

column of Figure 6 and is useful to verify the degree of

originality of the resolution of the exercise. In Figure 6 we

can see that there are 10 resolutions that the system identifies

as plagiarised and one that differs from all the others. This

plagiarism prevalence rate is natural, since it is an easy

exercise based on a similar demonstration problem.

Figure 6 – Plagiarism detection results in an easy exercise

Figure 7 – Plagiarism detection results in a difficult

exercise

Figure 7 gives plagiarism detection results in a difficult

exercise. Due to the complexity of the algorithm that solves

the exercise, the cases identified as plagiarism will be really

plagiarism. In that figure we can identify a set of students who

have a degree of similarity of 100% and a set of unique

resolutions.

The previous figures present various information about

the rate of plagiarism of worksheet exercises. The course has

a strong component of stand-alone work and the great

majority of the exercises are completed outside the contact

hours, however the students continue to maintain contact with

each other. Since Algorithmi does not allow you to make full

copies of exercises, even if students exchange solutions with

each other, they will have to edit the algorithms themselves.

For these reasons, the plagiarism rates of the exercises in the

worksheets are high.

Figure 8 gives the plagiarism prevalence rate in an

assessed practical test. Assessed practical tests are done

individually during the contact hours and in the presence of

the lecturer. The class is divided in shifts to increase the

physical distance between students and the time for solving

the exercises is limited. From the results presented in Figure

8 we can see that the plagiarism prevalence rate has

decreased, however we can see that there are at least three

resolutions that the system has identified as 100% plagiarism.

Figure 8 – Plagiarism detection results in an assessed

practical test.

Student portfolios consists of more than 7,000 exercises

evaluated by the Algorithmi module to obtain a grade and by

the plagiarism module to obtain the similarity index.

Figure 9 gives an overview of average plagiarism in each

student's exercises and the percentage of exercises solved.

The overwhelming majority of students have solved more

than 50% of the proposed exercises and more than half have

solved more than 90%. This statistic shows the work and

commitment of the students in solving the exercises and

because "you only learn to program by programming" the

result was reflected in the score of the repository.

Another important conclusion is that the plagiarism

prevalence rate varies according to the number of exercises

solved by the students. Students with fewer solved exercises

tend to plagiarise more, due to their learning difficulties.

 Since Algorithmi doesn't let you make direct copies and

deliver them as your own, plagiarising takes work and

students replace the work of thinking and creating with the

work of copyists that is far less rewarding.

 Average levels of plagiarism have always remained high, in

the order of 80%, which suggests a high rate of plagiarism.

Figure 9 – Student portfolios: percentage of exercises

solved and rate of plagiarism.

V. CONCLUSIONS

This paper presents the plagiarism detection module

introduced in the information system of Algorithmi. This

work was carried out with the support of a student of the

Computer Engineering degree as part of his final project and

Alunos S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 >=90%

S01 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S02 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S03 76 76 100 76 100 76 69 76 100 76 76 98 100 98 76 76 100 76 7

S04 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S05 76 76 100 76 100 76 69 76 100 76 76 98 100 98 76 76 100 76 7

S06 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S07 72 72 69 72 69 72 100 72 69 72 72 68 69 68 72 72 69 72 1

S08 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S09 76 76 100 76 100 76 69 76 100 76 76 98 100 98 76 76 100 76 7

S10 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S11 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S12 74 74 98 74 98 74 68 74 98 74 74 100 98 100 74 74 98 74 7

S13 76 76 100 76 100 76 69 76 100 76 76 98 100 98 76 76 100 76 7

S14 74 74 98 74 98 74 68 74 98 74 74 100 98 100 74 74 98 74 7

S15 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S16 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

S17 76 76 100 76 100 76 69 76 100 76 76 98 100 98 76 76 100 76 7

S18 100 100 76 100 76 100 72 100 76 100 100 74 76 74 100 100 76 100 10

>=90% 10 10 7 10 7 10 1 10 7 10 10 7 7 7 10 10 7 10 8,3

Alunos S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 >=90%

S01 100 83 90 75 75 64 49 99 68 100 83 92 93 83 83 100 41 54 7

S02 83 100 63 69 69 54 47 52 41 83 100 91 72 100 100 83 59 59 5

S03 90 63 100 58 58 50 50 89 68 90 63 71 72 63 63 90 41 55 4

S04 75 69 58 100 100 64 38 74 50 75 69 76 73 69 69 75 41 42 2

S05 75 69 58 100 100 64 38 74 50 75 69 76 73 69 69 75 41 42 2

S06 64 78 50 64 64 100 69 74 46 64 78 78 72 78 78 64 57 49 1

S07 49 47 50 38 38 69 100 52 67 49 47 46 47 47 47 49 63 77 1

S08 99 52 89 74 74 74 52 100 69 99 52 89 92 52 52 99 44 52 5

S09 68 41 68 50 50 46 67 69 100 68 41 47 64 41 41 68 53 91 2

S10 100 83 90 75 75 64 49 99 68 100 83 92 93 83 83 100 41 54 7

S11 83 100 63 69 69 54 47 52 41 83 100 91 72 100 100 83 59 59 5

S12 92 91 71 76 76 78 46 89 47 92 91 100 81 91 91 92 61 66 8

S13 93 72 72 73 73 72 47 92 64 93 72 81 100 72 72 93 39 52 5

S14 83 100 63 69 69 54 47 52 41 83 100 91 72 100 100 83 59 59 5

S15 83 100 63 69 69 54 47 52 41 83 100 91 72 100 100 83 59 59 5

S16 100 83 90 75 75 64 49 99 68 100 83 92 93 83 83 100 41 54 7

S17 41 59 41 41 41 57 63 44 53 41 59 61 39 59 59 41 100 55 1

S18 54 59 55 42 42 49 77 52 91 54 59 66 52 59 59 54 55 100 2

>=90% 7 5 4 2 2 1 1 5 2 7 5 8 5 5 5 7 1 2 4,1

Alunos S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 >=90%

S01 100 51 70 60 51 52 84 51 100 41 2

S02 51 100 51 46 100 81 49 60 51 61 2

S03 70 51 100 60 51 52 84 51 100 41 2

S04 60 46 60 100 46 47 58 46 60 53 1

S05 51 100 51 46 100 81 49 100 51 61 3

S06 52 81 52 47 81 100 50 81 52 63 1

S07 84 49 84 58 49 50 100 49 84 39 1

S08 51 60 51 46 100 81 49 100 51 61 2

S09 100 51 100 60 51 52 84 51 100 41 3

S10 41 61 41 53 61 63 39 61 41 100 1

>=90% 2 2 2 1 3 1 1 2 3 1 1,8

was designed to increase the effectiveness of this system for

teaching/learning computer programming.

This module was applied to the course which was

taught in the first semester of the school year 2019/2020 to

check the rates of plagiarism in the students repository.

It was found that the rates of plagiarism are high,

especially in the worksheets completed outside contact hours.

In assessed practical exercises, whose objective is to assess

knowledge, the plagiarism rates are significantly lower. This

is because the exercises are more difficult, the students have

a limited time for their resolution and were solved during

contact hours. Nevertheless, the system detected several

cases of plagiarism.

With the COVID-19 forced confinement of students and

staff, in which the majority of teaching was delivered

remotely, the module now developed has assumed greater

significance. The work developed corresponded to

expectations and above all opened new horizons that will be

explored in future versions.

In the future, we intend to apply the online module where

the system registers and informs the student about the

originality of the submitted code. In the offline version,

whose results we present here, we only know which exercises

are plagiarised, but we do not know the original source. With

the online version, the first exercise to be submitted has a

maximum degree of originality while copies submitted later

will see their originality diminished. This way we intend to

stimulate the development of different algorithms for the

same problem, increasing the gamification already present in

Algorithmi.

The fact that students realise that the system has a system

that detects plagiarism may serve as a deterrent for them to

avoid less ethical behaviour and channel their energy to the

development of algorithmic reasoning, because in Algorithmi

plagiarism also takes work.

REFERENCES

[1] Derus, S., & Ali, A. Z. M. (2012). Difficulties in learning programming:

Views of Students, In 1st International Conference on Current Issues in

Education (ICCIE 2012).

[2] Butler, M. & Morgan, M, (2007). “Learning challenges faced by novice

programming students studying high level and low feedback concepts”,

ASCILATE 2007 Singapore, pp. 99-107.

[3] Tan, P.-H., Ting, C-Y, Ling, S-W (2009). Learning Difficulties in

Programming Courses: Undergraduates' Perspective and Perception, In

Computer Technology and Development (ICCTD '09).

[4] Jian, H. L., Sandnes, F. E., Huang, Y. P., Cai, L., & Law, K. M. Y. (2008).
On students' strategy-preferences for managing difficult course work. IEEE

Transactions on Education, 51(2), 157-165.

[5] H. Maurer, F. Kappe e B. Zaka, Plagiarism - A Survey, Journal of
Universal Computer Science, 2006, 12(8), pp. 1050-1084. Available:

http://jucs.org/jucs_12_8/plagiarism_a_survey/jucs_12_08_1050_1084_ma

urer.pdf

[6] O. P. Rajasree, A. H. Mangala e U. T. Sunil Kumar, An Overview of

Plagiarism and Intellectual Property Issues, National Conference on

Academic Libraries in E-learning Environment: Role and Prospect, 2020,

ISSN: 0474-9030, 68.

[7] I. Glendinning, T. Foltynek, C. Demoliou, K. Joswik, L. Stabingis e A.

Stulginkis, Comparison of policies for Academic Integrity in Higher

Education across the European Union, 2013.

[8] I. Glendinning, K. Joswik e A. Michałowska-Dutkiewicz, Plagiarism

Policies in Portugal, full report , 2014.

[9] I. K. Tindall e G. J, Curtis, Negative Emotionality Predicts Attitudes

Toward Plagiarism, Journal of Academic Ethics, 2020, 18, pp. 89-102.

[10] Vogts, D. Plagiarising of source code by novice programmers a “cry for
help”? 2009 Annual Research Conference of the South African Institute of

Computer Scientists and Information Technologists, 141-149.

[11] Vamplew, P., & Dermoudy, J. An anti-plagiarism editor for software
development curses. 7th Australasian Computing Education Conference.

Retrieved March 21, 2007, from http://

crpit.com/confpapers/CRPITV42Vamplew.pdf

[12] A. G. Liaqat & A. Ahmad. Plagiarism Detection in Java Code. Linnaeus

University. School of Computer Science, Physics and Mathematics.

Retrieved June 26, 2011.

[13] Sheard, Judy & Dick, Martin & Markham, Selby & MacDonald, Ian &

Walsh, Meaghan. (2002). Cheating and plagiarism: Perceptions and practices
of first year IT students. ACM Sigcse Bulletin. 34. 183-187.

10.1145/637610.544468.

[14] Schleimer ,S.; Wilkerson,S., Aiken, A. - Winnowing: local algorithms
for document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD

international conference on Management of data. ACM, 76–85, 2003

[15] Prechelt, L, Malpohl, G, Philippsen , M. Finding plagiarisms among a

set of programs with JPlag. J. UCS 8, 11 (2002), 1016, . 2002

[16] Manso, A., Marques, C.G., Santos, P., Lopes, L. & Guedes, R. (2019).

Algorithmi: Bridging the Algorithms to Natural and Programming
Languages., in 15th China-Europe International Symposium on Software

Engineering Education. Lisbon, Portugal, May 30-31, 2019

[16] Manso, A., Marques, C.G., Santos, P. (2019). Algorithmi IDE –
Integrated learning environment for the teaching and learning algorithms, in

21º International Symposium on Computers in Education (SIIE). Tomar,

Portugal, 2019

[17] Manso, A., Marques, C.G., Santos, P. (2019). Teaching and Learning

How to Program with Algorithmi., in 21º International Symposium on

Computers in Education (SIIE). Tomar, Portugal, 2019

