
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Gamification Experience with Scratch in Teaching

Programming in a Vocational Training Classroom

Antonio García-Gutierrez

Computer Science Department

Universidad Rey Juan Carlos

Móstoles, Madrid, España

a.garciagu.2018@alumnos.urjc.es

Raquel Hijón-Neira

Computer Science Department

Universidad Rey Juan Carlos

Móstoles, Madrid, España

https://orcid.org/0000-0003-3833-4228

Abstract— This article analyzes the impact that the use of an

application with gamified environments can have on the

learning of theoretical programming concepts and on the

development of students' computational thinking. The

application offers theoretical and practical learning

environments based on the Scratch programming software. For

this analysis, a pilot experience has been carried out in which

the application is tested with students. The aim is to analyze the

progress of both the student's learning of theoretical concepts

and the development of computational thinking. For this, two

tests have been carried out, analyzing the results, collecting data

by performing a pre-test and post-test.

Keywords— Programming, Computational Thinking, Scratch,

Gamification

I. INTRODUCTION

Currently, video games are one of the most direct ways
that children and young people have to interact with
computers. Their ability to encourage participation can be of
great help when it comes to involving the student and fostering
a competition that encourages learning by awarding badges.
By promoting a context of participation, the student breaks
with the feeling of frustration that the appearance of obstacles
in their training can cause and is useful to motivate students to
carry out tasks that are complicated.

An experience is presented in the use of an application for
the teaching of programming and computational thinking of
gamification in professional training. A pilot experience was
carried out that consisted of carrying out a pre-test of
theoretical knowledge and computational thinking. Once the
tests prior to the interventions had been carried out, theoretical
concepts were explained from the Scratch-based application,
making examples of the different concepts.

Once the interventions had been completed and all the
concepts were explained, a post-test was carried out to
evaluate the students' progress, comparing the results obtained
both in the pre-test and in the post-test and determining if there
had been significant progress.

II. STATE OF THE ART

A. Status of Gamification

Nowadays, society is faced with numerous technological
and social changes. Technology changes the way society
interacts and facilitates access to new knowledge.
Gamification responds to this need for motivation,
transporting game scenarios to formal educational contexts, in
order to involve students and open the door to the acquisition
of learning. To do this, it is necessary to surround students in
playful environments, facing challenges and missions,

increasing their commitment and increasing their
participation.

It is reasonable to think that an activity that is surrounded
by a similar technological environment and that uses the same
components and dynamics as these games can motivate and
change the student's perception of academic activities,
resulting in more attractive and motivating performance.
Three lines of work stand out that seek to gamify education..

The first seeks to use games in a controlled way, the
teacher chooses the game and the moment, so that the student
acquires the skills and abilities that are supposed to appear in
them. The second way seeks to use the characteristic elements
of the games (the levels, the points, the medals, the interface
...) to take advantage of the students' predisposition to play to
increase the motivation for learning. The third way is to
redesign a learning process as if it were a game. The teacher
must design the subject in such a way that the student has to
play and acquire knowledge, skills and competences [1].

It is necessary to define what conditions a process must
meet to be considered a game or object to be gamified. The
requirements or conditions are reduced to the fact that the
activity carried out by the game or process can be learned by
the user, that the feedback can be delivered in a pertinent way
to the user and that the actions carried out by the player
throughout the development of the game. process or activity
can be measured [2].

Figure 1. Hierarchy of gamification elements [3]

The components suppose the badges, points, rankings and
other elements that manage to implement the mechanical and
dynamic elements. The mechanical elements are made up of
all those elements that make the game user act in the game. It
can be the obtaining of a reward, a challenge or the same
competition between users within the same class or center.
Finally, the dynamic part is made up of the concept of the
game.

To achieve the objective, the game must integrate all these
elements, in addition to achieving the student's motivation,
which may be intrinsic, when the student seeks to carry out
activities for their own interest, or extrinsic, when the student
performs the tasks for a reward you can get.

The teaching of programming is closely tied to
computational thinking. Solving the problems using a series
of instructions structured and sequenced in such a way that
they allow to reach the resolution of the problem.

Therefore, it is necessary that, when learning
programming, students structure the resolution of a problem
analytically; analyzing the problem and establishing and
ordering a series of steps to follow to solve the problem.

A simple tool when working on computational thinking is
Scratch, since it allows the student to interact with a simple
programming language, in which the programming language
is sequenced by blocks, eliminating much of the complexity
of the programming languages. programming and allowing
focus on the logic and structure of problem solving, thus
working computational thinking.

It is worth highlighting the role that the Dr. Scratch
application can play in this part of learning. This application
allows you to correct, analyze and catalog the degree of
learning of a project by assigning a score distributed among
the different computational concepts.

It is important to highlight the analysis of the Dr. Scratch
application that was carried out in a program made up of 109
elementary and high school students in which it was intended
to analyze the progress of computational thinking using the
Scratch programming tool. To do this, some work sessions
with Scratch were carried out, and the Dr. Scratch tool was
also presented to the students so that students could practice,
develop and correct their own codes through the tool.

To measure the progress of these students, a pre-test and
post-test were carried out before and after practicing with the
tool. The results were analyzed by means of a t-test,
establishing a level of significance alpha = 0.05, returning a
result of p <0.05, so it could be stated that the learning was
significant.

Another significant experience was the development of a
study carried out in sixth grade students whose objective was
to verify whether the Scratch programming tool allows the
development of computational thinking. The methodology of
work with these subjects consists of 4 phases.

A first phase in which a Scratch guide is developed as a
learning resource. The guide consists of 5 units in which
different activities are developed that increase the difficulty.
The guide is aimed at subjects who do not have any knowledge
of programming and use of Scratch.

A second phase where the guide is developed with the
students and proposed exercises are worked on. This second
phase occupies 14 sessions of 45 minutes where the subjects
work with the teacher the concepts and activities proposed in
the guide. In the third phase, the evaluation of computational
thinking is carried out by means of a test.

In the last phase, the analysis of the data obtained is carried
out. Due to the positive results obtained, it can be concluded
that the Scratch programming software is a good tool to
develop computational thinking at an early age [5].

Another interesting example for the introduction of
theoretical concepts and computational thinking at an early
age is RoDy. It consists of two parts: on the one hand, an
application that allows teachers to generate their own
activities according to the syllabus and, on the other hand, a
robot that allows students to interact with the application. This
robot is represented in the game by a virtual agent in the shape
of a bear, which will interact with users through dialogues [7].

As a future project for the integration of gamification in
the classroom, it is worth highlighting the proposal of the
GameMo module for Moodle, which will allow integrating the
most common elements of gamified courses within the
Moodle platform, thus facilitating the teaching work for the
implementation of gamified courses. Once an initial prototype
has been developed, it will be tested in real environments by
means of a quantitative usability assessment, leaving it open
to future improvements after tests in real environments [6].

B. Hypothesis

Due to the need to study and analyze the impact that the

application can achieve in the learning and development of the

theoretical concepts of programming and computational

thinking. Therefore, the hypotheses to be determined are the

following:
• H1: With the methodology / intervention proposal,

learning in programming concepts can be improved.

• H2: With the methodology / intervention proposal,
one can improve the learning of Computational Thinking.

III. METHODOLOGY

The methodology to be followed in the interventions
consists of developing the theoretical concepts outlined in the
application guide. The development of the concepts consists
of a first theoretical part in which the teacher explains and
defines the concept that will be worked on in that topic, and
later a practical part in which the student interacts with
different programs developed in the software-based
application Scratch programming.

For the development of the interventions a local web
application is used that uses the Scratch block programming
software.

At the beginning of the application there is a main page
where the different topics to be developed by the students are
shown. The application consists of two parts, presentations
(Figure 2) and practical (Figure 3).

Figure 2. Screen of the interactive presentation of

the theoretical concepts on Computational Thinking

Figure 3 Scratch Practice Screen.

The presentation part is used to support the teacher in the
presentation and development of theoretical questions. It
offers an environment in the form of a blackboard in which
theoretical questions are exposed, defining the concepts
explained clearly and schematically and giving simple
examples from day to day, thus facilitating the understanding
of the theoretical concept.

The practical part offers an interactive environment in
which the student can put into practice the concepts previously
explained by the teacher. For this, the application has different
exercises developed with the Scratch programming software.

The topics developed in the application are the following:

 Topic 1: Sequences.

 Topic 2: Variables and data.

 Topic 3: Operators.

 Topic 4: Conditionals.

 Topic 5: Loops.

 Topic 6: Events.

 Topic 7: Parallelism and synchronization.

 Topic 8: Computational thinking.

IV. EXPERIMENTATION

A. Participants and sequencing

The participants are 1st grade administrative students, a

group made up of 9 students aged between 16 and 17 years.

The students belong to an institute in the province of Toledo.

This group is chosen for accessibility and availability of the

sample. Figure 4 shows the level of programming knowledge

of the participating students. Most of them state that they do

not have any prior knowledge about programming and,

furthermore, they see theoretical concepts as abstract and

difficult to understand.

In the first intervention, the activity was explained to the

students. Before starting to work with the application, the
theoretical concepts and computational thinking pre-tests
were carried out. The session took place with the regular
teacher, where the activity was explained to the students. The
duration of the session was 50 minutes and the concepts
sequences, variables, operators and conditionals were
explained with examples in Scratch.

Figure 4 Percentage of students with prior

computer knowledge

In the second intervention, the activity was resumed from
the point where the previous session left off. The session
lasted 50 minutes and the rest of the concepts (loops, events,
parallelism and computational thinking) were explained. In
addition, the two post-tests were carried out, thus ending the
interventions.

B. Data collection

Two tests were used to collect samples. The first of them
has been used to analyze the progress of knowledge of
theoretical concepts, and the second has been used to measure
progress in computational thinking experienced by the student
thanks to the application. The research carried out is carried
out within the framework of quantitative research, describing
the observed reality and establishing a cause-effect
relationship, explaining the results obtained. A quasi-
experimental method will be followed, since due to the
number of students it has not been possible to separate the
sample into a test group and a control group. The two tests
(pre-tests) will be applied before starting the sessions, and the
two tests at the end (post-tests).

To carry out both questionnaires, the Google Docs forms
tool has been used due to the ease of use and accessibility of
the application.

The theoretical knowledge test consists of 16 questions,
both multiple choice questions and open questions. The
objective of the test is to evaluate how the application has
influenced the learning of theoretical concepts. An example of
the questions that make up the theoretical knowledge test is
shown in Figure 5.

Figure 5 Theoretical concepts test

The computational thinking test consists of 28 questions,
with closed questions in which the student must choose
between 4 options, only one of them being the correct answer

67%

33%

% ALUMNOS CON CONOCIMIENTOS EN
SCRATCH

NADA

POCO

(Figure 6). The computational thinking test is based on the
work carried out by Román González, establishing the criteria
for the elaboration of the test [4].

Figure 6 Computational thinking test

C. Analysis of the results

To evaluate the degree of significance of the learning of
the theoretical concepts, the t_test for dependent samples has
been performed, obtaining the following results (see Table 1
and Figure 7):

Table 1 Results T-test theoretical concepts

Var. Obs. Min. Max. Media

Typ.

Devia

.

PRE-

TEST

GRADE 9 1,538 4,038 2,393 0,764

POST-

TEST

GRADE 9 2,692 6,154 4,509 1,397

The results observed in Table 1 and in Figure 7, on which
the t_test has been carried out, show a value p = 0.002, well
below the alpha value = 0.05, so it can be stated that learning
the concepts theoretical has been significant.

Figure 7 Boxplot of the t_test for samples of theoretical

concepts

To verify that learning has been significant in the
computational thinking test, the T_test is performed again,
obtaining in this case a p-value = 0.316 that is greater than the
alpha value = 0.05 (see Table 2 and Figure 8).

Table 2 Results T-test theoretical concepts

Var. Obs. Min. Max. Media

Typ.

Devia

.

PRE-

TEST

GRADE 9 1,071 7,143 5,198 1,899

POST-

TEST

GRADE 9 2,500 8,214 5,675 2,146

Figure 8 Boxplot of the t_test for the Computational Thinking

samples.

Although in most cases a slight evolution is observed (see
Figure 6), this is not significant as has been observed in the
learning of theoretical concepts. In addition, we find the
average obtained both in the pre-test and post-test (marked
with quite a few crosses) quite close to each other. This lower
evolution is attributed to the fact that computational thinking
requires a systematic change in the way of thinking,
analyzing and approaching problems much more profound
than that obtained during the development of the sessions.

Analyzing separately the results obtained in the different
theoretical concepts, it is observed that the concepts that have
presented the most difficulty among the students have been
the concepts of events, conditionals and variables. Instead, the
concepts where the greatest progress can be seen have been
the concepts of parallelism, events, and operators.

V. CONCLUSIONS

When comparing the results obtained with the results
obtained in the experience described in section II. State of the
art, in which the Dr. Scratch tool was used for its analysis, it
is observed that the development of computational thinking is
not significant, unlike the results analyzed with the use of the
Dr. Scratch application that are described in that study.

Although in the present study, the learning of theoretical
concepts has been significant, the application for the teaching
of programming and computational thinking used has not had
enough impact to achieve the development of computational

thinking with a sufficiently significant degree. The main
difference with respect to the previous study is that the
members of the study of this tool worked for weeks using the
Scratch application, achieving a knowledge base that would
help them progress more quickly when they started working
with the Dr. Scratch.

At the beginning, the students had a certain feeling of
rejection of the intervention approach, when they conceived
the programming as something difficult and distant. Thanks to
the intervention, most of the students abandoned this feeling
that causes ignorance of concepts, they learned that
programming is based on thoughts and logic present in
everyday life. At the end of the sessions, although it is not
directly related to the professional field of the higher grade,
the activity was very well received by the students.

In view of the results, the duration of the interventions has
been sufficient to achieve a significant learning of theoretical
knowledge, but not to achieve enough impact to develop
computational thinking, although it does improve it. How it
improves future interventions, a higher number of sessions is
proposed, or failing that, an increase in their duration that
allows students, apart from the theoretical explanation and
interaction with the application programs, to develop your
own codes with teacher guidance.

The results obtained reflect a better understanding of the
theoretical concepts after the sessions. In the case of the
theoretical concepts test, once the sessions are over, an
evolution is observed in all the students, being more
noticeable in some students, and to a lesser extent in the rest
of the students. The results of the t-test were positive,
observing a significant degree of learning. The time of the
interventions and the use of the application was correct to
develop, in students who had no prior programming
knowledge, the theoretical concepts that make up
computational thinking.

It is concluded, therefore, that the use of the application
has notably improved the disposition of students to learn and
understand theoretical concepts that they conceived as
difficult. After the sessions, the students have significantly
improved their knowledge of these concepts, thus confirming
the first hypothesis raised. This has not been the case in
computational thinking, in which more sessions may be
needed to provoke a more profound change in the
methodology and approach that these students have to address
problems (second hypothesis). The results reflected in the t-
test indicate that, although there is an improvement and a
development in the learning of computational thinking, it does
not reach a significant degree, rejecting the second hypothesis
raised.

One possible reason may be that the study subjects did not
have previous programming knowledge, therefore, it is
possible that the duration of the sessions and the application
work, although they have had positive results, have been
insufficient to achieve a significant development of the
program. computational thinking. How aspects of
improvement can be considered increasing the number and
time of the sessions, being able to delve more deeply into the
contents of the application.

The work with the students has been fun and fluid and, in
general, they have perceived the sessions as something
positive, a way of learning in a fun way, creating a relaxed
atmosphere in the class dynamics in which the students were

encouraged to participate. actively. The concepts that the
students previously perceived as abstract and difficult to
understand have been worked on in an easy way interacting
with the different examples designed in Scratch, which allow
the assimilation of theoretical concepts.

ACKNOWLEDGMENT

This work has been funded by the research projects

iPROG: New generation of tools for learning Programming

with emerging interactive technologies from MINECO (ref.

TIN2015-66731-C2-1-R) and e-Madrid: Research and

Development of Educational Technologies in the Community

of Madrid (ref. P2018 / TCS-4307).

REFERENCES

[1] Fidalgo, A. (2014, 26 de marzo). Qué es gamificación educativa.
Innovación Educativa. Blog de Ángel Fidalgo para reflexionar sobre
innovación educativa. Recuperado de
http://innovacioneducativa.wordpress.com/2014/03/26/que-es-
gamificacion-educativa

[2] Cook, W. (2013). Training Today: 5 Gamification Pitfalls. Training
Magazine. Recuperado de:
http://www.trainingmag.com/content/training-today-5-gamification-
pitfalls.

[3] Hunter, D., & Werbach, K. (2012). Gamificación. Revoluciona tu
negocio con las técnicas de los juegos.

[4] Román-González, M., Pérez-González, J.C., Jiménez-Fernández, C.
(2017). Which cognitive abilities underlie computational thinking?
Criterion validity of the Computational Thinking Test. Computers in
Human Behavior, 72, 678-691. doi:
https://doi.org/10.1016/j.chb.2016.08.047.

[5] Álvarez Rodríguez, M. (2017). Desarrollo del pensamiento
computacional en educación primaria: una experiencia educativa con
Scratch.. Universitas Tarraconensis. Revista de Ciències de l'Educació,
1(2), 45-64. doi:https://doi.org/10.17345/ute.2017.2.1820.

[6] García-Iruela, M., & Hijón-Neira, R. (2018). Propuesta de interfaz de
gestión de entornos gamificados en Moodle.

[7] Hidalgo Rueda, L., Pérez-Marín, D. “RoDy: peluche robótico para
enseñar a compartir en Educación Infantil. 21st International
Symposium on Computers in Education (SIIE 2019).pp:101-106.

http://innovacioneducativa.wordpress.com/2014/03/26/que-es-gamificacion-educativa
http://innovacioneducativa.wordpress.com/2014/03/26/que-es-gamificacion-educativa
http://www.trainingmag.com/content/training-today-5-gamification-pitfalls
http://www.trainingmag.com/content/training-today-5-gamification-pitfalls
https://doi.org/10.1016/j.chb.2016.08.047

