
A Data-Driven Approach to Automatically
 Assessing Concept-Level CS Competencies

Based on Student Programs

ABSTRACT
The rapid increase in demand for CS education has given rise to
increased efforts to develop data-driven tools to support adaptive
CS education. Automated assessment and personalized feedback
are among the most important tools for facilitating effective
learning experiences for novice students. An important first step in
providing effective feedback tailored to individual students is
assessing their areas of strength and weaknesses with regard to core
CS concepts such as loops and conditionals. In this work, we
propose a hypothesis-driven analytics approach to assessing
students’ competencies of core CS concepts at a fine-grained level.
We first label programs obtained from middle grades students’
interactions with a game-based CS learning environment featuring
block-based programming, based on a rubric that was designed to
assess students' competency in core CS concepts from their
submitted programs. Then, we train a variety of regression models
including linear, ridge, lasso, and support vector regression models,
as well as Gaussian process regression models to infer students’
scores for each of the identified CS concepts. The evaluation results
suggest that Gaussian process regression models often outperform
other baseline models for predicting student competencies of core
CS concepts with respect to mean squared error and adjusted
coefficient of determination. Our approach shows significant
potential to provide students with detailed, personalized feedback
based on their inferred CS competency levels.

KEYWORDS
Automated Program Assessment, Concept-Level CS Assessment,
Gaussian Process Regression, Evidence-Centered Assessment
Design

1. INTRODUCTION
As programming has become a fundamental skill in the digital
economy, the interest in learning how to program at early ages is

rapidly growing [15,37]. However, the complexity of syntax in
text-based programming has been found to be a barrier for novice
learners [13,14]. To address this challenge, block-based
programming environments have replaced textual syntax with
visual and elaborative blocks that utilize descriptive text, color, and
shape to facilitate programming for novice learners [13,25]. This
is particularly beneficial for traditionally underrepresented groups
in computer science [6]. Despite the syntax barrier elimination,
effective and tailored scaffolding and feedback is still required to
support students’ mastery of computer science (CS) concepts that
are essential for programming. Providing students with effective
scaffolding and feedback would significantly benefit from reliable
assessments that can evaluate student competencies with respect to
core CS concepts [12,20]. Effective assessment can inform
adaptive pedagogical strategies such as offering hints and feedback
and performing tailored problem selection. Automated assessments
can bridge the gap between the growth in demand for CS education
and the limited supply of qualified teachers.

While research on conducting automated assessment of student-
generated programs is gaining momentum, limited previous work
has yielded methods to infer students’ mastery of fine-grained CS
concepts exercised in a particular computational problem. Previous
work has focused on predicting an overall score to represent
students’ general level of mastery in programming [17,19].
However, identifying students’ strength and weakness on specific
CS concepts could enable instructors to provide students with
adaptive scaffolding and tailored practices needed to master the
those concepts. In addition, fine-grained assessment of CS
competencies can inform intervention strategies for intelligent
learning environments to perform student-adaptive hint and
feedback generation as well as problem selection. Furthermore,
using this information in an open learner model could enable
students to focus on areas in which they need more practices by
monitoring mastery in CS concepts [7, 35].

We follow a hypothesis-driven learning analytic approach [14]
based on Evidence-Centered Design (ECD) [22] to identify core CS
concepts highlighted in a learning environment and to assess
students’ competencies in relation to each of the target concepts.
We explore this in the context of a bubble-sort challenge within the
ENGAGE game-based learning environment (Figure 1) that requires

Bita Akram1, Hamoon Azizolsoltani1, Wookhee Min1, Eric Wiebe1, Anam Navied1,
Bradford Mott1, Kristy Elizabeth Boyer2, James Lester1

1North Carolina State University, Raleigh, North Carolina
{bakram, wmin, hazizso, wiebe, anavied, bwmott,

lester}@ncsu.edu

2University of Florida, Gainesville, Florida
keboyer@ufl.edu

Copyright © 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

implementing a program using a block-based programming
interface. Based on the hypothesis-driven learning analytic

approach, we first identify the CS concepts that are targeted by this
activity. We also collect students’ submitted solutions to this
challenge in the form of snapshots of their submitted programs.
Content area experts then use this information to devise a rubric
that can identify students’ mastery of targeted CS concepts based
on evidence captured from their program artifacts. Examples of CS
concepts and practices for the bubble sort challenge are developing
appropriate algorithms and programs, and appropriate use of
computer science constructs, such as loops and conditionals.

We use the rubric to label our training dataset. We further extract
structural and semantic information from program snapshots by
encoding them as structural n-grams following the approach in [1].
A variety of regression models including lasso, ridge, support
vector regression and Gaussian process regression (GPR) models
are applied on the generated feature set to infer students’
competencies for their overall grade and for each of the identified
target CS concepts. We hypothesize that GPR models are
particularly suitable for this type of inference task as they are
capable of handling the noise resulting from the subjective process
of grading programs. The results demonstrate the effectiveness of
these models for predicting students’ CS competencies.

2. RELATED WORK
Two approaches to automatic program assessment can be
distinguished: dynamic assessment and static assessment [5, 16].
Dynamic assessment is used to assess the correctness of completed
programs using pre-defined test data [16, 18, 31]. Static
assessments on the other hand, can assess partial programs for
partial correctness. To perform this latter form of assessment an
important step is transforming the program into an intermediate
representation such as abstract syntax trees, control flow graphs,
and program dependence graphs. The intermediate representation

is then evaluated to determine its degree of correctness, efficiency
and quality. Since all programming languages, including block-

based programming languages can be represented using the same
intermediate representations, static assessment techniques are
syntax-free and can be adapted to assess any programming
language.

In static assessments, correctness is usually assessed through
character analysis, string analysis, syntax analysis, and semantic
analysis. Quality is assessed by software metrics such as the
number of lines of code, the number of variable statements, and the
number of expressions. For example, work by Wang and colleagues
presented a semantic similarity-based approach to assess the
correctness of a C program by comparing it against a correct
program model [34]. In this work, they first reduced the state space
of programs by conducting a set of program standardizations
including expression, control structure, and function invocation
standardization. Then, they calculated a similarity factor based on
size, structure and statement similarity subfactors weighted by
grading criteria.

Most work on static assessment utilizes a variety of similarity
measurements to calculate the relative correctness of a program in
reference to other scored programs [30, 33]. However, the
approaches described above typically yield an overall score rather
than a fined-grained analysis of student competencies on specific
CS concepts, skills, and knowledge. In an educational context, this
detailed diagnostic information is essential for providing students
with the targeted scaffolding and support they need. In this paper,
we propose an automated assessment framework that can provide
students and their instructors with an automated assessment tool
that is both detailed and interpretable.

3. Learning Environment and Dataset
In this study, we collect data from middle-grade students’
interactions with the ENGAGE game-based learning environment

Figure 1. ENGAGE game-based learning environment: students write a program to filter a data set and loop over it.

that is a computational thinking (CT) focused education game for
middle school students (ages 11-13) [2]. The CS content of the
ENGAGE game is based on the AP CS Principles curriculum [9].
Students learned CS competencies ranging from abstraction and
algorithmic thinking to computational problem solving and
programming. The computational challenges within the game were
designed to prepare students for computer science work in high
school, and to promote positive attitudes toward computer science.
This game features an underwater research station that has lost
connection with the outside world and students are sent as computer
science specialist to investigate the issue (Figure 1, Left) [21]. To
successfully complete the game, students need to move around the
station and solve different computational thinking problems with
block-based programming.

The focus of this work is on a particular CT challenge where
students need to implement a bubble sort algorithm using block-
based programming (Figure 1, Right) to escape a room. Students
implement an algorithm to sort six randomly positioned containers
within a containment device. Once the containers are sorted student
can open the door and escape the room. To write the bubble-sort
algorithm students have access to a limited number of necessary
blocks including: a repeat block that repeats every nested block for
a certain amount of time specified by students; a conditional block
that checks whether the right container is smaller than the left
container; a conditional block that checks whether the cart has hit
the right wall; a swap containers block that swaps a container with
its adjacent right container; a move block that moves the cart one
position toward the right; and a reset block that brings the cart to
the left most position.

On average, students played the game over the course of two weeks.
As students interacted with the game, all of their interactions with
the game were logged, such as dragging programming blocks to
write a program and programs being executed. For this study, we
collected data from middle grade students’ interactions with the
bubble sort algorithm. Data was collected from five classrooms in
three schools in the United States. The data used for this study is
from 69 consented students.

4. METHOD
A supervised learning approach is utilized to infer students’
competency for each of the CS concepts identified for the bubble-
sort algorithm task. To infer students’ grades, we first label their
program snapshots utilizing the rubric presented in Table 1. We

then transform students’ program snapshots to a feature set utilizing
a novel n-gram encoding approach following [1]. Finally, we infer
students’ scores by applying regression models on the structural n-
gram-based feature set.

In comparison to [1], our work focuses on assessing students’
mastery of identified, individual CS concepts underlying the bubble
sort challenge. By utilizing this assessment framework, we can
train separate regression models utilizing the n-gram feature set to
assess student programs based on each individual CS concept. In
this study, we utilize a variety of regression models including
linear, lasso, ridge, support vector regression (SVR), and Gaussian
process (GP) regression models to predict algorithmic quality of
students’ programs.

 4.1 Rubric Design
Students’ programs are labeled utilizing a rubric that is devised
following and evidence-centered assessment design (ECD)
approach [27]. An important first step in ECD is domain modeling
where relevant CS concepts are identified through the collaborative
work of domain experts and teachers [11, 22]. The CS concepts are
then used to develop the specifications of an assessment of the CS
concepts. The conceptual assessment framework consists of the
following: 1) the student model, which represents what students
know or can do; 2) the evidence model, which contains evidence
that drives the student model; and 3) the task model, which contains
tasks, interactions with which can generate evidence [22, 29].

Evidence is derived from students’ actions during the learning tasks
to predict their mastery of CS concepts. An important requirement
is to match evidence derived from student programs to proficiency
in each CS concept covered in the assessment. In this work, the
student model represents students’ knowledge of particular CS
concepts, the evidence model is based on evidence rules that extract
the program structures from their programs representing their
knowledge of each identified CS concept, and the task model is the
bubble sort challenge in the ENGAGE game-based learning
environment. Following this approach, we design evidence rules
specific to the task at hand to provide assessment arguments for the
proficiency of the CS concepts in our student model. Table 1 shows
the rubric for assessing the CS concepts identified through the
domain modeling phase [3, 4].

4.2 Data Annotation

Figure 2. ENGAGE game-based learning environment. (Left) The bubble sort task in the game-based learning environment.
(Right) Program for the bubble sort task: the read-only code for opening the door and an example of a correct implementation

of the bubble sort written by a student.

Our training dataset contains 1,570 programs submitted by 69
students when solving the bubble sort challenge. The algorithmic
“Effectiveness” and “Conciseness” scores are two mutually
exclusive metrics designed to capture core qualities of programs.
For example, a program that contains all the necessary coding
constructs to receive full points for “appropriate use of conditional
statements” might contain redundant copies of the same coding
constructs that interfere with the correctness of the algorithm. This
deficiency is captured in the “Conciseness” score. A similar
program might have the wrong ordering of the coding constructs
that negatively affects the correctness of the algorithm. This is
captured through by the “Effectiveness” score. In this rubric, the
range of possible scores for the “design and implementation of
effective and generalizable algorithm” is between 0-10. Similarly,
this range is between 0 to 3 for “Appropriate use of loop
statements,” between 0 to 6 for “Appropriate us of conditional
statements,” and between 0 to 3 for “Appropriate combination of
loops and conditional statements.” The overall score (overall
algorithmic quality score) range is between 0 to 22.

Two annotators with CS background annotated 20% of the
submissions for algorithmic effectiveness and conciseness scores.
Using Cohen’s kappa [8], an inter-rater agreement of 0.848 for
“effectiveness” and 0.865 for “conciseness” was achieved. The two
annotators discussed their disagreements and one annotator tagged
the remainder 80% of the dataset. These annotations are served as
the ground-truth for our data corpus. It is important to note that the
annotation process introduces noise into the training dataset [23].
This is because different scorers may have different perceptions of
a program’s algorithmic “Effectiveness” and “Conciseness.” As a
result, the dataset is inherently noisy, which must be taken into
account when designing the models for the automated assessment
framework. To handle this uncertainty, we adopt a Gaussian
process regression model that returns a distribution for the
inference values including an average with standard deviation.

4.3 Feature Engineering
We use abstract syntax trees (ASTs) as the intermediate
representation for our automated assessment task. After
transforming students’ program snapshots to their corresponding
ASTs [28], we encode them as structural n-grams to extract features
that are representative of the semantic information in students’
programs following the previous work [1]. Hierarchical and
ordinal n-grams are two important structures in an AST. The parent
child relationship between different blocks are encoded in
hierarchical structures and the placement order of blocks are
encoded in ordinal structures. To enable the proposed automated
assessment to assign partial scores to incomplete solutions, we need
to extract n-grams with varying lengths of n to capture the most
fine-grained structural information present in an AST.

An AST generated from a sample program is demonstrated in
Figure 3. A partial hierarchical (left) and ordinal (right) n-gram
encoding is also demonstrated in this Figure. In Figure 3, each
colored circle shows the n-gram encoding of a specific n. In this
example, encoding of n-grams of size one is represented with green
ovals, n-grams of size two with blue ovals and n-grams of size three
with purple ovals. The frequency values for each n-gram encoded
feature are shown beside the AST. All of the other n-gram feature
values are zero since they are not in this AST. We then merge the
two feature sets together to build the final feature set containing
both hierarchical and ordinal n-gram encodings corresponding to

each program. Note that unigrams are repeated in both hierarchical
and ordinal n-gram encoding of the ASTs, and thus, only one copy
of unigram features is used in the final feature set. The occurrence

Table 1. Assessment items, and detailed rubrics for each item.

CS Concepts and
Practices Detailed Rubric

Design and
implementation of
effective and
generalizable
algorithms

• The program contains all necessary
code elements.

• The code elements have the correct
order, and hierarchy
(Effectiveness).

• The program does not contain
redundant code elements that falsify
the logic of the algorithm
(Conciseness).

Appropriate use of
loop statements

• The repeat block is present.
• The iteration value is set to a

positive number.
• It encompasses at least one block.

Appropriate use of
conditional
statements

• Both necessary conditional
• statements are used.
• A conditional statement checks the

size of two adjacent containers and
swaps them if they are not ordered
properly.

• A conditional statement checks if
the arm has reached the right wall
and reset it to the left wall.

Appropriate
combination of
loops and
conditional
statements

• There is at least one instance of each
conditional nested under a repeat
statement.

• There is at least one instance of two
conditionals at the same level.

of similar n-grams for n values more than one (unigrams) in both
hierarchical and vertical encodings demonstrate presence of
different structures in in the AST and thus, both will be preserved.

Preliminary explorations revealed that including sequences of
lengths larger than 4 for hierarchical n-grams and 3 for ordinal n-
grams exponentially increases the sparsity of the dataset. To
address the sparsity issue, we capped the n-gram size at 4 for the
hierarchical n-gram encoding and at 3 for the ordinal n-gram
encoding. The final feature set consists of sequences of length one
(i.e., unigrams) to sequences of length four for hierarchical (i.e., 4-
grams) and three for ordinal (i.e., 3-grams) that are repeated at least
three times (again to address the data sparsity issue) throughout the
dataset, resulting in 184 distinct features.

4.4 Inferring Program Scores
We infer students’ overall program scores in addition to their scores
for each of the essential CS concept by training a variety of
regression models on the structural n-gram-encoded feature set. As

our baseline model, we use linear regression. We use four
additional regression models including lasso regression [32], ridge
regression, support vector regression (SVR) [10], and Gaussian
process (GP) regression [26]. Lasso and Ridge regression are
utilized since they can reduce overfitting and variance issues in
comparison with linear regression. SVR and GP regression on the
other hand are used since kernel methods can do well with datasets
with proportionally large number of features. More importantly, GP
regression can handle the noise resulting from the subjective nature
of human grading [6, 36]. To infer students’ overall program scores
as well as their scores for “Design and implementation of effective
and generalizable algorithms,”, “Appropriate use of loop
statements,” “Appropriate use of conditional statements,” and
“Appropriate combination of loops and conditional statements,” we
train each regression model utilizing the n-gram encoded feature
set mentioned above, while predicting the scores of each core
concept.
To infer students’ grades using the n-gram encoded feature set, we
use the Python scikit-learn library [24] to perform linear, lasso
regression, ridge regression, SVR, and GP regression. We first split
our dataset to 80% training and 20% held-out test sets. We the use
a 5-fold cross-validation approach to tune the hyperparameters of
lasso, ridge, and SVR regression based on the training set. We also
use the 5-fold cross-validation approach to identify the appropriate
kernel for the GP regression model. Gaussian process regression
model uses an internal limited-memory BFGS approach to tune its
other hyperparameters such as length scale and noise level. After
tuning the hyperparameters of each regression model, we train the
models on the training set and evaluate it on the held-out test set.
This process is repeated to infer each CS concept score separately.
The results of applying each of the regression models to infer each
of the CS concept scores is presented in Table 2.

4.4.1 Ridge Regression
We used the set [0.05, 0.1, 0.5, 1.0, 10] to tune the value for l, the
penalty coefficient, and found l=10 to be the best value for
inferring the “Overall grade” and the “Design and implementation
of effective and generalizable algorithm” scores based on cross-
validation. Furthermore, we found l=0.5 the best value for

“Appropriate use of loop statements” score, and l=1 the best value
for “Appropriate use of conditional statements” and “Appropriate
combination of loops and conditional statements” scores.

4.4.2 Lasso Regression
We used the set [0.05, 0.1, 0.5, 1.0, 10] as in ridge regression to
tune the value for l and found l=0.05 to be the best value for all
the inferred scores.

4.4.3 Support Vector Regression
For our regression task, we explored with linear, polynomial, and
radial basis function (RBF) kernels. For each kernel, we tuned the
hyperparameters of penalty parameter (C), epsilon, and kernel
coefficient (gamma). For polynomial kernels, we also tuned the
parameter of the kernel projection (coef0) and degree
hyperparameters. Utilizing cross-validation, we found the
polynomial kernel with a degree of four to be the best kernel for

our dataset when inferring the “Overall Score”, “Appropriate use
of of loop statements,” and “Appropriate combination of loops and
conditional statements” scores. Also, the grid search returned C=1,
coef0=10, epsilon=0.2, gamma= 0.0001 as the best parameters for
this kernel. For inferring the “Appropriate use of conditional
statements” score we found the radial basis function kernel with
C=100, epsilon=0.1, and gamma= 0.001 to be the best parameter
values. Finally, we found the radial basis function kernel with
C=100, epsilon=0.2, and gamma= 0.001 to be the best parameter
values when inferring the “Design and implementation of effective
and generalizable algorithm” score.

4.4.4 Gaussian Process Regression
We expect the GP regression to outperform other regression
techniques due to its capability of handling noise and its propriety
for our dataset. After conducting a hyper-parameter tuning for the
kernels such as radial basis functions (RBF), rational quadratic, and
Matern kernels, we found RBF to perform the best on our dataset
for all the inferred scores. Utilizing a limited-memory BFGS
optimization technique the GP regression model tuned other
hyperparameters including the length vector and noise level during
the training process.

Figure 3: AST generated from a sample program submitted for the bubble sort challenge and its hierarchical and ordinal n-gram
encoding. (Left) An AST and its partial hierarchical unigrams, bigrams, and 3-grams marked by green, blue and purple ovals
respectively on the left and the partial feature set generated from hierarchical n-gram encoding of the AST along with feature-

level frequencies on the right. (Right) An AST and its ordinal unigrams, bigrams, and 3-grams marked by green, blue and purple
ovals respectively on the left and the partial feature set generated from partial ordinal n-gram encoding of the AST along with

feature-level frequencies on the right.

Table 2. Average predictive performance of regression models trained with the structural n-gram feature set.

5. DISCUSSION
Effective automated assessment of students’ programming efforts
has become increasingly important. This work investigates an n-
gram encoding approach to encode students’ programs into their
essential structural and semantic features. Utilizing the n-gram
encoding approach, we can extract structural information with
varying levels of granularity. Utilizing this feature set labeled by
the ECD-based designed rubric enables our models to learn
evidence from programs that are representative of students’
mastery of identified CS.

After extracting an n-gram encoded feature set from students’
programs, we apply a variety of regression models to infer their
scores for each of the targeted CS concepts. We conduct an 80-20
split on our dataset to generate training and held-out test sets. We
train our models on the training set and evaluate the trained models
on the held-out test. This process is repeated for each CS concept.
The results of our prediction demonstrate the effectiveness of the
n-gram encoded feature set in capturing important semantic and
structural information in students’ programs, as all regression
models outperformed the linear regression model. As expected, GP
regression also outperformed other baseline models in terms of
both mean squared error and R-squared across all prediction tasks.
This is expected, since GP regression is well-equipped to handle
noise in the data set and is particularly appropriate for datasets with
a large number of features relative to the number of data points.

We utilized an evidence-centered assessment design (ECD)
approach to label the training dataset. ECD holds significant
promise for guiding educators in designing mindful assignments for
learners by focusing on key conceptual ideas rather than surface-
level features of the program. This means that an ECD-derived
rubric can provide granular information structured around core CS
concepts, which guides development of robust automated
assessment models, but also provide immediate formative data to
instructors. Thus, as new problems and activities are introduced
into a course, the first-pass human scoring with the rubric provides

immediate actionable formative information while also training
automated assessment tools that can provide ongoing, future
adaptive support.

Though we show the application of this automated assessment
framework on one particular task, it can be generalized to assess
any well-structured programs as the feature representations are
readily scalable to other programming tasks. Furthermore, our
rubric design approach can be used as a guideline for rubric design
and assessment for non-expert CS teachers. A teacher dashboard
incorporating the automated assessment framework can further be
utilized to analyze and aggregate the results and inform teachers
about students’ learning and the quality of their instruction.

6. CONCLUSION AND FUTURE WORK
Effective scaffolding of programming efforts for novice
programmers require accurate automated assessment of their
competency in each core CS concept. In this paper, we presented
an automated assessment framework for assessing programs’
algorithmic quality following a hypothesis-driven learning analytic
approach. We investigate a hierarchical, ordinal feature
representation method based on n-gram-encoded hierarchical and
ordinal coding constructs that extract two-dimensional structural
information from students’ programs, and investigated Gaussian
process regression to induce models that can accurately predict
students’ grades for individual CS concepts based on their
submitted programs. Evaluation results suggest that Gaussian
process regression models utilizing n-gram-encoded features that
extract salient semantic and structural information from programs
achieved the highest predictive performance with respect to mean
squared error and R squared. These results suggest that Gaussian
process regression models are robust in dealing with noise that
underlies our human-annotated dataset.

In the future it will be important to investigate the potential for
utilizing a data-driven approach for devising a rubric based on
identified correct solutions. Furthermore, the effectiveness of the n-
gram encoded feature set can be further evaluated by performing

Grade Overall Grade

Design and
implementation of
effective and
generalizable algorithm

Appropriate use of
loop statements

Appropriate use of
conditional
statements

Appropriate
combination of loops
and conditional
statements

Regression MSE R2 MSE R2 MSE R2 MSE R2 MSE R2

Linear 7.88E+10 -2.58E+9 1.8E+10 -3.9E+9 2.8E+9 -2.1E+9 2.43E+9 -4.9E+8 2.0E+9 -1.6E+9

Ridge 4.84 0.84 1.62 0.64 0.36 0.74 0.59 0.88 0.09 0.93

Lasso 5.67 0.81 2.38 0.49 0.88 0.35 0.73 0.85 0.48 0.62

SVR 3.74 0.88 1.56 0.66 0.57 0.57 0.49 0.9 0.08 0.93

Gaussian Process 1.67 0.94 1.02 0.78 0.18 0.86 0.28 0.94 0.02 0.98

an automatic feature-selection process and compare the results with
expert selected features. Finally, it will be instructive to explore the
potential of the n-gram encoded feature for creating an
unsupervised learning approach to accurately inferring students’
program scores without requiring labeled training data.

7. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under Grants DRL-1640141. Any opinions, findings, and
conclusions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

 8. REFERENCES
[1] Akram, B., Azizolsoltani, H., Min, W., Wiebe, E., Navied,

A., Mott, B., Boyer, K., and Lester, J. 2020. Automated
Assessment of Computer Science Competencies from
Student Programs with Gaussian Process Regression. To
appear In Proceedings of the 13th Conference on
Educational Data Mining.

[2] Akram, B., Min, W., Wiebe, E., Mott, B., Boyer, K., and
Lester, J. 2018. Improving Stealth Assessment in Game-
based Learning with LSTM-based Analytics. In
Proceedings of the 11th International Conference on
Educational Data Mining, 208–218.

[3] Akram, B., Min, W., Wiebe, E., Navied, A., Mott, B.,
Boyer, K., and Lester, J. 2020. A conceptual assessment
framework for k-12 computer science rubric design. In
Proceedings of the 51th ACM Technical Symposium on
Computer Science Education, 1328–1328.

[4] Ala-Mutka, K. 2005. A Survey of Automated Assessment
Approaches for Programming Assignments. Computer
Science Education 15, 2, 83–102.

[5] Amershi, S. and Conati, C. 2009. Combining
Unsupervised and Supervised Classification to Build User
Models for Exploratory Learning Environments. Journal
of Educational Data Mining, Article 1, 1, 18–71.

[6] Bouchet, F., Harley, J., Trevors, G., and Azevedo, R.
2013. Clustering and profiling students according to their
interactions with an intelligent tutoring system fostering
self-reggulated learning. Journal of Educational Data
Mining, 05, 01, 104–146.

[7] Cohen, J. 1960. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement 20,
1, 37–46.

[8] College Board. 2017. AP Computer Science Principles
Including the Curriculum Framework. In AP Computer
Science Principles: The Course. New York.

[9] Cortes, C., and Vapnik, V. 1995. Support-vector
networks. Machine Learning 20, 3, 273–297.

[10] Cui, Y., Chu, M., and Chen, F. 2019. Analyzing Student
Process Data in Game-Based Assessments with Bayesian
Knowledge Tracing and Dynamic Bayesian Networks.
Journal of Educational Data Mining 11, 01, 80–100.

[11] Fields, D., Giang, M., and Kafai, Y. 2014. Programming
in the wild: trends in youth computational participation in
the online scratch community. In Proceedings of the 9th

Workshop in Primary and Secondary Computing
education, ACM, 2–11.

[12] Grover, S., and Basu, S. 2017. Measuring Student
Learning in Introductory Block-Based Programming. In
Proceedings of the 48th ACM SIGCSE Technical
Symposium on Computer Science Education, 267–272.

[13] Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana,
N., and Stamper, J. 2017. A Framework for Using
Hypothesis-Driven Approaches to Support Data-Driven
Learning Analytics in Measuring Computational Thinking
in Block-Based Programming Environments. ACM
Transactions on Computing Education 17, 3, 1–25.

[14] Hansen, A., Dwyer, H., Iveland, A., Talesfore, M.,
Wright, L., Harlow, D., and Franklin, D. 2017. Assessing
Children’s Understanding of the Work of Computer
Scientists: The Draw-a-Computer-Scientist Test. In
Proceedings of the 48th ACM SIGCSE Technical
Symposium on Computer Science Education, 279–284.

[15] Phantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O.
2010. Review of Recent Systems for Automatic
Assessment of Programming Assignments. In
Proceedings of the 10th Koli calling International
Conference on Computing Education Research, 86–93.

[16] Deirdre Kerr and Gregory K W K Chung. 2012.
Identifying Key Features of Student Performance in
Educational Video Games and Simulations through
Cluster Analysis. Journal of Educational Data Mining
4, 1, 144-182.

[17] Lajis, A., Baharudin, S., Kadir, D., Ralim, N., Nasir, H.,
and Aziz, N. 2018. A Review of Techniques in Automatic
Programming Assessment for Practical Skill Test. Journal
of Telecommunication, Electronic and Computer
Engineering 10, 2, 109–113.

[18] Mao, Y., Lin, C., Chi, M., 2018. Deep Learning vs.
Bayesian Knowledge Tracing: Student Models for
Interventions. Journal of Educational Data Mining
10, 02, 28–54.

[19] Meerbaum-Salant, O., Armoni, M., and Ben-Ario, M.
2013. Learning computer science concepts with scratch.
Computer Science Education 23, 3, 239–364.

[21] Min, W., Frankosky, M., Mott, B., Rowe, P., Wiebe, E.,
Boyer, E., and Lester, J. 2015. DeepStealth: Leveraging
Deep Learning Models for Stealth Assessment in Game-
based Learning Environments. In International
Conference on Artificial Intelligence in Education, 277–
286.

[22] Mislevy, R., Haertel, G., Riconscente, M., Rutstein, D.,
and Ziker, C. 2017. Evidence-Centered Assessment
Design. In Assessing Model-Based Reasoning Using
Evidence- Centered Design. SpringerBriefs in Statistics,
19–24.

[23] Multon, K. 2010. Interrater reliability. Encyclopedia of
Research Design. SAGE, New York, 626–628.

[24] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V. and Vanderplas, J., 2011. Scikit-

learn: Machine learning in Python. Journal of Machine
Learning Research, 12, 2825–2830.

[25] Price, T., Dong, Y., and Lipovac, D. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming
Environments. In Proceedings of the 48th ACM SIGCSE
Technical Symposium on Computer Science Education,
ACM, 483–488.

[26] Rasmussen, C.. 2004. Gaussian Processes in machine
learning. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 63–71.

[27] Rupp, A, Pearson, K., Sweet, S., Crawford, A., Levy, I.,
Fay, D., Kunze, K., Cisco, M., Mislevy, R., and Pearson,
J. 2012. Putting ECD into Practice: The Interplay of
Theory and Data in Evidence Models within a Digital
Learning Environment. Journal of Educational Data
Mining 4, 1 , 49–110.

[28] Shamsi, F., and Elnagar, A. 2012. An Intelligent
Assessment Tool for Students’ Java Submissions in
Introductory Programming Courses. Journal of Intelligent
Learning Systems and Applications 04, 01 , 59–69.

[29] Snow, E., Haertel, G., Fulkerson, D. and Feng, M. 2010.
Leveraging evidence-centered assessment design in large-
scale and formative assessment practices. In Proceedings
of the 2010 Annual Meeting of the National Council on
Measurement in Education (NCME).

[30] Striewe, M., and Goedicke, M. 2014. A review of static
analysis approaches for programming exercises. In
Computer Assisted Assessment. Research into E-
Assessment. Springer, 100–113.

[31] Taherkhani, A., and Malmi, L. 2013. Beacon- and
Schema-Based Method for Recognizing Algorithms from
Students’ Source Code. Journal of Educational Data
Mining 5, 2, 69–101.

[32] Tibshirani, R. 1996. Regression Shrinkage and Selection
Via the Lasso. Journal of the Royal Statistical Society:
Series B (Methodological) 58, 1 267–288.

[33] Truong, N.,Roe, P., and Bancroft, P. 2004. Static Analysis
of Students’ Java Programs. In Proceedings of the 6th
Australasian Conference on Computing Education, 317-
325.

[34] Wang, T., Su, X., Wang, Y., and Ma, P. 2007. Semantic
similarity-based grading of student programs. Information
and Software Technology 49, 2, 99–107.

[35] Winne, P., and Baker, R. 2013. The Potentials of
Educational Data Mining for Researching Metacognition,
Motivation and Self-Regulated Learning. Journal of
Educational Data Mining 5, 1, 1–8.

[36] Zen, K., Iskandar, D,. and Linang O. 2011. Using Latent
Semantic Analysis for automated grading programming
assignments. In International Conference on Semantic
Technology and Information Retrieval, 82–88.

[37] 2016. K-12 Computer Science Framework. Retrieved
August 25, 2018 from http://www.k12cs.org.

