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ABSTRACT 
We adapted Levenshtein's algorithm to compute edit distance of 
student solution from the correct solution in Parsons puzzles with 
the intention of using edit distance as an estimate of the degree of 
correctness of a student’s solution. We modified the algorithm to 
eliminate substitution operation, which is not allowed in Parsons 
puzzles, and include reordering operation which is allowed. We 
used the solution log data from the tutor to reconstruct each step 
that the student took to solve the puzzle and applied the modified 
algorithm to compute the edit distance for each step to generate 
edit distance trails of student solutions. We used these edit 
distance trails to represent student solutions and applied k-means 
clustering to find patterns. The analysis was conducted on the data 
collected by a tutor on selection statements over four 
years. We found interpretable patterns among complete solutions, 
of optimal versus sub-optimal solutions, based on the inclusion of 
optional lines of code. Among incomplete solutions, we found 
patterns of known puzzle-solving behaviors. Edit distance trails 
helped identify student patterns regardless of the sequence of 
individual statements manipulated. However, by being puzzle-
independent, they lose the ability to identify puzzle-specific 
information. 
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1. INTRODUCTION 
Edit distance is a widely used string similarity measure to quantify 
how dissimilar two strings are based on the number of operations 
required to convert one string to another. It can be used to 
compute the degree of correctness of a student’s answer in 
Parsons Puzzle.  

In a Parsons puzzle, the lines of a correct program are scrambled 
and presented to a student, who is tasked with reassembling the 
code in its correct order. In this scenario, edit distance is the 
largest when the student starts solving the puzzle, and reduces to 0 
when the solution is complete and correct. So, edit distance is an 
indicator of how close a student’s solution is to the correct 

solution. The series of edit distances computed after each puzzle-
solving step taken by the student provides a progress report of the 
student solving the puzzle.  

Since edit distance is computed in terms of the number of 
operations needed to covert one string to another, our interest was 
in finding an edit distance algorithm that would consider the 
operations (and only the operations) allowed when solving a 
Parsons puzzle: insertion (when a student inserts another line of 
scrambled code into the solution), deletion (when the student 
deletes a line of code from the solution) and reordering (when a 
student reorders lines of code within the solution). We wanted to 
use this algorithm to generate edit distance trails of student 
solutions in order to find interpretable patterns from student log 
data from the tutor by using clustering techniques. 

2. MODIFYING LEVENSHTEIN’S 
ALGORITHM 
The edit operations allowed in a Parsons puzzle are 1) insertion of 
a statement into the solution 2) deletion of a statement from the 
solution and 3) reordering of a statement within the solution. The 
edit distance of a student’s solution from the correct solution is 
the number of these actions necessary to reach the correct solution 
from the student solution.  

In order to calculate edit distances, we modified Levenshtein’s 
algorithm [9]. Levenshtein’s algorithm calculates edit distance 
based on three operations: insertion, deletion and substitution. We 
modified the algorithm to eliminate substitution and incorporate 
reordering operation as substitution is not an operation permitted 
in the Parsons puzzle tutor, but reordering is. 

Levenshtein’s algorithm starts with a m x n matrix, where m and n 
are the sizes of the two strings being compared. It initializes the 
matrix by filling the first row and column by row/column number 
and filling the cells row by row using the minimum of the 
following three states [9], given (i, j) is the matrix index: 

1. Insertion:  

2. Deletion:  

3. Substitution:  , when ( ) 

If the characters being compared are not the same, a unit cost is 
added. If they are the same, matrix(i, j) = matrix(i-1, j-1). For 
example, in Table 1, the edit distance to convert character ‘B’ to 
‘A’ is at matrix (1, 1). It is computed as the minimum of three 
operations: insertion – cost at matrix (1, 0), deletion – cost at 
matrix (0, 1), and substitution – cost at matrix(0, 0). The 
minimum of these three costs is at matrix(0, 0). Therefore, matrix 

 

 



(1, 1) is set to 0 + 1 = 1 after adding unit cost for substitution 
operation since ‘B’ ≠ ‘A’. 

Omitting substitution operation: We modified the algorithm to 
remove substitution operation and compute the minimum from 
only two operations - insertion (matrix (i, j-1)) and deletion 
(matrix (i-1, j)). To convert character ‘B’ to ‘A’ without 
substitution, we require two operations: deletion followed by 
insertion, giving us an edit distance of 2. We compute this as the 
minimum of matrix (0, 1) and matrix (1, 0), and add a unit cost 
since ‘B’ ≠ ‘A’, yielding an edit distance of 2 for cell (1, 1). The 
algorithm repeats this process for all the cells in row-major order. 

 
Table 1. Levenshtein distance matrix with substitution 

 Col.(j) 0 1 2 3 

Row(i) - - A B C 

0 - 0 1 2 3 

1 B 1 1 1 2 

2 E 2 2 2 2 

3 A 3 2 3 3 

 
Table 2. Levenshtein distance matrix without substitution 

(with trace back) 
 Col.(j) 0 1 2 3 

Row(i) - - A B C 

0 - 0 1 2 3 

1 B 1 2 1 2 

2 E 2 3 2 3 

3 A 3 2 3 4 

 
Adding reordering operation using trace back: A reordering 
operation in Parsons puzzle can be broken down into two 
consecutive operations – insertion and deletion:  

• Insertion followed by a deletion of the same character later in 
the string is a moving operation towards the front of the 
string. 

• Deletion followed by an insertion of the same character later 
in the string is a moving operation towards the end of the 
string.  

To identify reordering operations, we traced back from the end of 
the matrix (m, n), to the initial position (0, 0) and used a hash map 
to determine that the insertion and deletion operations had been 
applied back to back to the same line. If they were, we counted 
the insertion and deletion operations as one reordering operation.   

For insertion operation, the character from the target string (row 
character) at the current position is used as the key in the hash 
map and its value is incremented. For a deletion operation, the 
character from the source string (column character) of which edit 
distance is to be calculated is used as the key in the hash map and 
its value is decremented. A constant unit cost is used for each 
operation. 

Table 2 shows the trace back from (m, n) to (0, 0), where the 
length of both strings is 3. At (3, 3), the minimum value among 
matrix (3,2) and matrix (2, 3) is 3. Since both cells have the 
minimum value, either cell can be chosen to visit next. In this 
example, assume that the cell to the left, i.e., matrix (3, 2) is 
visited next. This highlights an insertion operation of character 
‘C’. The hash map is updated with key C and value ‘1’, followed 
by another insertion of ‘B’. At index (3, 1), the character is ‘A’ in 
both (row and column) strings. Therefore, the algorithm moves 
diagonally without any cost. Next, consecutive deletion operations 
are carried out to trace back to (0, 0). The resulting hash map has 
the following values: 

 
Table 3. Hash map record of trace back of (Table 2.) 

Key C B E B 
Value 1 1 -1 (-1) 
 

Upon reaching matrix (1, 0) (Table 2), a deletion operation of 
character ‘B’ is recorded to reach position matrix (0, 0). Since the 
hash map already has an entry for ‘B’, and the value for it is 
positive corresponding to insertion of ‘B’, the subsequent deletion 
of ‘B’ implies a reordering operation of ‘B’. Since insertion is 
followed by deletion, character ‘B’ is reordered to a later index in 
the string. The string transformation can be summarized as: 

 
Table 4. Transformation of string “BEA” to “ABC” 

Operation String 
(Source string) BEA 
Insertion of C BEAC 
Insertion of B BEABC 
Deletion of E BABC 
Deletion of B (Target string) ABC 
 

In every case where the entry is positive for a particular key in the 
hash map and a deletion operation is performed or where the entry 
is negative and an insertion operation is performed, a reordering 
operation is identified and the edit distance is decremented by 
one. As seen in Table 3, operations do not have to be back-to-
back. When the operations on a character are back-to-back, it 
signifies a transposition of the character, i.e., reordering by a 
single position.  

The algorithm has two boundary conditions, when either ‘i’ or ‘j’ 
reaches 0. When j reduces to 0, we have a left column boundary 
condition: since no insertion operations are possible, the hash map 
is updated with deletion operation based on the character from the 
source (row) string. Table 2 exemplifies a column boundary 
condition. Similarly, when i reduces to 0, we have an upper row 
boundary condition: since no deletion operations are possible, the 
hash map is updated by recording insertion operation using the 
characters in the target (column) string as the key.  

Several other extensions of Levenshtein’s algorithm have been 
attempted before. Damerau-Levenshtein algorithm [4] extends 
Levenshtein’s algorithm by considering adjacent character 
transpositions as another operation. Transposition is a special case 
of reordering, where the reordering is done by just one character. 
We needed an algorithm that treated reordering by any number of 
characters as a single-cost operation.   



Several modifications have dealt with the general case of 
reordering an entire substring. Shapira et al. provide a polynomial 
time greedy algorithm to move substrings [3]. They identify this 
problem as NP-complete. Since it uses a greedy strategy to handle 
move operations, the algorithm is unable identify all move cases; 
it rather gives an approximation.   

Comrode and Muthukrishnan provide a general approach that is 
subquadratic and deterministic called edit-sensitive-parsing (ESP) 
[5]. The algorithm approximates the edit distance with moves in 
O(n logn). Takabatake et al. [8] further optimize the index 
structure used in the ESP technique to make the algorithm near 
linear time. 

These modifications to accommodate reordering of substrings are 
more general than what we need in Parsons puzzles, where, only 
one character is reordered at a time. Because of the NP-complete 
nature of the problem of reordering substrings, these algorithms 
approximate edit distance calculations. For our problem, we were 
interested in exact calculation of edit distance, while restricting 
the moved substring to a single character, i.e., line of code.  

So we simply looked at ways to identify move operations using 
the dynamically filled matrix generated by Levenshtein algorithm. 
We incorporate backtracking to the algorithm to effectively track 
reordering operations in a Parsons’s puzzle. Dynamic 
programming and backtracking are more expensive in terms of 
time and memory than the approaches mentioned above but we 
were able to correctly identify reordering operations as single-cost 
operations in the scope of our problem. 

3. COMPUTING EDIT DISTANCE TRAILS 
A student’s solution of a Parsons puzzle is logged as a sequence 
of actions such as: 

1. Moved from problem to solution at line 7:  
 short firstNum 

2. Moved from problem to solution at line 9:  
 short secondValue; 

3. Moved from problem to solution at line 10:  
 cout << "Enter the first value"; 

4. Reordered from line 10 to 12:  
 cout << "Enter the first value"; 
The tutor logs the sequence of actions taken by students to solve 
each puzzle. Student are tasked with solving Parsons puzzles 
using drag-and-drop actions. We wrote a program to reconstruct 
the partial solution of the student after each action, the partial 
solution being the program the student had assembled so far for 
the puzzle. Next, we computed the edit distance of each partial 
solution from the correct solution for the puzzle. If a puzzle had 
multiple correct solutions, we computed the distance of each 
partial solution from the specific correct solution eventually 
reached by the student. The resulting edit distance trail of a 
student for a puzzle with 6 lines of code might look like this: 

[6, 5, 5, 4, 5, 4, 3, 2, 3, 2, 1, 0] 
Since not everyone solved each puzzle with the same number of 
actions, the length of the edit distance trail varied from student to 
student. But, the minimum length of the trail was n + 1 where n 
was the number of lines in the correct solution of the puzzle.   
Figure 1 shows a graphical representation of two edit distance 
trails. These trails show the progress report of two different 
students who attempted the 2005 template problem on if-else 
statements. The 2005 template problem asks the student to read 

two numbers and print the smaller value among them. The student 
is expected to arrange the scrambled lines of code that contains if-
else statements in the correct order. 
 

	

Figure	1.	Edit	distance	trail	graphical	representation.	

The edit distance trail of student “Anon 25” is [14, 13, 12, 11, 10, 
10, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] which has a length of 17. 
Similarly, student “Anon 8” has a longer trail of length 26 that 
does not converge to an edit distance of value 0. This shows that 
student Anon25 was able to solve the puzzle in 17 steps whereas 
student Anon8 took a total of 26 steps but was unable to solve the 
puzzle. 
Using this edit distance trail, we are able to identify the 
correctness of each action taken by the student. By doing so, we 
are able to plot the problem solving strategy of various students 
for different types of problems. 

4. AN APPLICATION OF EDIT DISTANCE 
TRAILS 
For this study, we used data collected by a Parsons puzzle tutor on 
if-else statements from a suite of such tutors available online 
called epplets (epplets.org) [1]. In the tutor, the student was tasked 
with solving Parsons puzzles using drag-and-drop actions. The 
student was required to solve each puzzle completely and 
correctly before going on to the next puzzle. If the student took a 
lot of redundant actions to solve a puzzle, the tutor scheduled 
additional similar puzzles for the student to solve. If the student 
took more than twice as many actions as necessary to solve a 
puzzle, the tutor offered the student the option to bail out. If a 
student bailed out, the solution was marked as incomplete and the 
student was presented additional similar puzzles.  
The first 3 puzzles presented by the tutor were on the following 
programs, listed here along with a unique puzzle id associated 
with each puzzle: 
1. A program to read two numbers and print the smaller value 

among them (puzzle id 2005).  
2. A program to read numerical grade, convert it to letter grade 

- A (90 and up), B (80-89), C (70-79), D (55-69) and F 
otherwise - and print it (puzzle id 2105).   

3. A program to read a number and print whether it is odd or 
even (puzzle id 2000). 

The first and third puzzle was on if-else statement and the second 
puzzle was on nested if-else statements. If a student solved the 
first puzzle with too many redundant actions, the tutor presented 



additional puzzles, the first of which was the third puzzle – it was 
similar to the first puzzle. Each puzzle had two distracters – lines 
of code that did not belong in the solution.    
The tutor was used by our introductory programming students as 
after-class assignments. For this study, we used the data collected 
by the tutor over eight semesters: Fall 2015 – Spring 2019. We 
included data from only the students who gave permission for 
their data to be used for research purposes. Students could use the 
tutor as often as they wished. Students used the tutor in four 
different languages: C, C++, Java and C#. We combined the data 
from all four languages in our analysis. When a student used the 
tutor multiple times, data from all the sessions was included in the 
study. In all, 1068 students used the tutor during those eight 
semesters. 275 students withheld permission for use of their data 
during at least one session (but, may have given permission 
during other sessions).  
In order to find patterns among edit distance trails, we used k-
means clustering in scikit-learn Python package. Since edit 
distance trails were not all of the same length, we padded trails at 
the end with -1 so that all the trails were of the length of the 
longest trail for the puzzle. We used elbow method to determine 
the optimum number of clusters k. k-means algorithm clustered 
the trails in n-dimensional hyperspace, wherein n was the uniform 
length of all the edit distance trails. So, the algorithm clustered 
edit distance trails, not individual edit distances in the trails. After 
grouping edit distance trails into clusters, we computed centroid 
curve of each cluster, which represents the pattern or archetype 
trail of the cluster. For the calculation of centroid curve, we 
ignored the -1 values used to right-pad the trails so that they 
would not affect the shape of the curve. 
We analyzed the edit distance trails of each puzzle separately. 
Within each puzzle, we analyzed edit distance trails of complete 
and incomplete solutions separately. The number of edit distance 
trails available for each puzzle and the optimal number of clusters 
found for each puzzle are listed in Table 5. We did not apply 
clustering algorithm if the number of trails was less than 50. 

 
Table 5: Number of Edit Distance Trails Available and 

Optimal Number of Clusters Found for each Puzzle 
Puzzle 

No. (Id) 
Complete Solutions Incomplete Solutions 

Trails Clusters Trails Clusters 

1 (2005) 785 4 371 4 

2 (2105) 376 4 356 3 

3 (2000) 358 4 26 N/A 

 

4.1 Puzzle 1 
The clusters found for complete solutions of the first puzzle are 
shown in Figure 2 along with their centroids, which are 
themselves trails. We found that clustering separated edit 
distance trails of completed solutions by how optimally students 
solved the puzzle, i.e., by the slope of edit distance trails. Table 6 
lists the four clusters, number of solutions in each cluster, and the 
minimum, maximum and mean number of actions taken in those 
solutions to solve the puzzle. The puzzle contained 14 lines of 
code and 2 distracters. The 14 lines included two pairs of braces 

around if-clause and else-clause. Both the pairs of braces were 
optional since both the clauses contained a single statement. So, 
the puzzle could have been solved with 14 (both pairs included), 
12 (only one pair included) or 10 (neither pair included) lines - All 
three versions were accepted as correct. Therefore, all the trails 
start at a value between 10 and 14 in Figure 2. Since a puzzle with 
n lines can be optimally solved with n actions, cluster 1 (leftmost 
centroid in Figure 2) with a mean of 17.26 actions included all the 
optimal solutions.   
In the figure, data points at 15 or 16 correspond to the start of 
trails in which students inserted one or both distracters into the 
solution before inserting any lines of code that actually belonged 
in the solution. Each data point is part of one of more trails – 
when a data point is shared among trails of different clusters, the 
colors of the different clusters have blended. Since our interest 
was in finding patterns in the trails, i.e., centroid curves, and not 
distribution of data, we used a regular graph rather than a bubble 
chart.   

Figure 2. Clusters of Complete Solutions of the First Puzzle  
 

Table 6: Complete Solution Clusters of the First Puzzle: 
Number of trails, minimum, maximum and mean actions 

taken to solve the puzzle  
Cluster 
Number 

N Actions to Solve the Puzzle 
Minimum Maximum Mean 

1 533 16 38 17.26 
2 157 18 44 24.66 
3 77 28 58 38.81 
4 18 42 94 63.88 
 
The clusters found for incomplete solutions of the first puzzle are 
shown in Figure 3. Table 7 lists the number of incomplete 
solutions in each of the four clusters, the minimum, maximum and 
mean number of actions taken in the solutions of the clusters and 
the mean of the final edit distance of all the solutions in the 
cluster. The final edit distance shows how many more actions 
would have been necessary to complete the solution.  
The first cluster corresponded to students bailing out after just two 
actions. Since this was the first puzzle presented by the tutor, it is 
likely that students were familiarizing themselves with the user 
interface of the puzzle and planned to return to use it in 
seriousness later. Cluster 3 (leftmost centroid line) comprised of 



students who made steady progress (mean of 11.94 actions), but 
reached a plateau at the end before bailing out. Cluster 2 (second 
centroid curve from the left) comprised of students who made 
gradual progress towards the solution (mean of 24.44 actions) 
before bailing out. Both the clusters bailed out about 8 actions 
away from solving the puzzle, i.e., they bailed out about halfway 
through the solution to the puzzle that contained 14 lines. Cluster 
4 was comprised of students who were lost from the beginning. 
Note that the slopes of the centroid curves of incomplete solution 
clusters provide qualitative information about incomplete 
solutions in the cluster: solutions that were informed (steep slope) 
versus those that were not informed and included a lot of 
redundant actions (shallow slope), and the point at which a 
solution hit a dead-end (plateau). 
 

Figure 3. Clusters of Incomplete Solutions of the First Puzzle 
 

Table 7: Incomplete Solution Clusters of the First Puzzle: 
Number of trails, minimum, maximum and mean actions 

taken to solve the puzzle and mean final edit distance   
Cluster 
Number 

N Actions to Solve the Puzzle Mean final 
distance Min Max Mean 

1 171 0 2 0.43 13.98 
2 92 12 48 24.44 8.29 
3 99 3 51 11.94 8.12 
4 9 50 87 67.11 4.66 
 

4.2 Puzzle 2 
Figure 4 and Table 8 show the clusters found among complete 
solutions of the second puzzle, which contained 34 lines of code 
and 2 distracters. 16 of the 34 lines were open or close braces 
which were optional as explained earlier. So, complete solution 
edit distance trails started with a value in the range 18-34 and 
ended with 0.   
The main difference between the four clusters was the number of 
optional braces that were included in the final solution: cluster 1 
(third centroid from the left in Figure 4) included all the braces, 
cluster 2 (leftmost centroid), none of the braces, and cluster 3 and 
4 (second and right-most centroid from the left), some of the 
braces. In this case, clustering separated edit distance trails of 
completed solutions by the number of optional lines that were 

included in the final solution (i.e., the y intercept of edit distance 
trails at x = 0). Cluster 4 comprised of students who took a lot 
more actions to solve the puzzle than necessary. 
 

Table 8: Complete Solution Clusters of the Second Puzzle: 
Number of trails, minimum, maximum and mean actions 

taken to solve the puzzle  
Cluster 
Number 

N Actions to Solve the Puzzle 
Minimum Maximum Mean 

1 130 36 67 40.75 
2 44 36 57 41.45 
3 171 36 74 40.67 
4 31 50 123 71.48 
 

Figure 4. Clusters of Complete Solutions of the Second Puzzle 
 

The clusters found among incomplete solutions of the second 
puzzle are shown in Figure 5 and Table 9. Cluster 2 comprised of 
students who bailed out early. Cluster 1 students made rapid 
progress (leftmost centroid curve in Figure 5), but abandoned the 
solution about 9 actions short. Cluster 3 students struggled to 
solve the puzzle (right-most centroid curve in the figure) and 
bailed out 14 actions short. Once again, we see steep versus 
shallow slope and plateau – features of the centroid curves that 
provide qualitative information about the solutions in the clusters. 
The analysis so far supports our hypothesis that patterns could be 
found in student solutions of Parsons puzzles that were 
interpretable.  
 

Table 9: Incomplete Solution Clusters of the Second Puzzle: 
Number of trails, minimum, maximum and mean actions 

taken to solve the puzzle and mean final edit distance   
Cluster 
Number 

N Actions to Solve the Puzzle Mean final 
distance Min Max Mean 

1 130 9 78 43.53 8.89 
2 156 0 9 1.05 27.33 
3 70 32 138 61.22 14.28 
 



 
Figure 5. Clusters of Incomplete Solutions of the Second 

Puzzle 
 

4.3 Puzzle 3 
Figure 6 show the clusters found among complete solutions of the 
third puzzle. Table 10 lists the minimum, maximum and mean 
number of actions taken to solve the third puzzle for each 
complete solution cluster.  
The puzzle contained 11 lines of code and 2 distracters. Similar to 
the first puzzle, puzzle 3 also includes two optional pairs of braces 
around the if-clause and else-clause. All centroid curves start at a 
value between 7 and 13 in Figure 6 because of the four optional 
code lines and two additional distractors. The puzzle could be 
optimally solved with 11 actions.  
In puzzle three, we found that clustering separated edit distance 
trails of completed solutions by how optimally students solved the 
puzzle and also by the number of optional lines that were included 
in the final solution. Cluster 3 (left-most centroid curve) grouped 
students that did not use any optional braces. Figure 6 showed that 
this centroid curve starts at an edit distance value of 7. Clusters 1 
and 2 (second and third centroid from the left) grouped students 
who use both pairs of optional braces to solve the puzzle. The 
centroid curve for both these clusters starts at an edit distance 
value of 11. Furthermore, cluster 1 grouped students who solved 
the puzzle more optimally with an average of 13.75 actions and 
cluster 2 grouped students who took more moves, an average of 
17.51 actions, to complete the puzzle. Cluster 4 (right most 
centroid curve) grouped students who used only a single pair of 
optional braces since their centroid curve starts at a value of 10. 
Figure 6 showed that this group of students took the most actions 
to complete the puzzle. 
 

Table 10: Complete Solution Clusters of the Third Puzzle: 
Number of trails, minimum, maximum and mean actions 

taken to solve the puzzle  
Cluster 
Number 

N Actions to Solve the Puzzle 
Minimum Maximum Mean 

1 202 13 18 13.75 
2 87 14 26 17.51 
3 52 13 19 14.69 
4 17 21 36 28.64 
 

 
Figure 6. Clusters of Complete Solutions of the Third Puzzle 
 
The incomplete solutions of the third puzzle contained only 26 
trails. So, clustering was not performed on incomplete trails. 

5. DISCUSSION 
In order to be able to objectively contrast the clusters of a puzzle 
as well as compare the clusters of different puzzles, we computed 
the degree of optimality of the solutions included in each cluster. 
A puzzle with n lines needs no more than n actions to solve 
completely and correctly. So, an optimal solution of the puzzle 
has the same number of actions as the number of lines in the 
puzzle. The degree of optimality (O) of the solutions in a cluster is 
calculated as μ / n, wherein, μ is the mean of the number of 
puzzle- solving actions taken by all the solutions in the cluster and 
n is the number of lines in the puzzle.  
Table 11 lists the degree of optimality of all complete solution 
clusters of all three puzzles. Different puzzles may have different 
number of lines of code. The degree of optimality abstracts away 
this difference, thereby enabling us to compare clusters of 
different puzzles. Note that on the first puzzle, the first cluster 
comprised of the most optimal solutions (Table 6). In Table 10, 
the first cluster had the lowest degree of optimality for puzzle 3. 
Clusters 1, 2 and 3 were all optimal for puzzle 2 (Table 8), 
differing only in the number of optional statements that were 
included in the final solution. All three clusters of puzzle 2 have 
similar degrees of optimality in Table 11.  
 

Table 11: The Number of Solutions (N) and Degree of 
Optimality (O) in each Cluster of each Puzzle  

No Complete Solution Cluster Number 
1 2 3 4 
N O N O N O N O 

1 533 1.14 157 1.6 77 2.48 18 4.05 
2 130 1.15 44 1.17 171 1.15 31 2.01 
3 202 1.13 87 1.42 52 1.2 17 2.28 
 
The complete solutions of all three puzzles yielded four clusters. 
These clusters corresponded to either various levels of optimality 
or the number of optional lines that were included in the final 
solution. The first puzzle required students to assemble a single 



block of if-else statement and was the first puzzle that was 
presented to students. Figure 2 showed that the majority of the 
trails start at an edit distance value of 14 as all the centroid curves 
start at the same value. The first puzzle had twice the number of 
complete solution trails compared to the second and third puzzles 
(785 vs 376 and 358 respectively). We do not see major variations 
in the use of optional braces in the first puzzle even though the 
sample size is much larger. This highlights how most students in 
the first puzzle used all the optional braces to assemble the 
solution. Beginner programmers might not be aware that clauses 
enclosing single statements do not necessarily require braces. 
Students might be including the optional braces as it is a good 
practice, or they might just be unaware that the tutor considers 
braces as optional. This is why the first puzzle is clustered solely 
based on various levels of optimality.  
The third puzzle, which is a follow-up puzzle for students who 
struggled with the first puzzle showed more variety with the use 
of optional braces. In the third puzzle, students who used all the 
optional braces are clustered in clusters 1 and 2, students who 
used none of the optional braces are clustered in cluster 3, and 
students who used one of the two optional pairs are clustered in 
cluster 4. This variety in the use of optional braces might be 
accounted for by the student’s experience in programming or 
using the tutor. Interestingly, Table 10 showed that a majority of 
students who used only one of the two pairs of optional braces 
take the greatest number of actions to solve the puzzle. These 
students are clustered in cluster 4 and used an average of 28.64 
actions to solve the puzzle. Table 11 showed that this cluster had 
the most non-optimal solutions with a degree of optimality of 
2.28. 
The second puzzle covered nested if-else statements and is more 
complex than both the first and third puzzles. This puzzle 
contained eight pairs of optional braces. Table 11 showed that the 
most non-optimal solutions were clustered in cluster 4 with a 
degree of optimality of 2.01. Similar to the third puzzle, cluster 4 
in the second puzzle corresponded to students who used some of 
the optional braces. This observation asserts that students who do 
not follow one of the two practices (i.e., either including all 
optional braces or eliminating all optional braces) struggle the 
most with assembling if-else statements.  

Furthermore, in the second puzzle, the cluster with the second 
most non-optimal solutions was cluster 2 with a degree of 
optimality of 1.17. This cluster grouped students who did not use 
any of the optional braces to construct the final solution. As this 
puzzle used nested if-else statements, students might had confused 
some of the lines of the problem since they did not use any of the 
optional braces. Optional braces are not necessary, but it improves 
the readability of the code. This might be the reason why students 
who did not use any braces took more actions to assemble the 
puzzle than students who used optional braces. This shows that 
the use of optional braces helped in solving more complex tasks. 
Cluster 1 grouped students who used all the optional braces and it 
had a degree of optimality of 1.15. Even though they assemble a 
larger puzzle (34 lines vs 18 lines), the solutions were more 
optimal compared to students who did not use optional braces. 
We expect that we may find more clusters if we gather more data 
for the second puzzle. This might also show optimal and sub-
optimal solutions for various types of solutions: 1) solutions with 
no optional lines included, 2) solutions with all optional lines 
included, and 3) solutions with some optional lines included.  
From a visual inspection of complete clusters of the three puzzles, 
we find that the centroids in the second puzzle had a longer tail 

than the centroids in the first puzzle. This showed that the students 
in all the clusters of the second puzzle faced more difficulty 
completing the last few steps in the puzzle compared to the 
students who solved the first puzzle. All three puzzles cover if-
else statements, but the second puzzle is more difficult than the 
first and third puzzles because it involves the concept of nesting, 
which is harder for novice programmers. We have found similar 
tails in edit distance trails of harder puzzles during the analysis of 
other concepts [7]. 
Additionally, Table 11 showed that the second puzzle had a 
maximum optimality 2.01. This means that the students took at 
most twice the optimal number of moves to try and solve the 
second puzzle. The first puzzle included a group of students who 
took about four times the required moves to solve the puzzle 
(cluster 4 with a degree of optimality of 4.05). This highlights that 
students were more motivated to solve the first puzzle. Students 
most likely gave up more quickly on the second puzzle because of 
the added nesting complexity. 
Among the incomplete solutions, the first cluster in the first 
puzzle and the second cluster in the second puzzle, shown in 
Table 7 and Table 9, identifies “lurkers” [6]. Lurkers are students 
who take a couple of actions and bail out quickly. Hosseini in her 
literature identifies lurkers as “stoppers”, who do not take any 
actions after encountering a problem. We use the term “lurkers” 
because we believe that these students were probably just testing 
the interface to gain familiarity with the tutor. “Movers” identified 
in the literature [6] corresponded to all the students grouped in the 
complete clusters. These students were gradually able to solve the 
puzzle by taking steps towards the correct solution. “Tinkerers” 
[6] were students who took several actions to solve the puzzle by 
making small changes but were ultimately unable to solve the 
puzzle. All the other clusters in the incomplete solutions 
excluding the “lurkers” identify as “tinkerers”. Edit distance trails 
in this case helped identify the known problem-solving behaviors 
of students. 
Edit distance space has been used to generate hints in code-
writing tasks [2]. We use edit distance to track progress of 
students, not provide hints; we addressed Parsons puzzle solutions 
which have a finite search space and a single correct solution 
compared to code-writing exercises which must accommodate any 
code written by the student and can have multiple possible 
solutions; and we computed edit distance from the final and only 
solution to the puzzle, not a weighted average of all possible 
nearby paths to the solution. 
Edit distance trails helped to identify patterns by clustering 
student solutions regardless of the sequence of individual 
statements manipulated by them. One shortcoming of using edit 
distance trails is that since they abstract away puzzle-specific 
information, they cannot be used to determine the specific lines of 
code that most students might have problems assembling 
correctly. 
In the future, we plan to analyze data from Parsons puzzle tutors 
on other topics to see if we can generalize the results of this study 
across topics.  
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