
The Impact of Data-driven Positive Programming
Feedback: When it Helps, What Happens when it Goes

Wrong, and How Students Respond

Preya shabrina
NC State University

pshabri@ncsu.edu

Samiha Marwan
NC State University

samarwan@ncsu.edu

Min Chi
NC State University
mchi@ncsu.edu

Thomas W. Price
NC State University

twprice@ncsu.edu

Tiffany Barnes
NC State University

tmbarnes@ncsu.edu

ABSTRACT
This paper uses a case-based approach to investigate the
impact of data-driven positive feedback on students’ be-
haviour when integrated into a block-based programming
environment. We embedded data-driven feature detectors
to provide students with immediate positive feedback on
completed objectives during programming. We deployed the
system in one programming homework in a non-majors CS
class. We conducted an expert analysis to determine when
data-driven detectors were correct or incorrect, and inves-
tigated the impact of the system on student behavior on
the homework, specifically in terms of time they spent in
the system. Our results highlight when data-driven positive
feedback helps students, what happens when it goes wrong,
and how this impacted students’ programming behavior. Re-
sults from these case studies can shed light on the design
of future data-driven systems to provide novices with the
positive feedback that can help them persist while learning
to program.

Keywords
Snap, Block Based Programming, Data-Driven Hints, Posi-
tive Feedback, Adaptive Feedback

1. INTRODUCTION
Block-based programming environments are intended to pro-
vide novices with the ability to engage in motivating open-
ended and creative programming with features that limit
syntax errors but allow for simplified programming for in-
teractive media [3, 2]. Some of these environments also in-
clude automated support such as misconception-driven feed-
back [4], next-step hints [6], or adaptive feedback [5], which
have been shown to improve students’ learning. Recently,

Copyright c© 2020 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).

data-driven automated hints and feedback [13, 12] are be-
ing explored as they can be generated automatically using
historical or current log data with reduced engagement of
experts. Researchers have investigated varied methods to
generate automatic feedback (For example, hint and feed-
back generation from historical data [5], next step hints from
current code log [9] etc.) and also explored the quality and
impact of feedback on students’ perspective to learn [15, 12,
6].
While prior work has evaluated the quality of automated
feedback, or its impact on students’ performance or learn-
ing, not much is known about the impact of this feedback
on students’ programming behaviour when it fails to pro-
vide reliable feedback. This needs more investigation to
understand what measures can be taken or what support
should be provided to students to mitigate adverse effects
of data-driven automated feedback. Our prior study showed
that data-driven positive feedback increased students’ en-
gagement with the programming task, and improved their
programming performance [5]. In this paper we present case
studies of specific instances where our data-driven positive
feedback system helped students to complete a programming
assignment. Since, the feedback is given based on detection
of objectives extracted from previous students’ correct solu-
tions and does not have a way to adapt to new behaviour, it
is not always perfect. Thus, we also explore instances where
the system either failed to confirm students’ correct steps,
or provided misleading feedback and investigated students’
response to such events in terms of their programming be-
haviour and time spent on the task.

2. RELATED WORKS
Several block-based programming environments were designed
to reduce the difficulties students face while learning a new
programming language in various ways. For example, Al-
ice [2], and Snap [3] provide drag-and-drop coding, and im-
mediate visual code execution. Research has shown that
these programming environments are more engaging in terms
of reduced idle time while solving a programming prob-
lem [8] and can produce positive learning outcomes in terms
of grades [2] and the number of goals completed in a fixed
amount of time [8].



To provide novice students with individualized tutoring sup-
port, researchers have integrated intelligent features into
block-based programming environments. These intelligent
features dynamically adapt teaching support to mitigate per-
sonalized needs [7]. For example, iSnap [10] is an exten-
sion of Snap that provides on-demand hints generated from
students’ code logs using the Source Check Algorithm [11].
Gusukuma el al. [4] integrated automatic feedback based
on learners’ mistakes and underlying misconceptions into
BlockPy [1], and showed that it significantly improved stu-
dents’ performance. Such data-driven approaches are be-
ing integrated to provide more automated adaptive tutoring
support in novice programming environments. For example,
iSnap showcased the first attempt to integrate data-driven
support into a block-based programming environment. Zhi
et al. [13] proposed a method of generating example-based
feedback from historical data for iSnap. They extracted cor-
rect solution features from previous students’ code and used
those features to remove extraneous codes from current stu-
dent code and produced pairs of example solutions that were
provided on an on-demand basis.
The impact and effectiveness of tutoring supports and in-
telligent features integrated into novice programming envi-
ronments have been explored by researchers from various
perspectives. Zhi et al. [15] demonstrated the adoption of
worked examples in a novice programming environment and
found out that worked examples helped students to com-
plete more tasks within a fixed period of time, but not sig-
nificantly more. Price et al. [12] explored the impact of the
quality of contextual hints generated from students’ current
code on students’ help seeking behaviour. They found out
that students who usually used hints at least once performed
as good as students who usually do not perform poorly and
also the quality of the first few hints is positively associated
with future hint use and correlates to hint abuse. Marwan et
al. [6] evaluated the impact of automated programming hints
on students’ performance and learning, and argued that au-
tomated hints improved learning on subsequent isomorphic
tasks when accompanied with self-explanation prompts.
In this paper, we adopted a case study based approach to ex-
plore the positive impact of data-driven programming feed-
back when generated accurately in a block-based novice pro-
gramming environment, and the negative impacts that can
occur when the system fails, to shed light on the influence of
such feedback on novice students’ programming behaviour.

3. SYSTEM DESIGN
3.1 The Novice Programming Environment
We built the data-driven positive feedback system (DDPF)
in iSnap [10], a block-based intelligent novice programming
environment. This environment provides students with on-
demand hints, and can also log all students’ edits while pro-
gramming (e.g. adding or deleting a block) as a code trace.
This logging feature allows researchers or instructors to re-
play all students’ edits in the programming environment,
and detect the time for each edit as well.

3.2 Data-Driven Positive Feedback (DDPF) Sys-
tem

We built a system to provide positive feedback while stu-
dents program a specific exercise in the block-based pro-
gramming environment, using a data-driven feature detector

algorithm, described in [14]. This algorithm detects features,
i.e. sequence of code blocks that reflect properties of correct
solutions from previous students’ data. We used the 7 fea-
tures [Table 1 Column 2] extracted using this algorithm on
data from one programming exercise solved in the environ-
ment as follows : the system converted snapshots of each edit
a student made into an abstract syntax tree (AST) to detect
completed features. The system generates a sequence of 0s
and 1s called feature state (e.g. 1100000, where the first two
1s indicate presence of the first two features, and 0s indicate
absence of rest of the features) for each student’s snapshots.

3.3 Positive Feedback Interface
We designed an interface, based on our prior work [5], to pro-
vide positive feedback using the DDPF system mentioned
above. This interface includes a progress panel that dis-
plays a set of four objectives students need to complete to
finish the programming task. Two experts in block-based
programming converted the 7 data-driven features into four
objectives with a meaningful description for each to be dis-
played in the progress panel. While a student is program-
ming, after each edit, the DDPF system detects the fea-
ture state of the current student snapshot, and updates the
corresponding objectives in the progress panel accordingly.
Initially, all the objectives in the progress panel are deacti-
vated. Once the system detects the presence of a feature,
the color of its corresponding objective changes to green,
but if it detects the absence of a feature that was present
before (i.e. a broken feature), its corresponding objective
turns red.

4. PROCEDURE
We deployed our system in an introductory computing course
for non majors in Spring 2020 in a class of 27 students, which
took place in a public research university in the United
States. In this course, students used iSnap (Section 3.1)
to solve their in-class programming assignments and home-
works. We integrated our DDPF system into the program-
ming environment for one homework called Squiral, described
in Section 4.1. The data we collected consists of code snap-
shots for every edit in student code with corresponding times-
tamps. We also logged all the objective feature states of all
students’ code snapshots with the time when every objective
was completed or broken. Afterwards, we manually checked
the sequential code snapshots for each student and docu-
mented the following:
Early, Late, Incorrect and Just-In-Time Objective
Detection: We investigated the code snapshots for each
student, and filtered out these snapshots where the system
detected the completion of an objective. Two researchers
evaluated whether each detection was early (i.e. the ob-
jective was detected before the student completed the ob-
jective), or late (i.e. the student completed the objective
earlier than when it was detected by the system), incorrect
(i.e. an objective was detected that was never completed),
or just-in-time (i.e. the objective was detected at the step
when the student just completed it).
Agreement between Researchers and Automatic Ob-
jective Detection: To measure the agreement between re-
searchers and data-driven objective detection, we marked
each step of a student’s code with: true positive TP, where
both the researchers and the system detect the completion
of an objective at the same step, or true negative TN, where



Figure 1: a) A sample expert solution to solve the
Squiral assignment; b) Expected output

both the researchers and the system detect that an objec-
tive was broken at the same step, or false positive FP, where
the system detects the completion of an objective; however
it was not detected by the researchers, or false negative FN,
where the system detected an objective as broken at a step
where the researchers detect no broken objective.
Idle and Active Time : We measured the total active and
idle time spent by each student on the system while solving
the programming homework. We also measured, for each
student, the active and idle time spent before each objective
was detected by the system and the total active and idle
time spent before the last change to any objective was de-
tected by the system. We chose a time gap of greater than
3 minutes [75 th percentile based on the frequency distribu-
tion of different amount of time gaps] to be considered as
idle time. Also, a time gap of greater than 10 minutes [95th
percentile] was considered to be the start of a new session
and thus, was not added towards either active time or idle
time.

4.1 The Squiral Assignment
The Squiral assignment is a programming homework that
asks students to create a procedure to draw a spiraling square-
like shape. One possible solution and its corresponding out-
put is depicted in Figure 1. Using correct student solutions
collected from prior semesters, four objectives were iden-
tified [described in section 3.3] and were provided to the
students as sub-goals to achieve while solving the problem.
The specific features required to complete each objective are
shown in Table 1.

4.2 Research Questions
The goal of this study is to explore the impact of auto-
mated data-driven adaptive feedback on students’ program-
ming behavior. To achieve the goal, we aimed to answer the
following research questions:
RQ1: How it Helps.
How did data-driven feedback help students complete the
assignment?
RQ2: What happens when it Goes Wrong.
How did the objective detectors impact student behavior,
especially with regard to differences between researcher and
algorithmic objective completion detection?
RQ3: How Students Respond.
How did data-driven feedback impact students’ active and
idle time while solving a programming problem?

Table 1: Sample requirements to complete each ob-
jective

Objective Number and
Label

Required Features
for Completion

1: Make a Squiral custom
block and use it in your code
[similar to creating a function
and using it in the program]

- Create and use
custom block

2: The Squiral custom block
rotates the correct number of
times

A nested loop-
repeat y * z
Or
repeat y
repeat z
y = rotation count
z = 4

3: The length of each side of the
Squiral is based on a variable

Within loop :
move x steps
x = length of a side

4: The length of the Squiral
increases with each side

- pen down
[outside loop]
- Within loop :
1. move x steps
2. turn 90 degrees
3. change x by
some value

5. RQ1: HOW IT HELPS
When we observed each student’s solution at the end of their
attempt, we found out that 25 out of 27 students who were
provided feedback had working solutions of the Squiral as-
signment at the end of their attempt, although, according
to researchers, their solutions were not always perfect from
a logical perspective [For example, using ‘size x size’ in the
nested loop instead of ‘rotations x 4’, where ‘size’ = 10 and
‘rotations’ = 25, will produce the same Squiral. But, it is
not logically correct, since the purpose of the nested loop
is to draw 4 sides of the Squiral in each rotation.]. Among
the 27 students, two students (Jade and Lime) attempted to
solve Squiral using the system both with and without feed-
back. To get specific insight on how the system helped the
students to reach a correct solution, we examined code logs
of these two students who each attempted to solve Squiral
without Data-Driven Feedback, and failed to complete the
assignment. Later, those two students each attempted to
solve Squiral with Data-Driven Feedback and succeeded. In
this section, we present the case studies of these two stu-
dents to demonstrate how the feedback system helped the
students to fill the gaps in their code and led them to work-
ing solutions.

5.1 Case Study Lime
Student, Lime, without Data-Driven Positive Feed-
back: Student Lime, when attempting to solve Squiral
without any hints or feedback [Figure 2] given, used a custom
block with a parameter. The student used ‘move’ and ‘turn’
statements within a loop in the custom block. However,
there were three gaps in the code that the student could not
figure out. First, a nested loop was required to iterate for
‘rotation count x 4’ times. Second, the move statement used
‘length x 2’ as its parameter whereas only ‘length’ would be
sufficient. Finally, the variable used in the ‘move’ statement



Figure 2: Student Lime’s Solution when no Feed-
back was given

Figure 3: Student Lime’s Solution when Feedback
was Given

must be incremented at each iteration. The student spent
18 minutes and 18 seconds before giving up, being unable to
figure out these issues.
Student Lime with Data-Driven Positive Feedback:
Later, student Lime attempted the homework again after
receiving notice that the DDPF system was made available.
When Lime received feedback, they figured out the 3 issues
and reached a correct solution [Figure 3]. The second objec-
tive suggests that there is a correct number of rotations that
is needed to be used within the custom block. With this
feedback, Lime used ‘4 x Rotations’ in the ‘repeat’ block
instead of using ‘15’ and completed the second objective.
The third objective suggests the use of a variable in the
‘move’ statement. Lime used an initialized variable ‘length’
in the ‘move’ statement instead of ‘length x 2’ and the objec-
tive was marked green. Finally, Lime incremented ‘length’
within the loop and all objectives were completed and they
reached a correct solution. With data-driven adaptive feed-
back, Lime spent 29 minutes 51 seconds before reaching the
correct solution. Recall that Lime gave up with an incor-
rect solution after around 18 minutes when no feedback was
given.

5.2 Case Study Jade
Student Jade without Data-Driven Positive Feed-
back: Student Jade initially attempted to solve Squiral
without data-driven positive feedback, spent 16 minutes and
55 seconds before giving up with an incorrect solution. Jade’s
code [Figure 4] contains ‘repeat’, ‘move’, and ‘turn’ state-
ments on the stage. Jade created a custom block and only
used the block to initialize a variable, ‘length’, that was also
a parameter to the block. The components to complete the
objectives were partially there in Jade’s code but it suffered

Figure 4: Student Jade’s Solution without Feedback

Figure 5: Student Jade’s Solution when Feedback
was Given

from organizational issues. Also, Jade couldn’t figure out
that the ‘move’ statement should use a variable instead of
a constant and the same variable needs to be incremented
at each iteration. The number of repetitions in the repeat
block was also incorrect.
Student Jade with Data-Driven Positive Feedback:
Like Lime, Jade attempted the homework again when the
DDPF system was provided. When given feedback, Jade
first created a custom block and used it on the stage which
got the first objective marked green. The second objective
hints on using a loop that repeats for correct number of
rotations within the custom block. This time Jade imple-
mented the loop within the block and got the second ob-
jective correct. Within the loop, Jade used ‘move’, ‘turn’,
and ‘change’ statements and reached the correct solution
[Figure 5] with all objectives marked green. With adaptive
feedback, it took Jade 14 minutes 29 seconds to reach a cor-
rect solution. Whereas without feedback, Jade gave up with
an incorrect solution after spending over 16 minutes on the
problem.

5.3 Findings
The 2 case studies of Lime and Jade presented in this sec-
tion demonstrated that the feedback system was able to help
students in filling up the gaps in their code to reach a cor-
rect solution. In one case, this achievement came at the
cost of a higher active time and in the other case the stu-
dent reached a correct solution in less time when feedback
was provided. Also, we observed most of the students had a
working solution [capable of drawing a Squiral] at the end of
their attempts, although not logically 100% correct accord-
ing to researchers. Moreover, almost all (25 out of 27) the
students explored syntactic constructs required to complete
the objectives, (e.g. move, turn, iteration, variables), which



potentially indicates that they closely followed the objectives
to accomplish the assignment.

6. RQ2: WHAT HAPPENS WHEN IT GOES
WRONG

To answer RQ2, we manually walked through the sequen-
tial code snapshots of each student when they attempted
to solve Squiral and generated case studies where the sys-
tem went wrong and observed students’ problem solving ap-
proach. Below we present three case studies demonstrating
our system’s potential impact on student behavior when the
system could not provide reliable feedback. We selected one
case where the student completed an objective but the sys-
tem could not detect it (FN case) and two cases where the
system detected completed objectives when the objectives
were not completed (according to researchers), which led
students to an incorrect solution or made them stop early.

6.1 Case Study Azure : FN Cases Causing Stu-
dents to Work More than Necessary

Student Azure started solving Squiral by creating a custom
block and got the first objective correct. Azure used 2 pa-
rameters, ‘size’ and ‘length’, to denote the number of ro-
tations and length of the first side of the innermost loop.
They created a loop with a ‘repeat’ block with the correct
number of rotations (‘size x 4’) and got the second objective
correct. As Azure used the ‘length’ parameter in the ‘move’
statement within the loop, they got the third objective cor-
rect. Then Azure added a ‘turn’ statement and incremented
the ‘length’ variable. At this point, the fourth objective was
completed, according to researchers. However, the objective
was undetected by the system [FN case], because Azure used
a ‘turn’ statement that was different from those used in the
previous students’ solutions [that were used to extract and
detect the objectives]. According to researchers, Azure’s so-
lution was 100% correct at this point [Figure 6]. It took
this student only 2 minutes 24 seconds to reach the correct
solution.
However, the fourth objective was not detected by the sys-
tem. Azure kept working on their code. Azure made several
changes to their code which led them to an incorrect solu-
tion. Finally, Azure ended up submitting a solution that was
also 100% correct according to researchers, but was slightly
different from their initial solution. In the submitted solu-
tion, Azure removed the ‘length’ variable from the parame-
ter list of the custom block. The fourth objective was still
undetected. While doing these changes, the student spent
12 minutes 5 seconds more in the system which is almost 5
times the amount of time the student spent to get a correct
solution in the first place.
We observed a similar situation in case of student Blue who
worked for a total of 1 hour 43 minutes 16 seconds. Blue
reached a correct solution at 1 hour 7 minutes 11 seconds ac-
cording to researchers. But one objective (fourth objective)
was undetected. Blue kept working for another 36 minutes
5 sec (almost 50% of the time taken to reach the correct
solution at first attempt).

6.2 Case Study Cyan : FP Cases Leading Stu-
dents to an Incorrect solution

Student Cyan created a custom block and used it on the
stage and got the first objective correct. Cyan used two

Figure 6: Correct Solution Initially Implemented by
Azure

Figure 7: Incorrect Solution Initially Implemented
by Student Cyan

parameters in the custom block and used one of them in a
‘move’ statement within a nested ‘repeat’ block that got him
the second and third objective correct. However, Cyan im-
plemented another nested loop and added a ‘change’ state-
ment within that loop in the stage instead of adding them
to the custom block. The system detected the objective and
marked the fourth objective green. At this point, the stu-
dent Cyan had all objectives correct [FP cases] but the code
[Figure 7] was unable to draw a Squiral.
Later, Cyan removed the ‘change’ statement from the stage
that caused the fourth objective to be broken. However, re-
moving the custom block from the stage was causing other
objectives to be broken. Cyan then moved the ‘change’
statement to the custom block and corrected the rotation
count in the ‘repeat’ statement. At this point, the solution
was correct and similar to Figure 1a. The incorrectly de-
tected objectives led Cyan to a non-working solution. In
this case, Cyan had to ignore the detectors and do extra
work to reach a correct solution.
We observed a similar situation in the case of three other
students. One of them got four objectives correct and the
code was able to draw a Squiral, but according to researchers
the code had one programmatic problem. The code was
drawing three sides of the Squiral using an inner loop and
one side manually. The problem detected by researchers
remained undetected in the system and the student ended
up submitting a partially correct solution. For the other
two students, four objectives got detected when there were
syntactical problems present in their programs, as for stu-
dent Cyan. The students realized that completing the ob-
jectives did not necessarily mean that their code could draw
a Squiral. Although FP cases led the students to incomplete
code with four checked objectives, incorrect output eventu-
ally compelled each student to modify their codes and to
reach a 100% correct solution at the end.



Figure 8: Solution Submitted by Student Indigo

6.3 Case Study Indigo : FP Cases Causing Stu-
dents to Stop Early at a Partially Correct
Solution

We found 6 additional cases where the students got 4 objec-
tives correct, but the code was partially correct (FP Case)
according to researchers. However, their programs were able
to draw a Squiral as required. In such cases, the students
finished the attempt early and submitted the partially cor-
rect solution. We present the case study of Student Indigo
here.
Student Indigo’s solution [Figure 8] had objectives 1, 3, and
4 correctly completed according to researchers and the ob-
jectives were detected by the objective detection system as
well. Indigo created a custom block and used it in the stage
[required to complete objective 1]. They used ‘pen down’
and added ‘move’, ‘turn’, and ‘change’ statements accord-
ingly [required to complete objective 4] within a nested loop
implemented with two ‘repeat’ statements. In the ‘move’
statement, Indigo used an initialized variable, ‘Length’ [re-
quired to complete objective 3], and incremented the value
of ‘Length’ by 10 at each iteration. However, the rotation
count used in the nested loop was wrong. One of the ‘repeat’
statements should have the count of rotations and the other
should have a constant 4, indicating the 4 sides of the square
drawn at each rotation. The objective detection system de-
tected the use of the nested loop and marked objective 2
green [FP case]. The code was able to draw a Squiral. How-
ever, the implementation was not completely correct. But,
once the student Indigo got 4 objectives correct, they sub-
mitted their solution.

6.4 Findings
We observed cases where students reached a correct solu-
tion, but could not recognize the correct solution because
their completed objectives were not detected by the sys-
tem. They continued working on the assignment for a longer
time than was necessary. We also observed cases when stu-
dents got 4 objectives correct but their solution was not
even working, i.e. their code was not able to draw a Squiral
because of organizational or syntactical problems. Only in
these cases, the students realized completing the objectives
is not enough. Thus, they modified the code overriding the
objective detectors to reach a working solution. Our third
case study showed that students who got 4 objectives correct
with a working code submitted their solutions even if their
code was not fully correct according to researchers. In these
cases, all the students relied on objective detection and sub-
mitted partially-correct solutions. These case studies poten-
tially indicate students’ high reliance on objective detection

Figure 9: Phases in a Student’s Attempt to Solve
Squiral

Table 2: Active and Idle Time range before Objec-
tives got detected for the first time

Objective Active Time (min.) Idle Time(min.)
1 ∼0-12.45 0-9.27
2 0.1-84.5 0-10.1
3 0.4-17.9 0-13.25
4 0.5-18.2 0-19

feedback, since they did not seem to question the feedback
system as long as they had a working program that drew
the correct shape. However, students did not rely on their
own skill to determine when their code was correct. Further-
more, students sometimes even ignored the produced output
that showed they had a working solution, in the cases when
objectives were not detected.

7. RQ3: HOW STUDENTS RESPOND
To answer RQ3, we investigated how the correctness of ob-
jective detection at early phases of a problem solving at-
tempt impacted later phases of the attempt. We divided
the total time each student spent on the system into three
phases [Figure 9] - a) Phase A : when objectives were de-
tected for the first time; b) Phase B : changes in previously
detected objectives were detected. c) Phase C : students
spent time in the system but no change in the objectives
were detected. For example, a student got objectives 1, 3,
and 4 marked green within 20 minutes of starting the at-
tempt [Phase A]. Then the student continued working for
another 10 minutes [Phase B] but did not see a new ob-
jective [objective 2] go green. However, the previously de-
tected objectives were broken and corrected several times.
Finally, the student spent another 5 minutes [Phase C] when
no change in any of the objectives were detected. We tried
to relate correct, incorrect, early, and late detection ratios
in phase A with the active and idle time spent in phases A,
B, and C to understand if correct, incorrect, early, or late
detection regulates the time or effort students put on the
assignment.

Active and Idle Time Observed in Phase A: In this
phase, objectives got detected for the first time by the sys-
tem. Students were observed to take wide ranges of time
before an objective was detected [Table 2]. We plotted aver-
age active and idle time against correct objective detection
ratios and observed that students with higher correct objec-
tive detection ratio have shorter phase A in terms of active
time [Figure 10a]. For 1 of the students, this phase did not
occur because an objective was never detected in the stu-
dent’s code. In this phase, only a few cases were found when
the students had idle time. 16 out of 27 students did not



Figure 10: a) Active Time in Phase A against Cor-
rect Objective Detection Ratio; b) Idle Time in
Phase A against Early Objective Detection Ratio

Figure 11: a) Active Time in Phase B against Cor-
rect Objective Detection Ratio in Phase A; b) Idle
Time in Phase B against Early Objective Detection
Ratio in Phase A

have any idle time at all. 7 students had idle time ranging
from 3-5 minutes. The rest of the 4 students had idle time
ranging from 10 - 24 minutes. We observed that a higher
early detection rate (over 25%) has a decreasing trend in av-
erage idle time [Figure 10b]. This may potentially indicate
that positive feedback can be motivating to students, even
if it is provided early.
Active and Idle Time Observed in Phase B: For 11
students, phase B did not occur at all, due to either the fact
that an objective was never detected, or the students sub-
mitted their code after all of the objectives were detected
for the first time in phase A. 10 students spent >0 - <10
minutes, and 6 students spent >10 - 35 minutes in phase
B. 4 of the 6 students who spent a higher amount of time
in this phase B had a high early detection ratio at phase
A (50-75%), and 1 student had a high incorrect detection
ratio (50%). These students did not have correct solutions,
even if some or all of the objectives got detected in phase
A. In this phase B, 21 out of 27 students had no idle time.
6 students had idle time ranging from 3 to 24 minutes. As
we plotted average active and idle time in phase B against
the correct and incorrect objective detection ratio in phase
A, we observed a higher correct detection rate (>25%) in
phase A seemed to decrease the active time spent in phase
B [Figure 11a]. This means that correct detections helped
students complete their programs more quickly. Correct ob-
jective detections in phase A pushed the students towards
the end of their attempt. However, incorrect objective de-
tection in phase A decreased idle time in phase B and caused
the students to continue actively working [Figure 11b].

Figure 12: Active Time in Phase C against Early
Objective Detection Ratio in Phase A

Active and Idle Time Observed in Phase C: This
phase C indicates the time when no change was detected in
any of the objectives. In this phase C, one of the following
scenarios occur : 1) Most of the objectives were detected
in earlier phases; the student had a working solution and
was making minor modifications without impacting the ob-
jectives; or 2) One, more than one, or all of the objectives
were undetected and the student was working on the assign-
ment but submitted the attempt without another objective
being detected. We observed that when the first scenario
occurs, students spent only a few minutes in phase C and
submitted their code. 18 out of 27 students spent only 0.1-8
minutes in the system after scenario 1 occurred: even if the
objective detection was wrong, the student relied on the sys-
tem, and submitted their code. We observed a higher early
detection ratio in phase A led to decreased average active
time in phase C [Figure 7]. The remaining 9 students spent
12-56 minutes in this phase. Scenario 2 played out for 7 of
these 9 students, who all submitted the program with some
incomplete objectives.

7.1 Findings
The results of our analysis showed that the active and idle
time spent in Phase B and Phase C are associated with the
quality of detection in Phase A in some cases. We observed
that correct objective detection in Phase A that led to a
working solution pushed students to finish their attempt,
making Phases B and C shorter. Whereas, incorrect objec-
tive detection in Phase A that led to a non-working solution
decreased the idle time observed in Phase B and students
worked more. However, the active time in such cases var-
ied from student to student, and depended on the extent
to which objective detection went wrong. Our case stud-
ies presented in Section 6 demonstrated indication of stu-
dents’ significant reliance on the feedback. This reliance on
the system interacted differently depending on whether the
feedback was correct or incorrect, and whether or not the
student code output appeared correct, and these differences
are reflected in students’ response or effort in terms of active
and idle time.

8. DISCUSSION
Our case studies and analysis demonstrated that, although
our feedback system could guide students to complete a pro-
gramming assignment, it could mislead students to do ex-
tra work, submit a partial correct solution, or to end up at
a non-working solution in the event it provides inaccurate



feedback. However, the visual feedback of objectives going
green [even for an incorrect or too-early detection] reduced
idle time, giving us an indication that the feedback was mo-
tivating for students. All these observed impacts could be
the result of students’ high reliance on the feedback system.
To prevent the negative impacts generated in the event of
incorrect detections, mechanisms to prevent incorrect de-
tections must be explored. We observed our system to fail
in the event of new student behaviours. Since we built in-
terventions that use data from prior students and new stu-
dents behave in new ways, the system has not had time to
learn and adapt based on their behavior. Thus, any sys-
tem like ours must have an iterative process for integrating
new behaviors that may arise from diversity in students and
instructors.

9. CONCLUSION AND FUTURE WORK
This paper presents case studies to provide important in-
sights into the impacts of positive feedback on novice pro-
grammers from multiple perspectives. We present case stud-
ies that shed light on how the feedback system helped two
students to complete a programming task who failed to com-
plete the task on their first attempts without feedback. While
these scenarios highlighted the usefulness of positive feed-
back, our case studies surrounding the event when the sys-
tem could not provide accurate feedback provided insights
on what impact feedback failures can have on students’ re-
sponses. These insights can be highly useful to decide on
measures to mitigate an adverse impact or to formulate
adaptations to handle unexpected behaviors. This may in-
volve expressing a confidence level for detectors, or inviting
students to self-explain how and why their solutions are cor-
rect. The primary contributions of this work are: 1) Case
Studies demonstrating how the positive feedback system can
induce a working solutions for a programming task; 2) Case
studies and code trace-based analyses that gave important
insights on how a data-driven positive feedback system im-
pacts students’ behaviour when the system goes wrong. Our
results show interesting relationships between correctness of
the provided feedback and the time students spent on the
task or in the system. In our future work, we plan to ex-
plore these impacts in larger controlled studies and on other
programming tasks, and we also plan to explore how we can
adapt our system to balance students’ understanding of their
own code with reliance on feedback, to promote learning.

10. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under grants 1623470.

11. REFERENCES
[1] A. C. Bart, J. Tibau, E. Tilevich, C. A. Shaffer, and

D. Kafura. Blockpy: An open access data-science
environment for introductory programmers.
Computer, 50(5):18–26, 2017.

[2] W. Dann, D. Cosgrove, D. Slater, D. Culyba, and
S. Cooper. Mediated transfer: Alice 3 to java. In
Proceedings of the 43rd ACM technical symposium on
Computer Science Education, pages 141–146, 2012.

[3] D. Garcia, B. Harvey, and T. Barnes. The beauty and
joy of computing. ACM Inroads, 6(4):71–79, 2015.

[4] L. Gusukuma, A. C. Bart, D. Kafura, and J. Ernst.
Misconception-Driven Feedback: Results from an
Experimental Study. Proceedings of the 2018 ACM
Conference on International Computing Education
Research - ICER ’18, (1):160–168, 2018.

[5] S. Marwan, G. Gao, S. Fisk, T. W. Price, and
T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the
International Computing Education Research
Conference (forthcoming), 2020.

[6] S. Marwan, J. Jay Williams, and T. Price. An
evaluation of the impact of automated programming
hints on performance and learning. In Proceedings of
the 2019 ACM Conference on International
Computing Education Research, pages 61–70, 2019.

[7] T. Murray. Authoring intelligent tutoring systems: An
analysis of the state of the art. 1999.

[8] T. W. Price and T. Barnes. Comparing textual and
block interfaces in a novice programming environment.
In Proceedings of the eleventh annual international
conference on international computing education
research, pages 91–99, 2015.

[9] T. W. Price, Y. Dong, and T. Barnes. Generating
data-driven hints for open-ended programming.
International Educational Data Mining Society, 2016.

[10] T. W. Price, Y. Dong, and D. Lipovac. isnap: towards
intelligent tutoring in novice programming
environments. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education, pages 483–488, 2017.

[11] T. W. Price, R. Zhi, and T. Barnes. Evaluation of a
Data-driven Feedback Algorithm for Open-ended
Programming. In Proceedings of the International
Conference on Educational Data Mining, 2017.

[12] T. W. Price, R. Zhi, and T. Barnes. Hint generation
under uncertainty: The effect of hint quality on
help-seeking behavior. In International Conference on
Artificial Intelligence in Education, pages 311–322.
Springer, 2017.

[13] R. Zhi, S. Marwan, Y. Dong, N. Lytle, T. W. Price,
and T. Barnes. Toward data-driven example feedback
for novice programming.

[14] R. Zhi, T. W. Price, N. Lytle, Y. Dong, and
T. Barnes. Reducing the state space of programming
problems through data-driven feature detection. In
EDM Workshop, 2018.

[15] R. Zhi, T. W. Price, S. Marwan, A. Milliken,
T. Barnes, and M. Chi. Exploring the impact of
worked examples in a novice programming
environment. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education,
pages 98–104, 2019.


