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ABSTRACT
The CS1 course is a critical experience for most novice pro-
grammers, requiring significant time and effort to overcome
the inherent challenges. Ever-increasing enrollments mean
that instructors have less insight into their students and
can provide less individualized instruction. Automated pro-
gramming environments and grading systems are one mech-
anism to scale CS1 instruction, but these new technologies
can sometimes make it difficult for the instructor to gain
insight into their learners. However, learning analytics col-
lected by these systems can be used to make up some of
the difference. This paper describes the process of mining
a heavily-instrumented CS1 course to leverage fine-grained
evidence of student learning. The existing Python-based
curriculum was already heavily integrated with a web-based
programming environment that captured keystroke-level stu-
dent coding snapshots, along with various other forms of
automated analyses. A Design-Based Research approach
was taken to collect, analyze, and evaluate the data, with
the intent to derive meaningful conclusions about the stu-
dent experience and develop evidence-based improvements
for the course. In addition to modeling our process, we
report on a number of results regarding the persistence of
student mistakes, measurements of student learning and er-
rors, the association between student learning and student
effort and procrastination, and places where we might be
able to accelerate our curriculum’s pacing. We hope that
these results, as well as our generalized approach, can guide
larger community efforts around systematic course analysis
and revision.
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puting education; Information systems [Information sys-
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1. INTRODUCTION
The first Computer Science course (CS1) can be a chal-
lenging experience for novices given the constraints of a
semester [22], but success in CS1 is critical for computer sci-
ence students, as it sets a foundation for subsequent classes.
Large amounts of practice and feedback are critical to this
experience, so that learners can overcome programming mis-
conceptions [17, 20] and develop effective schema. Instruc-
tors have a key role in developing materials to support learn-
ers’ productive struggle. Recently, however, scaling enroll-
ments [26] and the move to remote/hybrid learning environ-
ments has shifted much of this work away from interacting
with individual students towards interacting with systems
(which in turn interact with the students directly). For ex-
ample, programming autograders [19] remove the instructor
from the grading process, automatically assessing and some-
times even providing feedback directly to the learner.

Although these systems scale the learning process, they can
inhibit the evaluation and revising of course materials. In-
structors do not have as many first-hand interactions with
students or the artifacts that they produce. When home-
works and exams are no longer hand-graded, teachers may
not be as directly motivated to review each submission. Sim-
ilarly, when automated feedback systems are effectively sup-
porting students, teachers will have fewer opportunities to
get direct insight into what issues students are encounter-
ing. This knowledge of the students’ experience is critical to
gauge the effectiveness of the course materials. Instructors
need a new model to guide their revision decisions.

We propose instructors follow a Design-Based Research (DBR)
approach [8, 3] to iteratively improve their course. In par-
ticular, course development should be seen as an iterative
and statistical Instructional Design process; each semester,
a curriculum is built and presented to learners as an inter-
vention, data is generated and collected as learners interact,
that data is analyzed to discover shortcomings and successes
of the intervention, and then modifications to the “protocol”
are identified for the next iteration of the study. Instruc-
tional Design models provide a systematic framework for
this development process, but the DBR approach augments
this to emphasize the statistical and theory-driven nature
of the evaluation process. Fortunately, the same autograd-
ing tools that scale practice and feedback opportunities for
students can also be used to collect many kinds of learning
analytics, permitting the use of educational data mining to
garner insights into learning [2].



In this paper, we present our experience of evaluating a CS1
course that has been heavily instrumented to provide rich
data on student actions. Our goal is not to prove that our
curriculum was a“success”or“failure”as a whole, but to em-
pirically judge specific pieces and identify components that
should be modified or maintained. We draw upon program-
ming snapshot data, non-programming autograded question
logs, surveys, exam data, and human assessments to produce
a diverse dataset. In addition to sharing our conclusions
about the state of our course, we believe that we present a
formative model for other instructors who wish to evaluate
their courses systematically. In fact, our specific analyses are
recorded in a Jupyter Notebook1. Our hope is that others
will use our own analyses as a baseline to develop their own
questions, and to motivate others to approach their courses
with a more systematic, empirical method.

2. THEORIES AND RELATED WORK
The central premise of our approach is inspired by Design-
Based Research, which has been well established in the ed-
ucation literature for decades. Those interested in an intro-
duction to DBR can refer to [8]. Briefly, there are several
key tenets: 1) Development is an iterative process of design,
intervention, collection, and analysis. 2) Educational inter-
ventions cannot be decontextualized from their setting. 3)
Processes from all phases of development must be captured
and provided sufficient context to ensure reproducibility and
replication. 4) Developing learning experiences cannot be
separated from developing theories about learning. 5) Re-
sults from an intervention must inform the next iteration
and communicated out to broader stakeholders.

Messy authenticity is inherent in this process, and naturally
limits the theoretical extent of findings in a DBR process.
Therefore, any conclusions derived should not be seen as
broadly applicable, but only meaningful for the context in
which they were developed. Although theories of learning
are generated from DBR, this is less true for early iterations.
True success for a course is a moving target. As the curricu-
lum improves and students overcome misconceptions faster,
more material can be added. Over time, the curriculum
necessarily needs to be updated and assignments refreshed.
Further, courses often need to be adapted for new audiences
with different demographics and prior experiences. Given
the DBR model strongly incorporates context, these reali-
ties can be accounted for at some level.

DBR has been somewhat underused in Computing Educa-
tion Research (CER). Recently, Neslon and Ko (2018) made
a strong argument that CE research should almost exclu-
sively follow Design-Based Research methodologies [27], for
three reasons: 1) avoid splitting attention between advanc-
ing theory vs. design, 2) the field has not generated enough
domain-specific theories, and 3) theory has sometimes been
used to impede effective design-based research in the peer
review process. Many of the recommendations made in the
paper echo the tenets of DBR listed above and are consis-
tent with our vision for communicating our course designs.
In fact, their paper was a major guiding inspiration.

Another major inspiration for our approach is Guzdial’s 2013

1https://github.com/acbart/csedm20-paper-cs1-analysis

paper evaluating their decade-long Computational Thinking
course (“MediaComp”) [15]. Although a longer time scale,
this paper takes a scientific, cohesive look at their course us-
ing a DBR lens. They critically evaluate what worked and
contextualize all their findings by their design. They begin
with a set of hypotheses about what aspects of the course
will be effective, and then systematically review data col-
lected from the offerings to accept or reject those hypotheses.
Their conclusions, while not transcendent, are impactful for
anyone modeling themselves after their context.

In computing education, programming log data has been
used to make various kinds of predictions and evaluations
of student learning [16]. Applications include predicting
student performance in subsequent courses [10], identifying
learners who need additional support [30], modelling stu-
dent strategies as they work on programming problems [23],
evaluating students over the course of a semester [6, 24].
These approaches tend to rely on vast datasets or seek to
derive conclusions that are predictive, highly transferable, or
are about individual students. Although such research work
is valuable, the goal is distinctive. We recognize that each
course offering has an important local context that cannot
be factored out, and that collecting sufficient evidence over
time inhibits the process of iterative course design. Rather
than developing generalizable theories or predicting perfor-
mance, we seek actionable data from a single semester an
instructor can use to evaluate and redesign their course.

Effenberger et al [11] are perhaps an example more closely
aligned with our own research goals. Rather than evaluat-
ing students, their work sought to evaluate four program-
ming problems in a course. Their results suggest that de-
spite commonalities in the tasks, the problems’ characteris-
tics were considerably different, underscoring the danger of
treating questions as interchangeable in course evaluation.

The process of systematic course revision is similar to the
ID+KC model by Gusukuma (2018), which combines formal
Instructional Design methodology with a cognitive student
model based on Knowledge Components [14]. Instead of fo-
cusing on a student model, however, we focus on components
of the instruction such as the learning objectives. Still, the
systematic process of data collection and analysis to inform
revision is common between our methods.

3. CURRICULUM AND TECHNOLOGY
In this section, we describe the course’s curriculum and tech-
nology. DBR necessitates a clear enough description of the
curriculum to understand the evaluation conducted, so we
cannot avoid low-level details —the context matters. We
have attempted to separate, however, the specific experi-
ential details of our intervention (i.e., the course offering),
which are described in Section 3.

As a starting point, we based our course on the PythonSneks
curriculum 2. This curriculum has students move through
a large sequence of almost 50 lessons over the course of a
semester, with each lesson focused on a particular introduc-
tory programming topic. Each lesson is composed of a set
of learning objectives, the lesson presentation, a mastery-

2https://acbart.github.io/python-sneks/



based quiz, and a set of programming problems. We have
made a number of modifications to the materials reported
in [4], such as the introduction of static typing and increas-
ing the emphasis on functional design to better suit CS1 for
Computer Science majors. A full listing of all the learning
objectives covered is available 3.

Learning Management System: The course was deliv-
ered through Canvas, which was our university’s Learning
Management System. All material, including quizzes, pro-
gramming assignments, and exams, were directly available
in Canvas (either natively or through LTI).

Lesson Presentation: The lessons were PowerPoint slides
with a recorded voice-over, embedded as a YouTube video
directly into a Canvas Page. The content of these slides
are transcribed directly below the video, including any code
with proper syntax highlighting. Finally, PDF versions of
all the slides with their transcriptions are also available.

Mastery Quizzes: After the presentations, students are
presented with a Canvas Quiz containing a series of True/False,
Matching, Multiple Choice, and Fill-in-the-blank questions.
This assignment is presented in a mastery style, where learn-
ers can make repeated attempts until they earn a satisfac-
tory grade. Each of the 200+ questions are annotated with a
specific identifier. These quizzes are 10% of students’ grade.

Although Canvas provides an interface to visualize statistics
about individual quiz questions, this is obfuscated by the
students multiple attempts–only the final grade is shown,
so instructors cannot see how difficult a question was for a
student. To provide greater detail in an instructor-friendly
report, the Canvas API was used to pull all submission at-
tempts for each student. The scripts used in analysis and
an example of the instructor report 4 are publicly available.

Programming Problems: Additionally, most lessons con-
tain two-eight programming problems through a web-based
Python coding environment [5]. These problems were also
presented in a mastery style, allowing learners to spend as
much time as they want until the deadline. These prob-
lems are 15% of students’ final course grade. The envi-
ronment has a dual block/text interface, although students
were discouraged from using the block interface past the
first two weeks of programming activities. The environment
naturally records all student interactions in ProgSnap2 for-
mat [28], making it readily accessible for our evaluation.

Students were also required to install (and eventually use)
a desktop Python programming environment, Thonny [1].
Students largely used Thonny for their programming projects,
particularly the final project, although a small number chose
to use the environment to write code for other assignments.
The Thonny environment was not instrumented to collect
log data, but students were required to submit their projects
through the autograder in Canvas–therefore, submission data
should not be affected by the relatively small number of stu-
dents who used Thonny.

3https://tinyurl.com/csedm2020-sneks-los
4https://github.com/acbart/canvas-grading-reports

When students submitted a solution to a programming prob-
lem, the system evaluated their work using an instructor-
authored script written using the Pedal autograding frame-
work [13]. This system generates feedback to learners and
calculates a correctness grade (usually 0 or 1, although par-
tial credit was possible on exams). The existing curriculum
had a large quantity of autograded programming problems,
some of which needed to be updated based on our changes.

Exams: There were two midterm exams and a final exam.
These exams were all divided into two parts: 1) multiple-
choice/true-false/matching/etc. questions, and 2) autograded
programming questions. For the latter, students were given
five-six programming problems that they could move freely
between. These problems were automatically graded and
given partial credit (20% for correctly specifying the header,
and the remaining points allocated based on the percentage
of passing instructor unit tests). Both parts were presented
in Canvas through the systems students were already famil-
iar with, but students were not allowed to use the internet
or to Google. Students took the exam at a proctored testing
center and had two hours. They were only allowed to bring
a single sheet of hand-written notes. Multiple versions of
each exam question were created and drawn from a pool at
random, so that no two students had the exact same exam.

Projects: There were six projects throughout the semester,
although the first two were very small and heavily scaffolded.
The final project was relatively open-ended and meant to
be summative, but the middle three projects allowed more
mixed forms of support. Although students were largely ex-
pected to produce their own code, they were encouraged to
seek help as needed from the instructional staff. For the final
project, students used the Python Arcade library 5 to create
a game. Because students were not previously taught Ar-
cade, two weeks were allocated for students to work collabo-
ratively on extending sample games with new functionality.
Then, they individually built one of 12 games.

4. INTERVENTION
In this section, we describe the specific intervention context
in more detail. The curriculum and technology was used
in the Fall 2019 semester at an R1 university in the east-
ern United States for a CS1 course that was required for
Computer Science majors in their first semester. An IRB-
approved research protocol was followed. At the beginning
of the semester, students were asked to provide consent via
a survey, with 103 students agreeing out of 136 (for a 75.7%
consent rate). A separate survey was also administered at
the beginning of the semester to collect various demographic
data (summarized in Table 1, only for consenting students)
relating to gender, race, and prior coding experience.

Percentage Number
Identifies as Woman 19% 20

Black Student 6% 6
No Prior Coding Experience 37% 38

Total number of students 100% 103

Table 1: Demographic Data for Intervention

5https://arcade.academy/



Instructional Staff : The course was taught by a single
instructor. He managed a team of 12 undergraduate teach-
ing assistants. These TAs varied from CS sophomores to
seniors, and not all of them had taken the curriculum be-
fore. However, they were all selected by the instructor for
both for their knowledge and amiability. All members of the
instructional staff hosted office hours. The TAs were also
responsible for grading certain aspects of the projects (e.g.,
test quality, documentation quality, code quality), although
this amounted to relatively little of the students’ final course
grade. The instructor met with these TAs every other week
for an hour to discuss the state of the course and provide
training on pedagogy, inclusivity, etc.

Structure: The lecture met Monday-Wednesday-Friday for
50 minutes across three separate sections. The sections were
led by the same instructor, but were taught at different times
of day (mid-morning, noon, and afternoon). The instructor
did not attempt to provide the exact same experience to all
three sections–if a mistake was made in the morning sec-
tion, they attempted to avoid that mistake later. Typically,
the first lecture session of a module started with 15-30 min-
utes of review of the material guided by clickers, and then
students spent the rest of the module’s class time working
on assignments. There were several special in-class assign-
ments such as worksheets, coding challenges, and readings.
The lab met on Thursdays for 1.5 hours. Students worked on
open assignments with the support of two TAs, who would
actively walk around and answer questions.

5. RESULTS AND ANALYSIS
Our ultimate goal is to evaluate the course and identify as-
pects that were successful and unsuccessful. First, we con-
sider basic course final course outcomes. Then, we use the
programming log data to analyze students’ behavioral out-
comes from the semester. We dive deeper into this data to
characterize the feedback that was delivered to students over
the semester. We look at fine-grained data from both parts
of the final exam to develop a list of problematic subskills,
and then review more of the programming log data in light of
these results. We particularly focus our efforts on subskills
related to defining functions, to tighten our analysis.

The instructor’s naive perception of the course was that
things were largely successful, except for the final project.
Insufficient time was given to the students to learn the game
development API, and instructor expectations were a bit
high (which was adjusted for in the grading, but may have
caused students undue stress). However, the material prior
to the final project went smoothly. Office hours were rarely
overfilled, with the exception of week 4 (the module intro-
ducing Functions), which had one lesson too many–this was
resolved by making the last programming assignment op-
tional (Programming 25: Functional Decomposition).

5.1 Basic Course Outcomes
As a starting point, we consider basic course-level outcomes,
the kind that could be determined even without the extra
instrumentation. This will include the overall course grades,
the major grade categories, and the university-administered
course evaluations. As a starting point, the total number
of failing grades and course withdrawals (DFW rate) was
14.5%, considered acceptable by the instructor.

0

50
Midterm 1

0

50

Midterm 2

0

50

Final Exam

0 20 40 60 80 100
0

25

Final Project

Figure 1: Exam and Final Project Grade Distributions

Figure 1 gives histograms for Midterm 1 and 2, Final Exam,
and Final Project scores. There was considerably more vari-
ance in the final project scores than the exams, possibly due
to the issues outlined before. The fact that many students
were failed to produce a final project may be evidence that
the assignment had unreasonable expectations.

A Kruskal-Wallis test was used to analyze final exam scores
by demographics. There were no significant differences for
gender, but a large difference for black students (H(1)=6.39,
p=.01) and a smaller difference for prior programming ex-
perience (H(1)=5.51, p=0.02). The students without prior
experience scored about 12% lower on average, while the
black students scored about 41% lower. Given the concern-
ing spread here, we review this data with more context in
the next section before drawing any conclusions.

The university-run course evaluations from students yielded
positive but simplistic results. Both the course and the
instructor were separately rated on a 5-point likert scale
(Poor... Excellent). Both the course (Mdn=5, M=4.62,
SD=0.77) and the instructor (Mdn=5, M=4.70, SD=0.67)
achieved very high results, but ultimately this tells us lit-
tle about the students’ experience. Course evaluation data
is known to contain bias and provide limited data [7, 25];
these results must be taken in context with other sources of
data. Note that because the course evaluations are anony-
mous, they cannot be cross-referenced with other data. A
review of the students’ free response answers reveals many
were unhappy with the Final Project. In fact, the word “Ar-
cade” appears in 41 of the 86 text responses, often as their
only comment. Although this helps us see a major point of
failure in our curriculum, it highlights the need for alterna-
tive evaluation mechanisms. Relying solely on student final
perceptions leaves us vulnerable to student biases.

5.2 Time Spent Programming
The keystroke-level log data allows us to determine a num-
ber of interesting metrics beyond what is available from our
grading spreadsheet. As a simple starting point, using the
timestamps of the programming logs we can get a measure
of how early students started working on assignments and
total time spent. Earliness was measured by taking each
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Figure 2: Comparison of Earliness, Time Spent, and Final Exam Score

submission event across the entire course, finding the differ-
ence between this and the relevant assignment’s deadline,
and averaging those durations together within each student.
Hours Spent was measured by grouping all the events in the
logs by student, finding the difference with the next adja-
cent event (clipping to a maximum of 30 seconds, to consider
breaks), and summing these durations.

Figures 2a, 2b, and 2c show a marginal plot between earli-
ness, hours spent, and final exam grade. Spearman’s Rho
was used to calculate the correlation between each outcome.
Consistent with Kazerouni [18], earliness (a measure of pro-
crastination) had a significant medium correlation with exam
scores (rs = .49, p < .001), while time spent was only mod-
estly correlated (rs = −.32, p = .001). Interestingly, there
was no significant correlation between student’s time spent
and their procrastination (rs = −0.09, p = .36).

Analyzing behavioral outcomes by demographics indicated
no differences, with the exception of total hours spent be-
tween women vs. men (H(1)=9.77, p=0.002) and between
students with vs. without prior experience (H(1)=7.28, p=0.007).
This comparison is visualized in Figures 3a and 3b. Women
and students with no prior experience spent, on average,
about 8 and 5 hours more than their counterparts. Impor-
tantly, this means that there was no significant difference in
how early students started between subgroups.

Given the difference in final exam scores, black students ap-
pear poorly served by the current curriculum. On average,
these students spent as much time as their peers on assign-
ments, but their final exam scores were lower than students
outside of this category. Given the evidence for the contin-
ued education debt owed to non-White students (Ladson-
Billings, 2006) [21], more work is needed to identify both
potentially problematic structural elements of the course
and how the course can better draw on student strengths
to produce more equitable outcomes.

Figure 4 visualizes the total time spent by students per week
on the programming problems. The data collected raises an
interesting question–how many hours should we ideally ex-
pect students to spend on our courses? At our institution,
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Figure 3: Hours Spent by Demographics

the guidance from the administration6 is that in a three-
credit course like this one, students should spend 45 hours
in class and 90 hours outside of class over the course of the
15-week semester. The median time spent in our course by
a given student on all the programming assignments was
19 hours, while the highest time spent by any individual
student was just over 42 hours. This does not take into
account time spent outside the coding environment (e.g.,
working on projects in Thonny), working on quizzes, and
reading/watching the lesson presentations. However, some
students did complete their projects in the online environ-
ment, and we expect most of those activities to take consid-
erably less time than the programming activities. This may
suggest that we are not asking our students to dedicate as
much time as we might.

6https://tinyurl.com/csedm2020-udel-credit-policy
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Figure 4: Time Spent per Week of Semester

Looking at specific time periods within the data, we see
that students spent less time programming in the first weeks
of the course, around the midpoint, and near the end of
the programming problems (the last few weeks took place
outside of the online coding environment). Especially for the
earlier material, it is likely that the pace can be accelerated.

5.3 Error Classification
Table 2 gives the percentage of different feedback messages
that students received on programming problems as a per-
centage of all the feedback events received. Our numbers
vary from those reported by Smith and Rixner (2019) [29],
possibly because of our very different approach to feedback
and the affordances of our programming environment.

One of the most notable departures is the Analyzer and
Problem-specific Instructor feedback categories. Our auto-
grading system is capable of overriding error messages. In
particular, one of its key features is a type inferencer and
flow analyzer that automatically provides more readable and
targeted error messages. The subcategories give examples
of the kinds of errors produced: Initialization Problem

(using a variable that was not previously defined) frequently
supersedes the classic NameError, for example. Meanwhile,
some issues have no corresponding runtime error, such as
Unused Variable (never reading a variable that was previ-
ously written to). The Analyzer gives more than a fifth of
all feedback delivered to students, suggesting its role is sig-
nificant. Further work is needed to evaluate the quality of
this feedback and the impact on students’ learning.

The Problem-specific Instructor feedback category is opaque.
Given that this represents almost a third of the feedback, it
is unhelpful that the category cannot be easily broken down
further. Sampling the logs’ text, we see examples like stu-
dents failing instructor unit tests, a reminder to call a func-
tion just once, and a suggestion to avoid a specific subscript
index. Although the autograder is a powerful mechanism for
delivering contextualized help to students, the lack of orga-
nization severely limits our automated analysis possible. As
part of our process in the future, we intend to annotate feed-
back in our autograding scripts with identifiers.

Category Subcategory Percentage
Instructor 37.8%

Problem Specific 32.1%
Not Enough Student Tests 1.0%
Not Printing Answer .8%

Analyzer 22.1%
Initialization Problem 6.9%
Unused Variable 5.9%
Multiple Return Types 2.9%
Incompatible Types 1.4%
Parameter Type Mismatch 1.0%
Overwritten Variable .6%
Read out of scope .5%

Correct 17.8%
Syntax 11.4%

No Source Code .3%
Runtime 7.8%

TypeError 3.7%
NameError 1.0%
AttributeError .8%
ValueError .4%
KeyError .4%
IndexError .4%

Student Student Tests Failing 2.9%
Instructions 2.4%
System Error .8%

Table 2: Frequency of Error Messages by Category

Figure 5a gives the ratio of correct submission events in the
log data over each week of the semester. Early on, students
complete problems with fewer attempts. This might explain
the steady growth in ratios of different kinds of feedback over
time, as evidenced by Figures 5b and 5c. It is interesting
to observe that the runtime error frequency grows almost
linearly over the course of the semester, with the exception
of week 7 (a peak week for the Analyzer feedback). We
hypothesize this is the result of some more carefully-refined
instructor feedback available during that week.

5.4 Final Exam Conceptual Questions
The first part of the final exam was composed of concep-
tual questions for topics across the curriculum, drawn largely
from the quiz questions students had already seen. In this
section, we review the quiz report to determine the topics
that students struggled with. Most students performed rela-
tively well across the questions, so we focus on errors where
more than 80% of the students had incorrect answers.

Students largely had no issues with questions involving eval-
uating expressions. A small exception to this is students’
struggle with Equality vs. Order of different types. In
Python, as in many languages, it is not an error to check if
two things of different types are equal (although that com-
parison will always produce false); however, it is an error to
compare their order (less than/greater than operators). In
fact, 58% of students got this specific question wrong.

There were three questions related to tracing complex con-
trol flow for loops, if statements, and functions. Tracing
seemed to pose difficulties, with between 25-40% of the stu-
dents getting these questions wrong. We believe that more
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Figure 5: Ratio of Feedback Types by Week of Semester

emphasis should be placed on tracing in the curriculum;
there are quiz questions and a worksheet dedicated to the
topic, but there are opportunities to expand this material.
Tracing has been a recent area of focus, with promising ap-
proaches by Xie et al [31] and Cunningham et al [9].

Dictionaries also posed significant trouble for students. Dic-
tionaries come up later in the course, represent more com-
plex reality, and conflate syntactic operations with lists. In
fact, this last point is evidenced by data. In a question com-
paring the relative speed of traversing lists and dictionaries,
50% of the students got one variant of a True/False question
incorrect (so they might as well have been guessing).

Again, the point of our analysis is not to necessarily develop
a validated examination instrument or to distill an author-
itative set of misconceptions. Instead, we seek to demon-
strate the insight we have garnered from reviewing our exam.
With these simple percentages, we have found targets.

5.5 Deeper Dive on Functions
In looking over the second part of the final exam questions,
we are faced with a tremendous number of concepts inte-
grated into each problem. In fact, with over 261 learning
objectives in the course, analyzing the entire set is an over-
whelming prospect. To scope our analysis for this paper, we

decided to focus on a subset of skills just related to Functions
that we felt we could clearly identify with computational
analysis and that the instructor felt, a-priori, they had seen
students struggle with over the course of the semester. Ta-
ble 3 gives the percentages and quantity of students who
successfully demonstrated the subskill on each exam.

Header Definition: Even though we had not observed
many students struggling with syntax during the semester,
we felt it critical to analyze the incidence of submitted code
that had malformed headers. Although the numbers were a
little higher than expected, we are not terribly concerned -
reviewing the submissions, many seemed like simple typos
(e.g., a missing colon) that were relatively easily fixed.

Provided Types: Students were not required or encour-
aged to provide types in their headers during the exam. In
fact, since the advanced feedback features were turned off,
their feedback would not actually reference any parameter
or return types they specified (as long as they were syntacti-
cally correct code). We did not assess the correctness of their
provided types - merely their existence. In the final exam,
the number of students who annotated their parameter types
falls off sharply after the first three questions (moving from
about 50% down to 20%). We offer two explanations: first,
the fourth question is one of the most difficult in the entire
course, so students may have been distracted by its diffi-
culty. Second, the last questions all involve more compli-
cated nested data types (e.g., lists of dictionaries) that were
too troublesome for the students to specify.

Parameter Overwriting: This misconception is one that
the instructors were very concerned with, having observed
it repeatedly among certain students early in the semester
(and concerned with its persistence). Applying the param-
eter overwriting pattern to the rest of the submissions over
the entire semester, we found that the behavior trails off
over the course of the semester. By the final exam, almost
no students were making this particular mistake. Although
the instructor believes that more can be done up front to
avoid this critical misconception, it is comforting that the
existing curriculum seems to largely address this by the end.

Return/Print: We observed that some students struggle
to differentiate between the concepts of return statements
and print calls. However, largely students were success-
ful with this subskill, despite a quarter of students getting
a related (more abstract rendering) version of this subskill
wrong on part 1 of the final exam. It seems that although
troublesome for a small clutch of students, most are able to
eventually separate this concept in their code.

Parameters/Input: Similar to students’ issues with re-
turning vs. printing, some students were observed in indi-
vidual sessions mixing up parameters and the input function
(which was presented as a very distinctive way that data
could enter a function). However, it appears that this was
truly isolated to just a few students.

Functional Decomposition: Largely inspired by Fisler [12]
success in overcoming the difficulties of the Rainfall problem,
Functional Decomposition was taught as a method for com-
plex processing data. Students had previously been taught



Subskill Description 1st Exam 2nd Exam Final Exam
Header Definition Defined the function header with correct syntax 83.5% (86) 84.5% (87) 91.3% (94)

Provided Types Provided types for all parameters and the return 40.8% (42) 45.6% (47) 37.9% (39)
Parameter Overwrite Did not assign literal values to parameters in the body 88.3% (91) 98.1% (101) 99.0% (102)

Return/Print Did not print without returning 80.6% (83) 89.3% (92) 91.3% (94)
Parameters/Input Did not use the input function instead of parameters 96.1% (99) 100.0% (103) 99.0% (102)

Unit Testing Wrote unit tests 88.3% (91) 79.6% (82) 67.0% (69)
Decomposition Separated work into a helper function 1.0% (1) 17.5% (18) 19.4% (20)

Table 3: Percentage of Students Demonstrating Subskill across Exams

8 different looping patterns (e.g., accumulating, mapping,
filtering). A number of assignments required students to
decompose problems. Therefore, it is somewhat disappoint-
ing that so few students chose to leverage decomposition
(particularly since the harder final exam problems were nat-
urally susceptible to a decomposition approach). In addition
to the midterm 2 and final exam questions, we also took a
closer look at an earlier open-ended programming problem
that was particularly complex and well-suited to decompo-
sition. In these problems, there seemed to be a pattern of
students being more successful when they leverage decompo-
sition. Although not conclusive, this supports the hypothe-
sis that decomposition may be an effective strategy.

Decomposed Monolithic
Pass Fail Pass Fail

Earlier Problem 37 8 29 27
Midterm 2 Question 5 13 5 40 43

Final Exam Question 4 7 8 42 44
Total 57 21 111 114

18.8% 6.9% 36.6% 37.6%

Table 4: Student Use’s of Decomposition over Time

Unit Testing: Given that students were not required to
unit test their code on the final exam, we were pleased to
find that many students wrote unit tests anyway. Inter-
estingly, though, the percentage of students who used this
strategy decreased over the course of the semester, even as
the programming problems became more difficult. We hy-
pothesize that since the later exam problems involve com-
plex nested data, students either did not feel comfortable
generating test data or they felt that it would not be an ef-
ficient use of their time. We believe that we need to sell the
concept more - rather than thinking that writing test cases
would be a detriment to their success, students should see
tests as one of the most direct paths to completion.

6. DISCUSSION
Reviewing our findings, we made several decisions about
places to modify our curriculum. The log data suggests that
some of the earlier material can be accelerated, so that more
time can ultimately be allocated to week 4 (critical mate-
rial covering functions). We also believe we need to spend
more time throughout the semester convincing students that
subskills like decomposition and unit testing can help them
solve challenging questions, although follow-up analyses will
be needed to confirm this theory. Finally, we must come
up with new ways to support some of our demographic sub-
groups, given that outcomes in that area are not yet equal.

Better structure to our existing data sources might help in
future analyses. For example, although each quiz question
was labeled with a unique identifier, we realized during anal-
ysis that we really needed every quiz answer (and in some
cases, sets of answers) to have a unique identifier as well. In
particular, some questions had multiple parts, or different
answers yielded information about different misconceptions.
In a similar vein, annotating instructor feedback for the pro-
gramming problems would have substantially increased the
differentiation of our feedback messages.

More metadata about each identifier would also help efforts
to cross-reference and cluster related problems (especially
over time). This is a non-trivial effort, given the quantity
of course materials present in the curriculum. As a start-
ing point, we believe this effort should probably be focused
on certain major learning objectives and topics (e.g., func-
tions) that are particularly worthy of attention based on the
formative evaluation conducted here.

We expect that before our next iteration of our analyses,
we need to develop more hypotheses up front for guidance.
A considerable amount of time was spent performing ex-
ploratory analyses, trying different approaches and seeing
what emerged from the data. Although helpful as we ori-
ented ourselves, the data dredging that can emerge may
yield false conclusions that are not actually worth invest-
ing in. Finally, while we attempted to follow a replicable
process in our data collection and analysis, we believe more
should be done to streamline and package our data pipeline
to encourage replication and reproduction.

7. CONCLUSION
In this paper, we have described our evaluation of data from
a heavily-instrumented CS1 course. Our goal was less about
judging the course overall, and more about finding specific
areas of improvement and success. We feel that course eval-
uation is less about the end-goal and more about small it-
erative augmentations that collect over time. To structure
our approach, we followed a loose Design-Based Research
model supported by educational data mining. In our ex-
perience, the high volume and variety of data sources can
be very helpful in understanding the successes and failures
of the course, although it does pose difficulties for analy-
sis. As always, a better pipeline could help make sense of
these data and results more quickly, possibly even during
the semester. However, in the immediate term, our data
analysis contributes to the community’s knowledge of stu-
dents and ideally provides a model for others to follow along.
In general, we hope to encourage increased rigor in course
evaluation as we integrate data-rich tools into our courses.
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