
Designing an Intelligent Tutoring System Across Multiple
Classes

[Extended Abstract]

Laura O. Moraes
Systems and Computing Department

(COPPE/PESC)
Universidade Federal do Rio de Janeiro (UFRJ)

lmoraes@cos.ufrj.br

Carlos Eduardo Pedreira
Systems and Computing Department

(COPPE/PESC)
Universidade Federal do Rio de Janeiro (UFRJ)

pedreira56@gmail.com

ABSTRACT
The ability to understand a person’s knowledge is impor-
tant in educational settings. This can be used to recognize
gaps in knowledge and to diagnose misunderstandings and
misconceptions. This paper presents an intelligent tutoring
system created to gather student knowledge data and the
proposed methodology to generate the datasets. We asked
14 professors to determine the concepts found in a set of
problems and we compare the student behavior found in
each methodology.

Keywords
open datasets, intelligent tutoring system, educational data
mining, computer science education

1. INTRODUCTION
In this work, we have two main motivations: create an online
learning environment to gather data about students’ knowl-
edge and stimulate students to learn the Python language.

It is important to understand why students succeed or fail
when taking a course so we can improve teaching methods
by identifying students’ needs and to provide personalized
education. Smart learning content is defined as visualiza-
tions, simulations and web-based environments that pro-
vide outputs for students based on the students’ input [2].
The adoption of smart learning content in classrooms and
in self-learning environments motivates students [1, 7, 11,
12], improves student learning, decreases student dropout
or failure [1, 9, 8, 6] while increasing their self-confidence,
especially in female students [9].

Also, Python is a general-purpose language, which means

∗Copyright c© 2020 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0 In-
ternational (CC BY 4.0).

it can be used in a large variety of projects. This can be
great to stimulate students, since they can work in projects
they actually relate to. Python is also user-friendly and for
the past seven years, it has been the fastest-growing major
programming language [17], being correlated with trending
careers, such as DevOps and Data Scientist [20]. However,
according to the 2015 review [6], only 11% of the Educa-
tional Data Mining and Learning Analytics papers about
programming courses reported using Python as the course
language.

These factors motivate our objective: the creation, deploy-
ment and use of online intelligent systems in Introduction to
Programming classes using the Python language as a way to
uncover students’ difficulties, to understand their knowledge
and to provide timely feedback to keep students engaged.

The main contributions of this paper are: 1) generating an
anonymous open-source students interaction database using
the Python language with corresponding solutions and, 2)
developing the Machine Teaching system1, an ITS with a
built-in recommendation engine.

2. DATA ACQUISITION METHODOLOGY
This section presents the web system developed to acquire
student data and interact with students and educators. The
system architecture is proposed as an improvement from a
common architecture from the Intelligent Tutoring System
literature. We also present the methodology used to collect
student data.

2.1 System Architecture
To capture students’ data, a web-system was designed and
implemented. Intelligent Tutoring Systems (ITS) are sys-
tems designed to assist the tutoring of students on a per-
sonalized level. They have been around since the 1960s [22],
having its first formal definition in the 1990s [18]. Nowa-
days, there are several different ITS covering a broad range
of subjects with success used by hundreds of thousands of
students a year. Ihantola et al. [6] present a table showing
a list of them and their supported programming languages.

Ihantola et al. [6] also define a common architecture for these
systems in their 2015 review. Common front-end features

1http://www.machineteaching.tech

http://www.machineteaching.tech


among them are an IDE for students to write, edit and ex-
ecute code, a submission interface (can be embodied in the
IDE or in a separate part of the system), feedback for stu-
dents’ actions and visualization schemes for teachers and
researchers. Back-end usually supports saving data in some
kind of storage, usually a relational database. However, part
of this proposal is to build an integrated personalized exer-
cise recommendation engine within the system. Therefore,
none of the existing systems could be used without modifi-
cations. To avoid legacy code and to have a better control
of the desired features and captured student data, it was
decided to build one from scratch using open-source Python
and Javascript libraries. In addition, the classes in which the
system was employed, use a modularization based approach
to teach imperative programming [4]. Each question requires
self contained modules of code as answer which translates
in Python as functions. So, the proposed system also had
to take this format into consideration to correct students’
assignments. Besides these adaptations, it shares most of
the functionalities with the other systems. Fig. 1 illustrates
an abstract view of the system, adapted from Ihantola et
al. [6]. The main differences are the built-in recommenda-
tion engine, that controls what exercises are shown in the
IDE for the student to solve, the way of correcting students
assignments and the extra collected data, like time spent
typing and the total time spent solving the question.

Figure 1: Abstract view of the system architecture.

The exercises currently available in the system belong to
either Applying or Creating categories in Bloom’s Taxon-
omy [21]. The students are presented with a problem and
they should write the expected answer in a free-text cod-
ing format. For each exercise, a test case function generator
was defined to correct the results. The students get feed-
back every time they submit an answer and they can see
whether they passed or failed a unit test case. If they get all
of them correct, the task is considered done and the student
may move on to another problem. The system saves a state
every time a student submits an answer.

2.2 Data Acquisition
For the data acquisition process, we used the system to col-
lect the data in two approaches. The system was either
used a single time for revision purposes (revision dataset),
and throughout a whole semester (semester dataset).

The first approach uses 48 CS1 problems crawled from four

Python web tutorials: Practice Python [15], Python School [19],
Python Programming Exercises [5], and W3Resource [23].
The chosen sources provided the exercise statements along
with the exercise code solution. Students’ responses to these
exercises were collected in 10 different Introduction to Pro-
gramming courses during 2 semesters. Students were as-
signed two different strategies: either the system showed
random problems or they would follow a predefined path.
The students were introduced to the system at the end of
the semester before their finals exams, or at the beginning
of the next semester. In both cases, the exercises were sup-
posed to act as revision exercises of all CS1 content.

In our second approach, we accompanied the students through-
out a whole semester in four different Introduction to Pro-
gramming courses (they had the same syllabus, but different
professors). Every week, an exercise list concerning the sub-
ject given in class was available in the system. They had
one week as a deadline to finish them and their performance
on these lists composed part of their final grade. In total,
they had to solve 65 problems.

3. RESULTS
This section presents statistics for both datasets, comparing
the different behaviors found in them.

3.1 Revision Dataset
In total, there are 3,632 records from 192 students with an
average of 18.4 attempts in 4.4 problems. Also, the dataset
is imbalanced: there are 764 (21%) successful attempts and
2,868 (79%) failed attempts. It means that, on average,
each student attempts a problem 4 times before getting all
test cases correct in the fifth. Some simple statistics for
the dataset are shown in Table 1. Fig. 2 is a histogram
showing the distribution of success and failures per prob-
lem. Similar behavior is found in the distribution of success
and failures attempts per student. Both success attempt dis-
tributions have smaller variance and smaller mean than the
corresponding fail attempt distributions. This is expected
since the students are given several tries to submit a correct
response before moving on to the next problem.

Table 1: Revision dataset statistics
Avg Median Min Max

attempts per question 75.67 55 10 304
attempts per student 18.44 11 2 266
different students per
question

18.17 14 4 71

different questions per
student

4.43 3 1 44

For this dataset, we asked 14 professors to indicate the con-
cepts needed in each question for a student to be able to solve
it based on the exercise solution. The teaching experience
of the professors range between 2 to 20 years and they were
not necessarily involved in the classes’ participating in this
work. Each professor should associate up to three concepts
(from 15 available) to 15 randomly assigned code snippets.
On average, each code received four evaluations. From the
54 code snippets, 37 of them had one or more concepts in
which all the professors agreed. If we lower the threshold
to contabilize where at least 75% of the professors agree (3



Figure 2: Distribution of questions’ success and fail
attempts

out of 4), this number increases to 53. So, we decided to
use this 75% threshold of agreement to relate the concepts
and the exercises. The concepts are not mutually exclusive
and a problem can be assigned to more than one concept.
Around 45% of the problems involved the loop concept and
40% the conditional concept. About 22% involved working
with strings and 12% involved math questions.

3.2 Semester Dataset
This dataset is 7.5 times bigger in number of attempts than
the previous one, containing 27,491 attempts records. How-
ever, since it accompanied the same students for an entire
semester, the number of students is actually smaller: 181 dif-
ferent students. Simple statistics for the dataset are shown
in Table 2. This dataset has a slightly higher success rate
than the previous one, although it is still very imbalanced.
It contains 6,849 (24.91%) success attempts against 20,642
(75.09%) unsuccessful ones. This can be explained by the
fact that each weekly set of exercises covers mostly what was
seen in class in the same week, so students did not have a lot
of time to forget the subject [3, 10, 13, 14, 16], in contrast
to the review exercises that were done before finals or at the
beginning of the next semester.

Table 2: Semester dataset statistics
Avg Median Min Max

attempts per ques-
tion

422.94 349 85 1291

attempts per student 151.88 114 2 1002
different students per
question

87.22 87 39 145

different questions
per student

31.32 31 1 65

Another interesting difference between the datasets is the
average number of attempts per question. Whereas in the
revision dataset it is lower than the total number of ques-
tions, indicating that not all the questions were answered,
in the semester dataset it is two times the total number of
available questions, indicating that students redid the exer-
cises even though they had already succeeded at it. This

can be used to measure if they are using the system and the
exercises to study and review the content, for example.

Fig. 3 shows the quantity of students per number of ques-
tions histogram. We can notice that only 15 out of the
181 (8%) students attempted more than 59 out of the 65
(92%) different exercises. The exercise distribution is ac-
tually quite flat. If we divide it in three equal parts, ap-
proximately one third of the class (64 students, 35%) at-
tempted only one third of the exercises, one third (60 stu-
dents, 33%) attempted two thirds of the exercises and the
last third (57 students, 31%) attempted between 45 and 65
exercises. When provided in real time, this information can
be used by the professors to find students that are having
difficulties finishing exercises and provide personalized assis-
tance.

Figure 3: Distribution of students per number of
questions

4. CONCLUSIONS
In this paper, we presented the Machine Teaching ITS sys-
tem, developed to assist students and professors in modular-
ized function-based Python classes. We also presented and
analyzed the two approaches in which data were collected.
For the first approach, we invited professors to associate the
needed concepts for each question and calculated their agree-
ment rate. In general, they agree in at least two concepts for
each exercise. For the second approach, we visualized the
distribution of the dataset, which can be used by professors
during the semester to identify students with difficulties.

4.1 Future work and call for collaboration
We are currently working on integrating a recommendation
engine in the system. After this step, we will perform some
A/B tests with professors and students and collect their
opinion on the available tools. In addition, there is a lot to
be explored on these datasets. For example, we would like
to study the differences in behavior between revision and
semester students, investigate student procrastination, infer
student knowledge based on their answers, research tempo-
ral learning effect, among other ideas. We invite researchers
interested in exploring the dataset to contact the authors.

5. ACKNOWLEDGMENTS
We would like to thank the professors that contributed with
the research, either by adopting the tool in class or by evalu-



ating the results. This work was supported by CNPq (141089/2016-
4) and was supported in part by FAPERJ (E26/202.838/2017-
CNE), CAPES (PROEX - 1201036), and CNPq (306258/2019-
6).

6. REFERENCES
[1] L. Benotti, F. Aloi, F. Bulgarelli, and M. J. Gomez.

The effect of a web-based coding tool with automatic
feedback on students’ performance and perceptions. In
Proc. 49th ACM Tech. Symp. Comp. Sci. Educ.,
SIGCSE ’18, pages 2–7, Baltimore, Maryland, USA,
Feb. 2018.
http://doi.acm.org/10.1145/3159450.3159579.

[2] P. Brusilovsky, S. Edwards, A. Kumar, L. Malmi,
L. Benotti, D. Buck, P. Ihantola, R. Prince, T. Sirkiä,
S. Sosnovsky, J. Urquiza, A. Vihavainen, and
M. Wollowski. Increasing adoption of smart learning
content for computer science education. In Proc.
Work. Group Rep. 2014 Innov. Technol. Comput. Sci.
Educ. Conf., ITiCSE-WGR ’14, page 31–57, Uppsala,
Sweden, June 2014.
https://doi.org/10.1145/2713609.2713611.

[3] B. Choffin, F. Popineau, Y. Bourda, and J.-J. Vie.
DAS3H: Modeling Student Learning and Forgetting
for Optimally Scheduling Distributed Practice of
Skills. In Proc. 12th Int. Conf. Educational Data
Mining, pages 29–38, Montreal, Canada, July 2019.

[4] C. Delgado, J. Da Silva, F. Mascarenhas, and
A. Duboc. The teaching of functions as the first step
to learn imperative programming. In Anais do
Workshop sobre Educação em Computação (WEI),
pages 388–397. Sociedade Brasileira de Computação -
SBC, Jan. 2016.
https://doi.org/10.5753/wei.2016.9683.

[5] J. Hu. Python programming exercises, 2018.
https://github.com/zhiwehu/

Python-programming-exercises.

[6] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Börstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, M. A. Rubio, J. Sheard,
B. Skupas, J. Spacco, C. Szabo, and D. Toll.
Educational data mining and learning analytics in
programming: Literature review and case studies. In
Proc. 2015 ITiCSE Work. Group Rep., ITICSE-WGR
’15, pages 41–63, Vilnius, Lithuania, July 2015.
http://doi.acm.org/10.1145/2858796.2858798.

[7] I. Jivet, M. Scheffel, M. Specht, and H. Drachsler.
License to evaluate: Preparing learning analytics
dashboards for educational practice. In Proc. 8th Int.
Conf. Learn. Analytics Knowl., LAK ’18, page 31–40,
Sydney, New South Wales, Australia, Mar. 2018.
https://doi.org/10.1145/3170358.3170421.

[8] E. Johns, O. Mac Aodha, and G. J. Brostow.
Becoming the expert-interactive multi-class machine
teaching. In Proc. IEEE Conf. Comput. Vision
Pattern Recognit., pages 2616–2624, 2015.

[9] A. N. Kumar. The effect of using problem-solving
software tutors on the self-confidence of female
students. In Proc. 39th SIGCSE Tech. Symp. Comput.
Sci. Educ., SIGCSE ’08, page 523–527, Portland, OR,
USA, Mar. 2008.
https://doi.org/10.1145/1352135.1352309.

[10] A. Lalwani and S. Agrawal. What Does Time Tell?
Tracing the Forgetting Curve Using Deep Knowledge
Tracing. In S. Isotani, E. Millán, A. Ogan,
P. Hastings, B. McLaren, and R. Luckin, editors,
Artif. Intell. Educ., LNCS, pages 158–162, June 2019.
https://doi.org/10.1007/978-3-030-23207-8_30.

[11] A. Latham, K. Crockett, D. McLean, and
B. Edmonds. A conversational intelligent tutoring
system to automatically predict learning styles.
Comput. & Educ., 59(1):95 – 109, Aug. 2012.
https://doi.org/10.1016/j.compedu.2011.11.001.

[12] R. Lobb and J. Harlow. Coderunner: A tool for
assessing computer programming skills. ACM Inroads,
7(1):47–51, Feb. 2016.
https://doi.org/10.1145/2810041.

[13] K. Nagatani, Y. Y. Chen, Q. Zhang, F. Chen, M. Sato,
and T. Ohkuma. Augmenting knowledge tracing by
considering forgetting behavior. In Proc. World Wide
Web Conf., WWW ’19, San Francisco, CA, USA, May
2019. http://doi.org/10.1145/3308558.3313565.

[14] P. Nedungadi and M. S. Remya. Incorporating
forgetting in the Personalized, Clustered, Bayesian
Knowledge Tracing (PC-BKT) model. In Proc. 2015
Int. Conf. Cogn. Comput. Inf. Process., Noida, India,
May 2015.
https://doi.org/10.1109/CCIP.2015.7100688.

[15] M. Pratusevich. Practice python, 2017.
www.practicepython.org.

[16] Y. Qiu, Y. Qi, H. Lu, Z. Pardos, and N. Heffernan.
Does Time Matter? Modeling the Effect of Time with
Bayesian Knowledge Tracing. In M. Pechenizkiy,
T. Calders, C. Conati, S. Ventura, C. Romero, and
J. Stamper, editors, Proc. 4th Int. Conf. Educational
Data Mining, pages 139–148, Eindhoven, the
Netherlands, July 2011.

[17] D. Robinson. The incredible growth of python.
https://stackoverflow.blog/2017/09/06/

incredible-growth-python/, 2017. Online; accessed
12-June-2020.

[18] J. Self. Theoretical foundations for intelligent tutoring
systems. J. Artif. Intell. Educ., 1(4):3–14, Sept. 1990.

[19] S. Sentance and A. McNicol. Python school, 2016.
https://pythonschool.net/.

[20] Stack Overflow. Developer survey results 2018. https:
//insights.stackoverflow.com/survey/2018/, 2019.
Online; accessed 12-June-2020.

[21] E. Thompson, A. Luxton-Reilly, J. L. Whalley, M. Hu,
and P. Robbins. Bloom’s taxonomy for cs assessment.
Jan. 2008.

[22] K. Vanlehn. The behavior of tutoring systems. Int. J.
Artif. Intell. Ed., 16(3):227–265, Aug. 2006.

[23] W3Resource. W3resource, 2018. https://www.
w3resource.com/python/python-tutorial.php.

http://doi.acm.org/10.1145/3159450.3159579
https://doi.org/10.1145/2713609.2713611
https://doi.org/10.5753/wei.2016.9683
https://github.com/zhiwehu/Python-programming-exercises
https://github.com/zhiwehu/Python-programming-exercises
http://doi.acm.org/10.1145/2858796.2858798
https://doi.org/10.1145/3170358.3170421
https://doi.org/10.1145/1352135.1352309
https://doi.org/10.1007/978-3-030-23207-8_30
https://doi.org/10.1016/j.compedu.2011.11.001
https://doi.org/10.1145/2810041
http://doi.org/10.1145/3308558.3313565
https://doi.org/10.1109/CCIP.2015.7100688
www.practicepython.org
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://pythonschool.net/
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://www.w3resource.com/python/python-tutorial.php
https://www.w3resource.com/python/python-tutorial.php

