
Breaking Down High-level Robot Path-Finding
Abstractions in Natural Language Programming

Yue Zhan and Michael S. Hsiao
{zyue91, hsiao}@vt.edu

Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24060, USA

Abstract. Natural language programming (NLPr) allows people to program in
natural language (NL) for specific domains. It poses great potential since it gives
non-experts the ability to develop projects without exhaustive training. However,
complex descriptions can sometimes have multiple interpretations, making pro-
gram synthesis difficult. Thus, if the high-level abstractions can be broken down
into a sequence of precise low-level steps, existing NLP and NLPr techniques
could be adaptable to handle the tasks. In this paper, we present an algorithm for
converting high-level task descriptions into low-level specifications by parsing
the sentences into sentence frames and using generated low-level NL instructions
to generate executable programs for pathfinding tasks in a LEGO Mindstorms
EV3 robot. Our analysis shows that breaking down the high-level pathfinding
abstractions into a sequence of low-level NL instructions is effective for the ma-
jority of collected sentences, and the generated NL texts are detailed, readable,
and can easily be processed by the existing NLPr system.

Keywords: Natural language processing · Natural language programming · Pro-
gram synthesis · LEGO Mindstorms EV3.

1 Introduction

The field of robotics has made significant strides because of the growth of market de-
mands in recent years. However, despite the growing interest in educational robots, the
time-consuming learning process and the steep learning curve of programming robots
still challenge young robotics enthusiasts. Natural language programming (NLPr) of-
fers a potential way to lower the bar of entry by allowing the users to “program” the
robot using natural language (NL). The readability and expressive nature of natural lan-
guage make it an ideal way to simplify the learning process. Though promising for this
use case, NLPr has several challenges of its own. First, NL texts used to give instruc-
tions are typically low-level (LL) specifications to ensure precision and completeness.
For example, the movement specifications used in the NLPr system for LEGO Mind-
storms EV3 robot in the work [22] are categorized as a controlled natural language
(CNL) [8]. The movement sentences used in the system are object-oriented sentences

Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).

59



like “The robot goes forward/backward/left/right ...”. The requirement to use such low-
level specifications makes the process of directing the robot more difficult for novice
users, as they would rather give a high-level instruction such as ”The robot moves from
point A to point B” than to list out every individual step the robot must take. Uncon-
strained NL texts are highly flexible and expressive but can sometimes be ambiguous.
Designing a language model for NLPr to cover all of the language structures in NL is
extremely difficult, if not impossible [3]. As such, it would be a huge benefit for NLPr
tasks if the information in a higher-level abstraction can be effectively extracted and
used to generate a sequence of precise, unambiguous lower-level sentences that explain
the intention and plans the proper actions. Suppose the information related to the robot
tasks can be extracted. In that case, the language structures that need to be covered
in the domain-specific function library and lexicon can be simplified, and the existing
NLPr system can be directly adapted with fewer necessary modifications to handle the
high-level (HL) NL abstractions, as shown in Figure 1.

Fig. 1: High-level NL to low-level NL transformation

The key challenge addressed in this paper is effectively extracting semantic infor-
mation from high-level sentences to synthesize low-level pathfinding NL instructions.
In order to demonstrate our proposed low-level text generation process, we use a robot
pathfinding task, in which a robot must find an optimal path between two points while
avoiding obstacles along the way. To succeed at this task, our system must generate a
sequence of low-level instructions that take the robot to its goal while minimizing the
time cost and the number of actions taken by the robot. Once our system identifies a path
based on the high-level input, it outputs a sequence of low-level NL to an existing NLPr
system [22], which then generates the executable program for the LEGO Mindstorms
EV3 robot.

2 Previous Work
Due to its promise of better ease of use and improved human-computer interaction,
the foundations of NL based programming for robotics have been well established.
In [1,13], an NLPr system that navigates a vision-based robot with an instruction-
based learning method is presented. In these systems, robot-understandable procedures
are generated from command-like NL instructions based on a set of pre-programmed
sensory-motor action primitives and routes in a miniature city map. Users can give in-
structions based on available primitives to the robot when facing an unknown route with
a human-robot interaction interface. In the work [21], a Vision-language robot naviga-
tion (VLN) system that combines the vision information and descriptive NL commands
reasoning using a data-based model is proposed for in-home environments. When the
NL instructions are given, a sequence of actions is generated by the reasoning navigator.
Gathering sufficient data on various environments for model training purposes could be

60



costly. In the work [14], a probabilistic combinatory categorial grammar (PCCG) based
parser is used to translate procedural NL commands into logic-based Robot Control
Language (RCL) for robot navigation. In [22], a grammar-based Object-Oriented Pro-
gramming Controlled Natural Language (OOP-CNL) model is used to translate NL
sentences into executable code for LEGO robots. In this work, the NLPr program syn-
thesis system utilizes contextual and grammatical information to derive desired robot
functionalities with a domain-specific function library and lexicon. While the language
model used here can process more complex sentence structures, such as conditional
statements, the sentences used for navigating the robot are still at a lower level.

There has been a significant amount of work done in the field of NLPr program syn-
thesis, and most of this work has been focused on solving domain-specific problems.
The work in [4] emphasizes the importance of NLP techniques in analyzing textual
contents in software programs. The authors propose a system called Toradocu, which
they developed using Stanford parser and a pattern and lexical similarity matching that
coverts Javadoc comments into assertions, and a system called Tellina, which is trained
with an RNN [10] to generate bash commands and use these systems to illustrate the po-
tential of program synthesis with NL texts. The Metafor platform [11,17] is a descriptive
NLPr system that can convert NL components into class descriptions with associated
objects and methods. This work takes advantage of the NL parsing toolkit MontyLin-
gua, mixed-initiative dialog, and programming by example techniques. The authors
state that modern parsing techniques and the integration of common sense knowledge
can help developers link humans’ narrative capacities with traditional programming
languages. However, the programs generated by Metafor are not directly executable.
Another work, DeepCoder [2] extends the programming by example framework Learn-
ing Inductive Program Synthesis (LIPS)[16] into a big data problem. DeepCoder gen-
erates a sequence of SQL-like function calls for given integer input-output examples
by training a neural network to predict possible mathematical properties. However, the
generated function calls are basic and low-level. In work [6], an NLPr video game de-
sign system translates object-oriented English sentences into JavaScript game code. A
hybrid context and grammar analysis is used. Conditional statements also can be han-
dled in this system.

Text generation is a topic of interest in NLP research, and it is also receiving atten-
tion in the domain of robotics. A number of systems have worked towards explaining
robot behavior, including verbalizing the robot’s navigation decisions [18,19] and ex-
plaining robot policies by generating behavioral explanations in NL [5]. The idea of
generating low-level robot NL specifications based on robot paths presented in this pa-
per is similar to these works: breaking down abstracted robot missions into sequential
steps describing robot behaviors. However, instead of being used to explain the naviga-
tion to humans, the generated low-level NL texts are used for NLPr program synthesis.

3 Problem Formulation & System Design

3.1 High-level to Low-level (HL2LL) System Overview
Parsing and understanding the semantic meanings of high-level abstractions have been
a significant challenge in NLP and NLPr research due to their complex linguistic nature.
Just like explaining a complex concept to a child, one needs to break the concept down

61



to a sequence of discrete, straightforward, and actionable steps for machines to under-
stand. In this work, particularly, the HL2LL mechanism is built upon a domain-specific
library; in this case, the LEGO robot functions. The OOP-CNL language model L [22]
is used to extract the function information from NL inputs and to match a suitable com-
bination of robot functions in this work. In a nutshell, when the function information
extracted from the high-level abstraction contains motion language features that can-
not be translated into individual functions in the function library F , the system would
further search for identifying high-level abstractions, like color line tracking or mov-
ing to specific mission regions. The high-level abstractions can be explained using a
set of low-level specifications. For example, “The robot moves forward 10 inches.” is
an example of a low-level specification, while “The robot walks to M4 from M1.” is
considered a high-level abstraction since it can be described using a set of low-level
instructions. The transformation process, shown in Figure 2, consists of four steps:

1. Parse the high-level abstraction: Identify the task details.
2. High-level abstraction to path: Find a qualified path from the source to the target

based on the given high-level abstraction using the algorithm in Section 3.3.
3. Path to low-level NL specifications: Generate a set of low-level NL specifications

that describe the actions needed for the robot to follow the qualified path.
4. Low-level NL specifications to code: Translate low-level NL specifications into

executable codes using the NLPr system.

Fig. 2: System overview

3.2 Map Representation
We model our robot’s task after the First LEGO League (FLL)1 competition, with an
88” × 44” Mission Map based on the FLL 2018/2019 official competition arena serv-
ing as our robot’s environment, shown in Figure 3a. The arena contains eight mission
regions, denoted using red blocks and several thick black lines on the map, which can
be recognized using the robot’s color sensor. The Base located at the bottom left is the
required starting point for each run. In this paper, we focus on the task of planning a
path for the robot between specified mission regions. Some other actions involving mo-
tor and sensor usages can be performed in addition to navigation, as described in the
LEGO NLPr system [22].

In order to simplify pathfinding, we break the Mission Map into grid squares, as
shown in Figure 3b. We denote this grid representation the Virtual Map. In the Virtual
Map asterisks denote the edge of the start region and mission regions are represented by
mission blocks. Mission blocks are shaded cells of the form Mn where the n represents
the mission index. Each grid block corresponds to a block with size of 4” × 4”. The

1 https://www.firstlegoleague.org/

62



(a) The mission map (b) Virtual map in block representation
Fig. 3: Virtual game maps

top left corner of the map is initialized with coordinate (1, 1). If the mission regions are
treated as block-like obstacles, and the robot is restricted to movement in the cardinal
directions, the task of pathfinding in the Virtual Map can be treated as a 2D Manhattan
pathfinding problem.

3.3 Lee’s Algorithm and Its Adaption
Lee’s Algorithm [9] is one of the most effective breadth-first search (BFS) based single-
layer routing methods for finding the shortest paths in a Manhattan graph. Lee’s Algo-
rithm searches for the target from the source using a wave-like propagation. With a
source block S and a target set of adjacent blocks T, there are two main phases in Lee’s
Algorithm:

1. Search: Begin by labelling block S as k, where k = 0. Fill the valid neighbors of
blocks labeled k (not already filled and not outside of the map) with label k + 1.
Proceed to step k + 1, repeating the previous process until either the destination T
is reached or there are no more valid neighbors.

2. Retrace: Once T has been reached, trace backward to build the path from T to S
by following the descend of k from k to 0. It is possible that multiple equal-length
paths exist between S and T .

Lee’s Algorithm can be modified to break ties between equal-length paths in favor
of the path with the fewest turns, as shown in Algorithm 1 [15]. By minimizing the
number of turns that the robot makes, we reduce the number of NL sentences our system
must generate and the accumulation of navigation errors that occur as the robot turns. In
the Search process, the direction and coordinates are recorded for the Retrace phase’s
reference. An alternative method approach would be to rank paths first by the number
of turns taken and only then consider the overall path length, effectively trading off
reduced turning time for potentially longer paths [23]. However, FLL players need to
finish as many tasks as possible within a given time limit, and as such, we prefer to
rank by path length first. Figure 4 shows an example of a grid’s state after Algorithm 1
has been executed. Although there are multiple equal-length paths in the grid, the path
highlighted in green is chosen by the adapted Lee’s Algorithm because it has the fewest
turns among the eligible shortest paths.

3.4 Path Information Extraction for NLPr
Information extraction [7] in NLP is the process of converting raw text into a form that
can be easily processed by machines. A task-driven domain-specific function library F

63



Fig. 4: Finding a path from the Base to M2

is used to narrow down the space of function matching for program synthesis in this
study. The function library F includes actions that a LEGO robot can perform with
the supported sensors and motors. The key to parsing a sentence’s semantic meaning
is to split the sentence into sentence frame components and identify the dependency
relations in and between each frame. A grammar-based OOP-CNL model L [22] is
used to construct an intermediate representation for pathfinding based on part-of-speech
(POS) tags [20] and parse information using NLTK toolkits [12], defined as:

L = (O,A, P,R) (1)

where O stands for the objects in the arena, A represents the robot actions, P indicates
the adjectives or adverbs affiliated with the objects and actions, and R represents the
hard-coded requirements for the objects or the actions. For the task-driven robot NLPr
system, we need to identify three components: the object, the action, and the conditions.

Sentence tokens are categorized based on grammatical tags and dependency rela-
tions, and lexicon keywords such as sensor names, port numbers, and mission region
names are identified after preprocessing through lemmatization and tokenization. For
example, in the input sentence “A happy robot goes to M2.” O is the robot; A is
go to M2; P is a Boolean state happy as shown in Figure 5. When mission regions
are detected in the sentence, an error-checking step is invoked to detect any underly-
ing errors in the text, as described in Algorithm 2. The object and action pairs identified
in this step continue to a function matching process in the function libraryF . The object
robot and action gomatch the pathfinding function find path(start,target)
instead of the function move(dir,num,unit) because of the presence of the target
M2 in this example.

Fig. 5: Parsing a sentence and constructing the intermediate representation.

For our robot application, the number of object and action combinations is finite.
For sentences with no ambiguity or errors, each L should have only one valid match
in the finite function library F . If the system fails to identify such a 1:1 match in the

64



Algorithm 1 Shortest-and-fewest-turn path: Search and Retrace
1: procedure SEARCH(current point, target point)
2: queue.push([source point, 0])
3: while queue do
4: current point, counter ← queue.popleft()
5: i, j ← current point.i, current point.j
6: emap[i][j]← counter . label the current point
7: queue.push(neighborsOf(i, j), counter + 1) if valid
8: if any neighbor reaches the target point then
9: goal point← (i, j), break . path found

10: if goal point = source point then
11: return . no such path exists
12: else
13: save current dir

1: procedure RETRACE(current point, source point)
2: get dir ← current dir
3: while current point 6= source point do
4: i, j, id← current point.i, current point.j, emap[i][j]
5: L id,R id, U id,D id← neighbors(emap[i][j]) if exists
6: if get dir ∈ [L,R,U,D] and (X id = id− 1) then . X: dir as id↓ along get dir
7: update i, j
8: else
9: compare to neighbors in different dirs

10: update i, j, get dir

11: current point← (i, j)
12: path.push(current point)

function library, the system will generate an error message with diagnostic information
to help users to debug their input. When multiple objects, actions, or interpretations ex-
ist, the pre-defined higher priority functions will be chosen to ensure a sample program
can be generated. For example, the sentence “The robot goes straight to M3.” maps
to function move(forward,0,0) and function find path(0,M3). As such, the
system cannot determine the user’s intention. The system responds to this situation by
generating a warning message, notifying users that “straight” is ignored for this con-
flict. Rather than not produce any low-level output at all, the system produces an output
based on the find path function, as it is a higher priority action.

When multiple mission regions are present, the pathfinding process needs to be split
into steps. Each input sentence describing robot navigation may contain one midpoint
and one avoid-point. For example, in the sentence “If the robot sees an obstacle in 20
inches, it goes to M7 through M3 but avoids M4”, the path is parsed into two steps with
the midpoint (through (M3)), the target (to (M7)), and the avoid-point (avoids (M4)),
under the condition (if ultrasound sensor()<20 inches).

Multi-conditional statements can be handled in such a language model L by pro-
cessing each condition as a Boolean statement and each action separately. For the exam-
ple shown in Figure 6, the sentence is processed into an if statement with 2 conditions:

65



Algorithm 2 Check for errors in the pathfinding sentence
1: procedure CHECK ERRORS(tokens)
2: tokens, unknowns = tokens.filter(lexicon)
3: if unknowns then
4: Warning: Skipping detected unknown tokens.
5: obj, act← tokens.intersection(obj dict, act dict)
6: if obj 6= robot or act 6= find path then . mismatch
7: Error: not valid combination
8: missions← tokens.intersection(emap) . get all mission regions in the sentence
9: if len(missions) ≥ 4 then

10: Error: too many mission regions in one sentence. Consider re-write.
11: source, target,mid point← dependency(tokens)
12: if !target or any mission ∈ missions unsigned then
13: Error: no valid target or dangling tokens
14: else
15: return [robot.find path(source,mid point, target)]

condition 1 (NP (color sensor) VP (see black)), condition 2 (NP (robot) VP
(is happy)), and action (NP (it) VP (move to M2)). The reference relation between
it and robot is done by contextual analysis on current and previous contents com-
bined with function library restrictions. e.g robot is chosen because of it matches with
the action move behavior both contextually and functionally.

Fig. 6: Complex sentence example

While an action might have several interpretations, the functions implied in a sen-
tence are limited by the task-driven domain-specific function library. For example, in
the sentence “When the robot sees red at M1, it will speed up and go through M2 to
reach M3.”, the color subject indicates a color sensor is needed. Similarly, “see a
wall” indicates the ultrasound sensor usage and “touch a wall” indicates the touch sen-
sor usage.

3.5 Path to Low-level Sentence

Once a path between S and T is identified, a sequence of low-level NL sentences de-
scribing the corresponding step-by-step actions needed to navigate the LEGO robot
is generated. A grammar-based formalization method is used to construct the object-
oriented low-level NL sentences. The generated NL texts will be fed to an NLPr system
for further translation, as opposed to being intended for humans to read. Our proposed

66



method does not require a large dataset for training and can be adapted to other high-
level abstractions when a suitable function library is available. If the robot starts off

Fig. 7: The robot moves from A to B.

facing North/up, path 1 in Figure 7 is described in low-level NL specifications as:

Path 1: [4, 1]→ ...→ [1, 1]→ ...→ [1, 4]⇒
The robot goes forward 12 inches. The
robot turns right 90 degrees. The robot
goes forward 12 inches.

The pseudocode in Algorithm 3 illustrates the above path-to-sentence conversion.
First, every two neighboring coordinates in the path array are compared to detect turns
and step numbers in each turn. The function compare((pre row, pre col),
(row, col)) returns state that determines if the robot needs to turn. If not, it
means the robot still follows the previous direction pre state. The counter records
the number of steps in the current direction. Once a turn occurs, a set of NL sentences
is generated based on the number of steps, recorded direction, and previous state, i.e.,
the function path2NL(pre state, dir, count) generates the NL sentences
for each turn. We then update the direction and reset the counter for the next steps.

Algorithm 3 Path to NL Generation
1: procedure NL TEXT GENERATION(path, direct)
2: total step, (pre row, pre col)← len(path), path[0] . total number of steps
3: counter, state, pre state← 0, 0, 0
4: for i in range(1, total step ) do
5: row, col← path[i]
6: state←compare((pre row, pre col), (row, col))
7: if state = pre state then
8: counter += 1

9: if state 6= pre state or i = total step− 1 then
10: NL text←path2NL(pre state, dir, counter)
11: update(dir), counter ← 1
12: NL2Code(NL text) . NL texts to code
13: pre state, pre row, pre col← state, row, col

3.6 Generating Code from NL specifications using the NLPr System

The LEGO NLPr program synthesis system [22] generates executable text-based pro-
grams directly from the NL input instead of the graph-based programs typical of LEGO
robots. It processes the input English Code (EC) into intermediate representations with
lemmatization, tokenization, categorization, and function matching. Such representa-
tions indicate the desired functions that need to be translated into formal program

67



snippets. It is used for program synthesis and producing feedback or error informa-
tion for users. The NL-to-code program synthesis system, NL2Code(NL text) in
Algorithm 3, calls the functions that handle the interpretation from generated low-level
NL specification into executable programs. A set of robot motion functions in F are
combined to synthesis the programs based on the intermediate representations. For ex-
ample, the sentence “The robot goes forward for 12 inches.” can be represented by
robot.move(forward,12,inch). This representation is translated into 28 lines
of code.

4 Experimental Results
We evaluate our system’s performance on a set of 162 robot pathfinding related descrip-
tions. These descriptions were collected by the authors manually, and they collectively
describe movements between all eight mission regions. Each description consists of one
or more sentences.

Our system successfully translates all 36 descriptions with 2 or fewer mission re-
gions, resulting in programs that navigate the robot on the shortest path with the fewest
turns between two terminals. Of the 56 descriptions that navigate between three mis-
sion regions, 91.1% of the generated programs are correct. Our system performs worse
on descriptions with more complicated structures, which might involve more than three
mission regions, with only 68.6% of the 70 such descriptions are translated into pro-
grams meeting the semantic meanings of the descriptions. Overall, our system correctly
translated 135 (83.3%) of the 162 collected descriptions. Some example descriptions
and their corresponding number of lines of code generated are shown in Table 1.

These results show that our proposed NL text transformation system can success-
fully translate the large majority of the collected high-level robot navigation task sen-
tences into low-level instructions for producing executable programs. This supports our
hypothesis that with an effective POS tagging and domain-specific function library and
lexicon, the objects, actions, and targets in L can be effectively identified and useful
intermediate representations for further program synthesis can then be generated.

However, despite our system’s strengths, it still struggles with more complicated
sentence structures due to the NL’s ambiguous nature and its expressiveness. One such
description that poses a challenge for our system is “The robot wanders through M1 M2
and M3.” This description cannot be translated properly because there is no clear indi-
cation of the robot’s source and target. As this description would be difficult for a human
to adapt to low-level instructions, it is understandable that our system fails to translate
it. The LEGO NLPr system can handle complex robot navigation NL descriptions by
converting them into a sequence of low-level step-by-step instructions. Collected high-
level robot navigation abstractions can generate a number of lines of code based on
desired functions. When a description includes information that cannot be handled, a
program skeleton with the best guess and debugging feedback is generated.

4.1 Case Study
Example 1 109 lines of code are generated for Example description #2 in Table 1 for
navigating from M5 to M3, shown in Figure 8a.
Generated path [1, 2] → · · · → [7, 2] → · · · → [7, 8] → [6, 8] → · · · → [6, 17] →

[5, 17] · · · → [2, 17] · · · → [2, 19]

68



Eg# English Code Examples # of lines

1 The robot goes from M5 to M3 99

2
The robot starts with facing to the right.
The robot goes to M8 from M1 but avoids M2.

109

3 The robot goes to M1 without going through M2 via M3. 81

4 If the robot is happy, it goes to M2. 67

5
When robot does not see the red line, it goes straight to M3.
Otherwise, it follows the red line.

105

6
If the robot sees an obstacle in 20 inches,
it goes to M7 through M3 but avoids M4.

108

7
If the ultrasound sensor sees a ball in 5 inches, the robot is happy.
A happy robot goes to M7 though M3 but avoids M4

112

Table 1: English Code examples with corresponding number of lines of code generated

Generated low-level instructions “The robot turns right 90 degrees. The robot goes
forward 24 inches. The robot stops. The robot turns left 90 degrees. The robot goes
forward 24 inches. The robot stops. The robot turns left 90 degrees. The robot goes
forward 4 inches. The robot stops. The robot turns right 90 degrees. The robot goes
forward 36 inches. The robot stops. The robot turns left 90 degrees. The robot goes
forward 16 inches. The robot stops. The robot turns right 90 degrees. The robot
goes forward 8 inches. The robot stops.”

Example 2 Paths for sample #7 in Table 1 are shown in Figures 8b and 8c. Sample #7
in Table 1 is a multiple-phase pathfinding task, and as such our system must compute
two paths. Note that when the robot reaches mission region #3, the robot is pointing to
the East/right. Therefore, the second path starts with turning to the right only 90 degrees
rather than turning 180 degrees. The second sentence’s robot movements would only be
performed when the state happy is true from the last sentence.
Generated path 1 [11, 1]→ · · · → [6, 1]→ · · · → [6, 6]
Generated path 2 [6, 6]→ · · · → [9, 6]→ · · · → [9, 17]
Generated low-level instructions “The robot goes forward 20 inches. The robot stops.

The robot turns right 90 degrees. The robot goes forward 20 inches. The robot stops.
The robot turns right 90 degrees. The robot goes forward 12 inches. The robot stops.
The robot turns left 90 degrees. The robot goes forward 44 inches. The robot stops.”

5 Future Work
There are two main directions in which we intend to extend this work. First, we found
that some input sentences may be invalid as they contain unclear or unknown informa-
tion, meaning that they cannot be translated into robot functions even by a human, e.g.
”The robot hates moving forward”. In order to make the system more robust to invalid
inputs, it will be necessary to validate inputs with domain-specific formal reasoning and
analysis. This will ensure the correctness of the system’s understanding of the users’ in-
tentions and the correctness of the generated programs. Second, the function space con-
tains several basic robot motions. As such, we intend to expand the function space with

69



(a) Path from M1 to M8

(b) Path to M3 (c) Path from M3 to M7
Fig. 8: Case Study Tasks

more low-level and even middle-level NL texts to develop the high-level abstraction
self-explaining architecture further.

6 Conclusion

This paper investigates the interdisciplinary NLP and robot path navigation task of
breaking down complex high-level robot pathfinding abstractions into low-level NL in-
structions that can be processed directly by a LEGO NLPr system. An efficient informa-
tion extraction method with the OOP-CNL language model analyzes and validates the
sentence components’ semantic meanings and relations. The error-checking for eval-
uating input sentences in the system provides a base for developing formal analysis
methods for NLPr. We demonstrated how robot pathfinding problems for 2D Manhattan
graphs could be handled by transforming the complicated robot abstractions into a se-
quence of low-level NL instructions with NLP techniques and the domain-specific func-
tion library. The experimental results show that existing NLPr systems can be adapted
directly to produce executable codes with necessary modifications using generated low-
level NL specifications due to their simplicity, concreteness, and precision. Especially,
the process of the (1) identify the tasks by parsing the sentence, (2) pathfinding based
on the semantic meanings, (3) low-level specification generation, and (4) program syn-
thesis is explained in detail, and some case studies are proved.

Although the study in this paper is limited in scope to pathfinding for the LEGO
Mindstorms EV3 robots, it lays a foundation for the task-driven HL2LL NL text self-
explaining mechanism based on a domain-specific library. As any complicated robot
procedure can be explained in detailed sequential steps, we believe such a self-explaining
mechanism could be a highly promising avenue for future NLP research.

70



References

1. Mobile robot programming using natural language. Robotics and Autonomous Systems
38(3), 171 – 181 (2002), advances in Robot Skill Learning

2. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder: Learning
to write programs. CoRR abs/1611.01989 (2016)

3. Dijkstra, E.W.: On the foolishness of ”natural language programming”. In: Program Con-
struction, International Summer Schoo. pp. 51–53. Springer-Verlag, London, UK, UK (1979)

4. Ernst, M.D.: Natural language is a programming language: Applying natural language pro-
cessing to software development. In: SNAPL 2017: the 2nd Summit oN Advances in Pro-
gramming Languages. pp. 4:1–4:14. Asilomar, CA, USA (May 2017)

5. Hayes, B., Shah, J.A.: Improving robot controller transparency through autonomous policy
explanation. Association for Computing Machinery, New York, NY, USA (2017)

6. Hsiao, M.S.: Automated program synthesis from object-oriented natural language for com-
puter games. In: Controlled Natural Language - Proceedings of the Sixth International Work-
shop, CNL 2018, Maynooth, Co. Kildare, Ireland, August 27-28, 2018. pp. 71–74 (2018)

7. Jurafsky, D., Martin, J.H.: Speech and Language Processing (2nd Edition). Prentice-Hall,
Inc., USA (2009)

8. Kuhn, T.: A survey and classification of controlled natural languages. Comput. Linguist.
40(1), 121–170 (Mar 2014)

9. Lee, C.Y.: An algorithm for path connections and its applications. IRE Transactions on Elec-
tronic Computers EC-10(3), 346–365 (1961)

10. Lin, X.V., Wang, C., Pang, D., Vu, K., Zettlemoyer, L., Ernst, M.D.: Program synthesis from
natural language using recurrent neural networks. Tech. Rep. UW-CSE-17-03-01, University
of Washington Department of Computer Science and Engineering, Seattle, WA, USA (Mar
2017)

11. Liu, H.: Metafor: Visualizing stories as code. In: 10th International Conference on Intelligent
User Interfaces. pp. 305–307. ACM Press (2005)

12. Loper, E., Bird, S.: Nltk: The natural language toolkit. Association for Computational Lin-
guistics, USA (2002)

13. Lopes, L.S., Teixeira, A.: Human-robot interaction through spoken language dialogue. In:
Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2000) (Cat. No.00CH37113). vol. 1, pp. 528–534 vol.1 (2000)

14. Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural language com-
mands to a robot control system. In: Experimental Robotics

15. Maxemchuk, N.: Routing in the manhattan street network. IEEE Transactions on Communi-
cations 35(5), 503–512 (1987)

16. Menon, A.K., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.T.: A machine learning frame-
work for programming by example. In: Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28. pp. I–187–I–195. ICML’13,
JMLR.org (2013)

17. Mihalcea, R., Liu, H., Lieberman, H.: Nlp (natural language processing) for nlp (natural
language programming). In: Gelbukh, A. (ed.) Computational Linguistics and Intelligent
Text Processing. pp. 319–330. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

18. Perera, V., Selveraj, S.P., Rosenthal, S., Veloso, M.: Dynamic generation and refinement
of robot verbalization. In: 2016 25th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN). pp. 212–218 (2016)

19. Rosenthal, S., Selvaraj, S.P., Veloso, M.: Verbalization: Narration of autonomous robot
experience. In: Proceedings of the Twenty-Fifth International Joint Conference on Artifi-
cial Intelligence. pp. 862–868. IJCAI’16, AAAI Press (2016), http://dl.acm.org/
citation.cfm?id=3060621.3060741

71

http://dl.acm.org/citation.cfm?id=3060621.3060741
http://dl.acm.org/citation.cfm?id=3060621.3060741


20. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tagging
with a cyclic dependency network. In: Proceedings of the 2003 Human Language Technol-
ogy Conference of the North American Chapter of the Association for Computational Lin-
guistics. pp. 252–259 (2003), https://www.aclweb.org/anthology/N03-1033

21. Wang, X., Huang, Q., Çelikyilmaz, A., Gao, J., Shen, D., Wang, Y., Wang, W.Y., Zhang, L.:
Reinforced cross-modal matching and self-supervised imitation learning for vision-language
navigation. CoRR abs/1811.10092 (2018)

22. Zhan, Y., Hsiao, M.S.: A natural language programming application for lego mindstorms
ev3. In: 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality
(AIVR). pp. 27–34 (2018)

23. Zhou, Y., Wang, W., He, D., Wang, Z.: A fewest-turn-and-shortest path algorithm based on
breadth-first search. Geo-spatial Information Science 17(4), 201–207 (2014)

72

https://www.aclweb.org/anthology/N03-1033

	Breaking Down High-level Robot Path-Finding Abstractions in Natural Language Programming

