
AD-CASPAR: Abductive-Deductive Cognitive
Architecture based on Natural Language and

First Order Logic Reasoning

Carmelo Fabio Longo and Corrado Santoro

Department of Mathematics and Computer Science, University of Catania, Viale
Andrea Doria, 6, 95125 Catania, Italy

fabio.longo@unict.it, santoro@dmi.unict.it

Abstract. In this paper, a Cognitive Architecture leveraging Natural
Language Processing and First Order Logic Inference is presented, mak-
ing usage of different kinds of knowledge bases interacting one another.
Such a framework is able to make reasoning on queries requiring also
combinations of axioms, represented by means of a rich semantic, using
Abduction as pre-stage of Deduction. As application test a Telegram
chatbot system has been implemented, supported by a module which
automatically transforms polar and wh-questions into one or more likely
assertions, in order to infer boolean values or snipplets with variable
length as factoid answer. Furthermore, such a chatbot does not need
script updates or code refactory when new knowledge has to income, but
just the knowledge itself in natural language.

Keywords: Cognitive Architectures · Chatbots ·Natural Language Pro-
cessing · First Order Logic

1 Introduction

Among the applications leveraging Natural Language Processing (NLP), those
related to Chatbots systems are growing very fast and present a wide range of
choices depending on the usage, each with different complexity levels, expressive
powers and integration capabilities. The first distinction between the chatbot
platforms divides them into two big macro-categories: goal-oriented and con-
versational. The former is the most frequent kind, often designed for business
platforms support, assisting users on tasks like buying goods or execute com-
mands in domotic environments. In this case, it is crucial to extract from a
utterance the intentions together with the related parameters, then to execute
the wanted operation, providing then a proper feedback to the user. As for con-
versational ones, they are mainly focused on having a conversation, giving the

Copyright ©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

73

user the feeling to communicate with a sentient being, returning back reasonable
answers optionally taking into account discussions topics and past interactions.
The early shared aim for conversational chatbot systems was to pass the Turing
test, hence to fool the user about his interlocutor; the state-of-art of such chatbot
systems can be probed in the scope of the Loebner Prize Competition [1].

One of the most common platforms for building conversational chatbot is
AIML [2] (Artificial Intelligence Markup Language), based on words pattern-
matching defined at design-time; in the last decade it has become a standard
for its flexibility to create conversation. In [3] AIML and Chatscript [4] are com-
pared and mentioned as the two widespread opensource frameworks for building
chatbots. On the other hand, AIML chatbots are difficult to scale if patterns
are manually built, they have great limitations on information extraction ca-
pabilities and they are not suitable for task oriented chatbots. Other kinds of
chatbots are based on deep learning techniques [5], making usage of huge corpus
of examples of conversations to train a generative model that, given an input,
is able to generate the answer. In general, all chatbots are not easily scalable
without writing additional code or retrain a model with fresh datasets.

In this work, we present a cognitive architecture called AD-CASPAR based
on NLP and First Order Logic (FOL) Reasoning, as baseline platform for im-
plementing scalable and flexible chatbots with both goal-oriented and conver-
sational features; nevertheless, this architecture leverages Question Answering
techniques and is able of combining facts and rules in order to infer new knowl-
edge from its own Knowledge Base. This first prototype is not yet capable of
implementing a chatbot with complex dialog system, but differently from other
platforms, in order to handle additional question-answer couples, the user has
to provide just the related sentences in natural language. After the agent has
parsed every sentence, a FOL representation is asserted in the Knowledge Base;
in such a process, as we will show in the next sections, the Knowledge Base is
able to act as a deductive database [6]. The basic idea is that, for dealing with
new sentences, there is no need of updating the chatbot code at design-time. For
achieving snipplets of knowledge (or a custom text) after a question, you have
to give just the related knowledge before.

AD-CASPAR inherits most of its features directly from its predecessor CAS-
PAR[7], whose name stands for: Cognitive Architecture System Planned and Re-
active. The latter was designed to build goal-oriented agents (vocal assistants)
with enhanced deductive capabilites, working on domotic environments; in the
Github1 repository all its features and information representations are shown
in detail. The additional features introduced in AD-CASPAR are the usage of
Abduction as pre-stage of the Deduction (that’s why the presence of AD before
CASPAR), in order to make inference only on a narrow set of query-related
clauses, plus the application of Question-Answering techniques to deal with wh-
questions and give back factoid answers (single nouns or snipplets) in the best
cases; otherwise, optionally, only a relevance-based output will be returned.

1 http://www.github.com/fabiuslongo/pycaspar

74

This paper is structured as follows: Section 2 shows in detail all the ar-
chitecture’s components and underlying modules; Section 3 shows how AD-
CASPAR deals with polar and wh-questions; Section 4 summarizes the content
of the paper and provides our conclusions, together with future work perspec-
tives. A Python prototype implementation of AD-CASPAR is also provided for
research purposes in a Github repository2.

Sensor Instance

Dependency
Parser

Uniquezer

MST Builder

FOL Builder

PHIDIAS Engine

Sensor
Instances

STT
Front-End

Direct Commands
Parser

Routines Parser

Beliefs KB

Definite Clauses
Builder

High Clauses KB

FOL Reasoner

Physical
 Sensors

Devices

Translation Service Reactive Reasoner Cognitive Reasoner

Smart Environment
Interface

Smart
Home

Low Clauses KB

QA Shifter

ASR CHAT

Fig. 1. The Software Architecture of AD-CASPAR

2 The Architecture

The main component of this architecture, namely the Reactive Reasoner (central
box in Fig.1), acts as ”core router” by delegating operations to other components,
and providing all needed functions to make the whole system fully operative.

The Knowledge Base (KB) is divided into two distinct parts operating sep-
arately, which we will distinguish as Beliefs KB and Clauses KB : the former
contains information of physical entities which affect the agent and which we
want the agent to affect; the latter contains conceptual information not perceived
by agent’s sensors, but on which we want the agent to make logical inference.
Moreover, the Clauses KB is divided into two different layers: High Clause KB
and Low Clauses Kb (bottom right box in Fig.1). The totality of the knowledge
is stored in the low layer, but the logical inference is achieved in the high one,

2 http://www.github.com/fabiuslongo/ad-caspar

75

whose clauses will be the most relevant for the query in exam, taking in account
of a specific confidence threshold which will be discussed later.

The Beliefs KB provides exhaustive cognition about what the agent could
expect as input data coming from the outside world; as the name suggests, this
cognition is managed by means of proper beliefs that can - in turn - activate
proper plans in the agent’s behaviour.

The Clauses KB is defined by the means of assertions/retraction of nested
First Order Logic (FOL) definite clauses, which are possibly made of composite
predicates, and it can be interrogated providing answer to any query (True or
False).

The two KBs represent, somehow, two different types of human being mem-
ory: the so called procedural memory or implicit memory [8], made of thoughts
directly linked to concrete and physical entities; the conceptual memory, based
on cognitive processes of comparative evaluation. Nevertheless, the two layers
of the Clauses KB can be seen as Short Term Memory (High Clauses KB) and
Long Term Memory (Low Clauses KB).

As well as in human being, in this architecture, Belief KB and Clauses KB
can interact with each other in a very reactive decision-making process.

2.1 The Translation Service

This component (left box in Fig. 1) is a pipeline of five modules with the task of
taking an utterance in natural language and translating it in a neo-davidsonian
FOL expression inheriting the shape from the event-based formal representation
of Davidson [9], where the sentence for instance:

Brutus stabbed suddenly Caesar in the agora (1)

is represented by the following notation:

∃e stabbed(e, Brutus, Caesar) ∧ suddenly(e) ∧ in(e, agora) (2)

where the variable e, which we define as davidsonian variable, identifies the
verbal action related to stabbed. In the case a sentence contains more than one
verbal phrase, we’ll make usage of indexes for distinguish ei from ej with i 6= j.
As for the predicates arguments, in order to permit the sharing of qualitative
features between predicates, whether we include (for instance) the adjective evil
related to Brutus, the 2 can be changed as it follows:

∃e stabbed(e, Brutus(x), Caesar(y)) ∧ evil(x) ∧ suddenly(e) ∧
in(e, agora(z))

Furthermore, in the notation used for this work each predicate label is in the
form L:POS(t), where L is a lemmatized word and POS is a Part-of-Speech tag
from the Penn Treebank [10] tagset.

The first module in the pipeline, namely Sensor Instance, can include either
a module of Automatic Speech Recognition (ASR) or a module getting plain

76

text from a chatbot environment; the former allows a machine to understand
the user’s speech and convert it into a series of words.

The second module is the Dependency Parser, which aims at extracting the
semantic relationships, namely dependencies, between all words in a utterance.
All the dependencies used in this paper are part of the ClearNLP[11] tagset,
which is made of 46 distinct entries.

The third module, the Uniquezer, aims at renaming all the entities within
each dependency taking in account of the words offset, in order to make them
unique. Such a task is mandatory to ensure the correctness of the outcomes of the
next module in the pipeline (the Macro Semantic Table), whose data structures
need a distinct reference to each entity coming from the dependency parser.

The fourth module, defined as MST Builder, is made of production rules
leveraging semantic dependencies, with the purpose of building a novel semantic
structure defined as Macro Semantic Table (MST). The latter summarizes in
a canonical shape all semantic features in a sentence, in order to derive FOL
expressions. Here is a general schema of a MST, referred to the utterance u:

MST(u) = {ACTIONS, VARLIST, PREPS, BINDS, COMPS, CONDS}

where

ACTIONS = [(labelk, ek, xi, xj),...]

VARLIST = [(x1, label1),...(xn, labeln)]

PREPS = [(labelj, (ek | xi), xj),...]

BINDS = [(labeli, labelj),...]

COMPS = [(labeli, labelj),...]

CONDS = [e1, e2,...]

All tuples inside such lists are populated with variables and labels whose indexing
is considered disjoint among distinct lists, although there are significant relations
which will be clarified shortly. The MST building takes into account also the
analysis done in [12] about the so-called slot allocation, which indicates specific
policies about entity’s location inside each predicate, depending on verbal cases.
This is because the human mind, in the presence of whatever utterance, is able to
populate implicitly any semantic role (subject and object) taking part in a verbal
action, in order to create and interact with a logical model of the utterance. In
this work, by leveraging a step-by-step dependencies analysis, we want to create
artificially such a model, to give an agent the chance to make logical inference
on the available knowledge. For instance, considering the dependencies of 1:

nsubj(stabbed, Brutus)

ROOT(stabbed, stabbed)

advmod(stabbed, suddenly)

dobj(stabbed, Caesar)

prep(stabbed, In)

det(agora, The)

pobj(in, agora)

77

from the couple nsubj/dobj it is possible to create a new tuple inside ACTIONS

as it follows, taking also in account of variables indexing counting:

(stabbed, e1, x1, x2)

and inside VARLIST as well:

(x1, Brutus), (x2, Caesar)

Similarly, after an analysis of the couple prep/pobj it is possibile to create
further tuples inside PREPS and VARLIST like it follows, respectively:

(in, e1, x3), (x3, agora)

The dependency advmod contains informations about the verb (stabbed) is go-
ing to modify by means the adverb suddenly. In light of this, the tuple (e1,

suddenly) will be created inside VARLIST.
As for the BINDS list, it contains tuples with a quality-modifier role: in

the case the 1 had the brave Caesar as object, considering the dependency
amod(Caesar, brave) a bind (Caesar, brave) will be created inside BINDS.

As with BINDS, COMPS contains tuples of terms related to each other, but in
this case they are part of multi-word nouns like Barack Hussein Obama, which
will be classified with the compound dependency.

The CONDS lists contains davidsonian variables whose related tuples within
the MST subordinate the remaining others. For instance, in the presence of ut-
terances like:

if the sun shines strongly, Robert drinks wine

or

while the sun shines strongly, Helen smiles

in both cases, the dependencies mark(shines, If), mark(shines, while) will
give informations about subordinate conditions related to the verb shines; in
those cases, the davidsonian variable related to shines will populate the list
CONDS. In the same way, in presence of the word when a subordinate condition
might be inferred as well: since it is classified as advmod like whatever adverb, it
might be considered as subordinate condition only when its POS is WRB and not
RB, where the former denotes a wh-adverb and the latter a qualitative adverb.
Unfortunately, such POS-based distinction is not sufficient, since also the ad-
verb where is classified in the same way, which is indicative of a location where
conditions related to some verbal action take place. So, depending from the do-
main, for achieving a comprehensive strategy in such a direction, a grammatical
analysis is also required.

The fifth and last module, defined as FOL Builder, aims to build FOL ex-
pressions starting from the MSTs. Since (virtually) all approaches to formal

78

semantics assume the Principle of Compositionality3, formally formulated by
Partee [13], every semantic representation can be incrementally built up when
constituents are put together during parsing. In light of the above, it is possible
to build FOL expressions straightforwardly starting from a MST, which is built
in a step-by-step semantic dependencies analysis. For instance, considering the
sentence:

When the sun shines strongly, Robert is happy (3)

As effect of the Uniquezer processing before the MST building, which concate-
nate to each lemma its indexing in the body of the sentence among more occur-
rency of the same word, the related MST is:

ACTIONS = [(shine01:VBZ, e1, x1, x2),

be01:VBZ(e2, x3, x4)]

VARLIST = [(x1, sun01:NN), (x2, ?), (x3, Robert01:NNP), (x4,

happy01:JJ)]

CONDS = [e1]

The final outcome will be an implication like the following:

shine01:VBZ(e1, x1,) ∧ sun01:NN(x1) =⇒ be01:VBZ(e2, x3, x4) ∧
Robert01:NNP(x3) ∧ happy01:JJ(x4)

Since the MST Builder is made of production rules whom takes in account
of relations (dependencies) between words, as long as such such relations are
treated properly, the accuracy of the conversion from natural language can be
considered equal to the accuracy of the dependency parser.

In order to obtain a disambiguation between words as well, which will be
reflected on the predicate’s labels, a naive strategy (inherited from CASPAR) is
to possibly exploiting the doc2vect [14] similarity between the sentence contain-
ing the lemma and the WordNet examples (whether existing) or glosses defined
within the synsets including such a lemma. The code of the most likely synset
whose example similiarity is greater, will be choosen as part of the predicate’s
label.

2.2 The Reactive Reasoner

As already mentioned, this component (central box in Fig. 1) has the task of
letting other modules communicate with each other; it also includes additional
modules such as the Speech-To-Text (SST) Front-End, IoT Parsers (Direct Com-
mand and Routines), Sensor Instances, and Definite Clauses Builder. The Reac-
tive Reasoner contains also the Beliefs KB, which supports both Reactive and
Cognitive Reasoning.

The core of this component processing is managed by the BDI framework
Phidias [15], which gives Python programs the ability to perform logic-based

3 “The meaning of a whole is a function of the meanings of the parts and of the way
they are syntactically combined.”

79

reasoning (in Prolog style) and lets developers write reactive procedures, i.e.,
pieces of program that can promptly respond to environment events.

The agent’s first interaction with the outer world happens through the STT
Front-End, which is made of production rules reacting on the basis of specific
beliefs asserted by a Sensor Instance; the latter, being instance of the superclass
Sensor provided by Phidias, will assert a belief called STT(X) with X as the
recognized utterance, after the sound stream is acquired by a microphone and
translated by the ASR or acquired from a chatbot environment.

The Direct Command and Routine Parsers have the task of combining FOL
expressions predicates with common variables coming from the Translation Ser-
vices, via a production rules system. The former produces beliefs which might
trigger operation executions, while the latter produces pending beliefs which
need specific conditions before being treated as direct commands.

The Definite Clauses Builder is responsible of combining FOL expression
predicates with common variables, through a production rules system, in order to
produce nested definite clauses. Considering the 3 and its related FOL expression
producted by the Translation Service, the Definite Clauses Builder, taking in
account of the Part-of-Speech of each predicate, will produce the following nested
definite clause:

shine01:VBZ(sun01:NN(x1),) =⇒ be01:VBZ(Robert01:NNP(x3),

happy01:JJ(x4))

The rationale behind such a notation choice is explained next: a definite clause
is either atomic or an implication whose antecedent is a conjunction of positive
literals and whose consequent is a single positive literal. Because of such restric-
tions, in order to make MST derived clauses suitable for doing inference with the
Backward-Chaining algorithm (which requires a KB made of definite clauses),
we must be able to incapsulate all their informations properly. The strategy fol-
lowed is to create composite terms, taking into account of the Part-of-Speech
tags and applying the following hierarchy to every noun expression as it follows:

IN(JJ(NN(NNP(x))), t) (4)

where IN is a preposition label, JJ an adjective label, NP and NNP are noun and
proper noun labels, x is a bound variable and t a predicate.
As for the verbal actions, the nesting hierarchy will be the following:

ADV(IN(VB(t1, t2), t3))

where ADV is an adverb label, IN a preposition label, VB a verb label, and t1,
t2, t3 are predicates; in the case of imperative or intransitive verb, instead of
respectively t1 or t2, the arguments of VB will be left void. As we can see, a
preposition (IN) might be related either to a noun or a verb.

2.3 The Smart Environment Interface

This component (upper right box in Fig.1) provides a bidirectional interaction
between the architecture and the outer world. A production rules system is used

80

as reactive tool to trigger proper plans in the presence of specific beliefs. In
[16] we have shown the effectiveness of this approach by leveraging the Phidias
predecessor Profeta[17], even with a shallower analysis of the semantic depen-
decies, as well as an operations encoding via WordNet[18] in order to make the
operating agent multi-language and multi-synonimous.

2.4 The Cognitive Reasoner

This component (right bottom box in Figure 1) allows an agent to assert/query
the Clauses KB with nested definite clauses, where each predicate argument can
be another predicate and so on, built by the Definite Clauses Builder module as
shown in 2.2.

Beyond the nominal FOL reasoning with the known Backward-Chaining al-
gorithm, this module exploits also another class of logical axioms entailed from
the Clauses KB: the so-called assignment rules. We refer to a class of rules of the
type ”P is-a Q” where P is a predicate whose variable travels across one hand-
side to another of an implicative formula, as argument of another predicate Q.
For example, if we want to express the concept: Robert is a man, we can use the
following closed formula:

∀x Robert(x) =⇒ man(x) (5)

But before that, we must consider a premise: if predicates are built from semantic
dependencies, the introduction of such rules in a KB can be possible only by
shifting from a strictly semantic domain to a pure conceptual one, because in
a semantic domain we have just the knowledge of morphological relationships
between words given by their syntactic properties. Basically, we need a medium
to give additional meaning to our predicates which is provided by WordNet [18].
This allows us to make logical reasoning in a conceptual space thanks to the
following functions:

FI : PS −→ PC FArgs(FI) : Xn
S −→ Y n

C (6)

FI is the Interpreter Function between the space of all semantic predicates which
can be yield by the MST sets and the space of all conceptual predicates PC having
a synset as label; it is not injective, because a single semantic predicate might
have multiple corrispondences in the codomain, one for each different synset
containing the lemma in exam. FArgs(FI) is between domain and codomain (both
with arity equal to n) of all predicate’s argument of FI . For instance, considering
the MST derived FOL expression of Robert is a man:

be:VBZ(e1, x1, x2) ∧ Robert:NNP(x1) ∧ man:NN(x2)

After an analysis of be, we find the lemma within the WordNet synset encoded
by be.v.01 and defined by the gloss: have the quality of being something. This
is the medium we need for the domain shifting which gives a common sense
meaning to our predicates.

In light of above, in the new conceptual domain given by (6), the same
expression can be rewritten as:

81

be.v.01 VBZ(d1, y1, y2) ∧ Robert NNP(y1) ∧ man.n.01 NN(y2)

where VBZ indicates the present tense of be.v.01, Robert NNP(x) means that x
identify the person Robert, and man.n.01 NN(x) means that x identify an adult
person who is male (as opposed to a woman).

Considering the meaning of be.v.01 VBZ, it does make sense also to rewrite
the formula as:

∀y Robert NNP(y) =⇒ man.n.01 NN(y) (7)

where y is a bound variable like x in (5).
Having such a rule in a KB means that we can implicitly admit additional

clauses having man.n.01 NN(y) as argument instead of Robert NNP(y).
The same expression, of course, in a conceptual domain can also be rewritten

as a composite fact, where Robert NNP(y) becomes argument of man.n.01 NN(y)

as it follows:
man.n.01 NN(Robert NNP(y)) (8)

which agrees with the hierarchy of 4 as outcome of the Definite Clauses Builder.
As claimed in [19], not every KB can be converted into a set of definite clauses

because of the single-positive-literal restriction, but many KB can, like the one
related to this work for the following reasons:

1. No clauses made of one single literal will ever be negative, due to the closed
world assumption. Negations, initially treated like whatever adverb, when
detected and related to ROOT dependency are considered as polarity in-
verter of verbal phrases; so, in this case, any assert will be turned into a
retract.

2. When the right hand-side of a clause is made by more than one literals, it
is easy to demonstrate that, by applying the implication elimination rule
and the principle of distributivity of ∨ over ∧, a non-definite clause can be
splitted into n definite clauses (where n is the number of consequent literals).

3 Question Answering

In this section is shown how this architecture deals with Question-Answering.
Differently from its predecessor CASPAR, which works with a single/volatile
Clauses KB, AD-CASPAR can count on a two-layer Clauses KB: High Clauses
KB and Low Clauses KB. Every assertion is made on both the layers, but the
logical inference is made only on the High one. As for the queries, whether a
reasoning fails, the Low Clauses KB is used to populate the High one with
relevance-based clauses, taking in account of the presence of common features
between the clause-query and the clauses stored in the Low Clauses KB. Each
record in the Low Clauses KB is stored in a NoSQL database and is made of
three fields: Nested Definite Clause, Features Vector and the sentence in natural
language. The Features Vector is made of all the labels composing the clause.
For instance let the sentence to be stored be:

82

Barack Obama became president of United States in 2009

In this case, the record stored in the Low Clauses KB will be as it follow4:

– In IN(Become VBD(Barack NNP Obama NNP(x1), Of IN(President NN(x2),

United NNP States NNP(x3))), N2009 CD(x4))

– [In IN, Become VBD, Barack NNP Obama NNP, Of IN, President NN,

United NNP States NNP, N2009 CD]

– Barack Obama became president of United States in 2009

The abductive strategy of transfer from Low Clauses KB to High Clauses KB
takes in account of a metric defined Confidencec as it follows, between a records
in the Low Clauses KB and the query:

Confidencec =
|
⋂

(Featsq, F eatsc)|
|Featsq|

(9)

where Featsq is the Features Vector extracted from the query, and Featsc is the
Features Vector in a record stored in the Low Clauses KB.
Once obtained the sorted list of all Confidences, together with the related clauses,
the two most relevant clauses will be copied in the High Clauses KB. Such
an operation is accomplished in a fast and efficient way by leveraging NoSQL
collections indexes and the function aggregation5 of MongoDB. The threshold
Confidence of the clauses admitted to populate the High Clauses KB, can be
defined at design time by changing a proper parameter in the file config.ini

of the Github repository; of course, the more high the Confidence threshold the
more relevant to the query will be the clauses transferred from the Low Clauses
KB to the High one.

3.1 Polar Questions

Polar questions in the form of nominal assertion (excepting for the question mark
at the end) are transformed in definite clauses and treated as query as they are,
while those beginning with an auxiliary term, for instance:

Has Margot said the truth about her life?

can be distinguished by means the dependency aux(said, Has) and they will be
treated by removing the auxiliary and considering the remaining text (without
the ending question mark) as source to be converted into a clause-query.

4 Supposing all predicates labels properly choosen among all synsets.
5 For further details we remind the reader to inspect the file lkb manager.py in the

Github repository.

83

3.2 Wh-Questions

Differently from polar questions, for dealing with wh-question we have to trans-
form the question into assertions one can expect as likely answer. To achieve that,
after an analysis of several types of questions for each category6, by leveraging
the dependencies of the questions, we found it useful to divide the sentences text
into specific chunks as it follows:

[PRE AUX][AUX][POST AUX][ROOT][POST ROOT][COMPL ROOT]

The delimiter indexes between every chunk are given by AUX and ROOT related
words positions in the sentence. The remaining chunks are extracted on the basis
of the latters. For the likely answers composition, the module QA Shifter has
the task of recombining the question chunks in a proper order, considering also
the type of wh-question. Such a operation, which is strictly language specific, is
accomplished thanks to an ad-hoc production rule system. For instance, let the
question be:

Who could be the president of America?

In this case, the chunks sequence will be as it follows:

[PRE AUX][could][POST AUX][be][the president of

America][COMPL ROOT]

where only the AUX, ROOT and POST ROOT chunks are populated, while the
others are empty. In this case a specific production rule of the QA Shifter will
recombine the chunks in a different sequence, by adding also another specific
word, in order to compose a proper likely assertion like it follow:

[PRE AUX][POST AUX][the president of

America][could][be][COMPL ROOT][Dummy]

At this point, joining all the words in such a sequence, the likely assertion to use
as query will be the following:

The president of America could be Dummy

The meaning of the keyword Dummy will be discussed next. In all verbal phrases
where ROOT is a copular verb7 (like be), i.e., a non-transitive verb but identifying
the subject with the object (in the scope of a verbal phrases), the following
sequence will also be considered as likely assertion.

Dummy could be the president of America

6 Who, What, Where, When, How
7 The verbs for which we want to have such a behaviour can be defined by a parameter

in a configuration file. For further details we refer the reader to the documentation
in this work’s Github repository.

84

All wh-questions for their own nature require a factoid answer, made of one
or more words (snipplet); so, in the presence of the question: Who is Biden? as
answer we expect something like: Biden is Something. But Something surely is
not what we are looking for as information, but the elected president of United
States or something else. This means that, within the FOL expression of the
query, Something must be represented by a mere variable and not a ground
term. In light of this, instead of Something, this architecture uses the keyword
Dummy ; during the creation of a FOL expression containing such a word, the
Translation Service will impose the Part-of-Speech DM to Dummy, whose parsing
is not expected by the Clauses Builder, thus it will discarded. At the end of this
process, as FOL expression of the query we’ll have the following literal:

Be VBZ(Biden NNP(x1), x2) (10)

which means that, if the High Clauses KB contains the representation of Biden
is the president of America, namely:

Be VBZ(Biden NNP(x1), Of IN(President NN(x2), America NNP(x3)))

querying with the 10 by using the Backward-Chaining algorithm, as result it will
return back a unifying substitution with the previous clause as it follows:

{v 41: x1, x2: Of IN(President NN(v 42), America NNP(v 43))} (11)

which contains, in correspondence of the variable x2, the logic representation of
the snipplet: president of America as possible and correct answer. Furthermore,
starting form the lemmas composing the only answer-literal within the substi-
tution, with a simple operation on a string it is possible to obtain the minimum
snipplet of the original sentence containing such lemmas.

4 Conclusions and Future Works

In this paper we have presented a Cognitive Architecture called AD-CASPAR,
based on Natural Language Processing and FOL Reasoning, capable of Abduc-
tive Reasoning as pre-stage of Deduction. By the means of its module Translation
Service, it parses sentences in natural language in order to populate its KBs with
beliefs or nested definite clauses using a rich semantic. Moreover, the module QA
Shifter is able to rephrase wh-questions into likely assertions one can expect as
answer, thanks to a production rule system which leverages also a dependency
parser. The combination of Translation Service/Definite Clause Builder and QA
Shifter makes the Telegram Bot proposed in this work easily scalable on the
knowledge we want it to deals with, because the user has to provide just the
new sentences in natural language at runtime, like in a normal conversation.

As future work, we want to include a module for the design of Dialog Systems,
taking in account also of contexts and history. Furthermore, we want to exploit
external ontologies for getting richer answers, and to design an additional module
inspired to the human hippocampus, to let the agent spontaneously link together
knowledge for relevance in order to enhance the Dialog System.

85

References

1. H. Loebner, “The loebner prize.” Available at https://www.ocf.berkeley.edu/ ari-
huang/academic/research/loebner.html.

2. A. fondation, “Artificial intelligence markup language.” Available at
http://www.aiml.foundation/.

3. H. Madhumitha.S, Keerthana.B, “Interactive chatbot using aiml,” Int. Jnl. Of
Advanced Networking and Applications, vol. Special Issue, 2019.

4. B. Wilcox, “Chatscript.” Available at https://github.com/ChatScript/ChatScript.
5. Q. V. L. Ilya Sutskever, Oriol Vinyals, “Sequence to sequence learning with neural

networks,” Advances in Neural Information Processing Systems, vol. 27, 2014.
6. J. H. Kotagiri Ramamohanarao, “An introduction to deductive database languages

and systems,” The International Journal of Very Large Data Bases, vol. Journal,
3, 107-122, 1994.

7. C. S. Carmelo Fabio Longo, Francesco Longo, “A reactive cognitive architecture
based on natural language processing for the task of decision-making using a rich
semantic,” in 21st Workshop ”From Objects to Agents” (WOA 2020), 2020.

8. D. Schacter, “Implicit memory: history and current status,” Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, vol. vol. 13, 1987, pp. 501–518,
1987.

9. D. Davidson, “The logical form of action sentences,” in The logic of decision and
action, p. 81–95, University of Pittsburg Press, 1967.

10. L. D. Consortium, “Treebank-3.” Available at
https://catalog.ldc.upenn.edu/LDC99T42.

11. ClearNLP, “Clear nlp tagset.” Available at https://github.com/clir/clearnlp-
guidelines.

12. S. Anthony and J. Patrick, “Dependency based logical form transformations,” in
SENSEVAL-3: Third International Workshop on the Evaluation of Systems for the
Semantic Analysis of Text, 2015.

13. B. H. Partee, Lexical Semantics and Compositionality, vol. 1, p. 311–360. Lila R.
Gleitman and Mark Liberman editors, 1995.

14. T. M. Quoc Le, “Distributed representations of sentences and documents,” in Pro-
ceedings of the 31st International Conference on Machine Learning, Beijing, China,
2014.

15. C. S. Fabio D’Urso, Carmelo Fabio Longo, “Programming intelligent iot systems
with a python-based declarative tool,” in The Workshops of the 18th International
Conference of the Italian Association for Artificial Intelligence, 2019.

16. C. F. Longo, C. Santoro, and F. F. Santoro, “Meaning Extraction in a Domotic
Assistant Agent Interacting by means of Natural Language,” in 28th IEEE In-
ternational Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises, IEEE, 2019.

17. L. Fichera, F. Messina, G. Pappalardo, and C. Santoro, “A python framework
for programming autonomous robots using a declarative approach,” Sci. Comput.
Program., vol. 139, pp. 36–55, 2017.

18. G. A. Miller, “Wordnet: A lexical database for english,” in Communications of the
ACM Vol. 38, No. 11: 39-41, 1995.

19. P. N. Stuart J. Russel, Artificial Intelligence: A Modern Approach, ch. 9.3. Pearson,
2010.

86

