CEUR-WS.org/Vol-2738/LWDA2020_paper_21.pdf

Phantom Embeddings: Using Embedding Space
for Model Regularization in Deep Neural
Networks

Mofassir ul Islam Arif', Mohsan Jameel®, Josif Grabocka?, and Lars
Schmidt-Thieme!

! Information Systems and Machine Learning Lab, University of Hildesheim,
Germany
{mofassir,mohsan. jameel,schmidt-thieme}@ismll.uni-hildesheim.de
2 Department for Computer Science,Albert-Ludwigs-University, Freiburg,Germany
{grabocka}@informatik.uni-freiburg.de

Abstract. The strength of machine learning models stems from their
ability to learn complex function approximations from data; however,
this strength also makes training deep neural networks challenging. No-
tably, the complex models tend to memorize the training data, which
results in poor regularization performance on test data. The regulariza-
tion techniques such as L1, L2, dropout, etc. are proposed to reduce
the overfitting effect; however, they bring in additional hyperparameters
tuning complexity. These methods also fall short when the inter-class
similarity is high due to the underlying data distribution, leading to a
less accurate model.

In this paper, we present a novel approach to regularize the models by
leveraging the information-rich latent embeddings and their high intra-
class correlation. We create phantom embeddings from a subset of ho-
mogenous samples and use these phantom embeddings to decrease the
inter-class similarity of instances in their latent embedding space. The
resulting models generalize better as a combination of their embedding,
regularizes them without requiring an expensive hyperparameter search.
We evaluate our method on two popular and challenging image classifica-
tion datasets (CIFAR and FashionMNIST) and show how our approach
outperforms the standard baselines while displaying better training be-
havior.

Keywords: Deep Neural Networks - Regulariztaion - Embedding Space.

1 Introduction

The field of computer vision has seen a remarkable increase in capability and
complexity in recent years. The use of deep learning models in image classifica-

tion [10] and object detection [4] tasks have shown a marked increase in their

Copyright © 2020 by the papers authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

ability to capture more complex scenarios. Increasingly complex deep learning
models such as ResNet [7] and Inception [21] were able to capture more in-depth
information from input data. The strength of these deep learning models comes
from their ability to take complex data and reduce it to highly expressive latent
representations. These latent representations encode an image’s spatial informa-
tion into a vector through repeated convolutions and pooling operations.

Training these complex models bring their challenges. Generally, the true
distribution of the data is unknown, and observations are available in a limited
number. These models are trained by iteratively minimizing the empirical risk
over the training data (also known as Empirical Risk minimization ERM [22]).
However, the increasing complexity of the model tends to overfit the data and
generalize poorly on the test data, despite using the proper regularization. The
theoretical understanding of ERM guarantees convergence as long as the model
complexity does not increase with the number of training data [23]. For deep
neural networks, an obvious issue arises as the increase in model complexity is
not always complemented by an increase in the training data.

Training Data Testing Data

(a) Training Data (b) Testing Data (¢) Phantom Em-
beddings

Fig. 1. Fig. 1la shows the overfitted decision boundary on training data. When eval-
uated on the test set in Fig. 1b the model shows poor generalization, a consequence
of overfitting. In Fig. 1c, we show a hypotethical embedding space and the decision
boundary created by a deep neural network. The light colors represent the original
embeddings while the darker colors represent the phantom embeddings proposed by
our method.

To illustrate the aforementioned problems, we train a feed-forward neural
network on a synthetic binary classification dataset and visualize the decision
boundary in Fig. 1. Fig. 1a shows that the model was able to learn a reasonable
decision boundary on the training data. However, due to the limited training
examples available to train a complex model, it could not capture a better gen-
eralizable decision boundary resulting in poor performance on the test examples,
as shown in Fig. 1b. This example showcases two crucial challenges, firstly, how
easy it is to overfit and perform poorly on test data. Secondly, in Fig.1a it can
be seen that certain instances from differing classes are very close to each other,
and ERM fails to provide a procedure to capture those instances.

The model overfitting is treated by introducing the regularization [5,11, 19,
8] in the ERM objective. However, ERM’s problem is most evident around the
vicinity of the boundary region, as samples from different classes are in close
proximity. Model complexity could be increased to capture these instances, but
that violates the convergence guarantee of ERM since the number of instances
does not increase with the increase in model complexity. One can mitigate the
ERM failure through the Vicinal Risk Minimization Principle [1] by adding a
better regularization using data augmentation [16]. Data augmentation mutates
the input instances, traditionally through rotating, flipping, and scaling to in-
ject noise in the training data, thereby preventing the model from memorizing
it. However, it is limited as it mutates the data within one class vicinity and
not across other classes. Other regularization methods involve tunable hyperpa-
rameters requiring an expensive configuration search, and the resulting hyper-
parameters are non-transferable and dataset-specific.

In this paper, we propose a solution for problems stated above by leveraging
the latent embeddings to create what we call a 'phantom embedding’. This is
done by aggregating the latent embeddings of a subset of the instances from
the same class. Using the latent vicinal embedding space allows us to use the
information-rich embeddings to inject a hyper-parameter free latent vicinal reg-
ularization and boost accuracy. Machine learning models transform input data
into their representative embeddings: ¢ : RM — RP where M is the original
data dimensionality and D is the size of the embedding space. Therefore, by cre-
ating this phantom embedding, we create phantom data points to learn on. This
is illustrated in in Fig. 1c. This phantom embedding is used to ‘pull’ the original
instance away from the decision boundary and closer to the samples (of the same
class) in the embedding space. For the instances already sufficiently away from
the decision boundary the ‘pull’ does not adversely impact since the embedding
space is already well seated in the data distribution. We validate on an image
classification benchmark task that our proposed solution generalizes better as
compared to the existing approaches and achieves higher test accuracies.

Our main contributions include:

— Improvement in classification accuracy by using phantom data points to
overcome the base error in a dataset.

— A hyper-parameter free intrinsic regularization to enable training truly deep
models.

— Evaluate our model on two popular datasets against established baselines
and showcase our performance gains as well as training improvement quali-
tative and quantitatively.

2 Related Work

Training very deep networks effectively is an open question|[20] due to the model
complexity. Models with millions of parameters require a lot of data to train
effectively, however, millions of training samples are not available for all tasks.
A good example of the realistic amount of data needed is [2] with 16M instances.

That is not an option for all machine learning settings especially domains such as
medicine [18]. Data augmentation [10] is an efficient method to ensure that data
seen by the model is varied during training. Standard augmentation techniques
include flipping, scaling, and padding.

Training these models from scratch can be avoided by using the weights
of a model that has been trained on a similar dataset and then finetuning the
model to fit your need[15] [17]. Transfer learning [15] has enabled training deeper
models using a smaller dataset size however, if the goal is complete retraining
than the training procedure needs to be adapted to ensure that the model does
not memorize the training data.

Methods such as MaxOut [5] add layers into the architecture with a max
activation function and have shown to positively impact the convergence be-
havior when compared to the ReLu activation [14]. DropOut, proposed in [19],
addresses the problem of model overfitting by probabilistically turning off neu-
rons in the final embedding layer to create an ensemble of models and has shown
to be an effective way to regularize deep neural networks. Similarly in [25], the
authors move the regularization from the final layer to the loss layer where they
intentionally flip the labels in a mini-batch to ensure that the model generalizes.
These methods seek to work on the architecture and loss layer to regularize the
model. Methods such as weight decay [11] and batch normalization|[8] are aimed
at the optimizer and architecture and seek to penalize the weights while training
to ensure that models generalize.

In [26] the authors propose the use of taking multiple instances and creating
a linear combination of the instances and their label. Sampling from this mixup
distribution allows them to learn on fabricated data points.

3 Methodology

Phantom
Embedding

Micro Cluster

Phantom
prediction

Joint Loss

Main]

prediction

o

Embedding
Space
Aggregator

Feature
Extractor

S0 ~0=-ao-

Fig. 2. A training step takes a micro-cluster with K samples, generating K embeddings
which are aggregated to create the phantom embedding, This, along with the embed-
ding of the main training instance is passed to the predictor. The combined loss for
these predictions is calculated as in Eq. 3.

Consider a machine learning method v (z) where z is a dataset sample and
r € RV*M corresponds to a multi-category target y where y € {1,..., L}V

among L classes. This model will produce a latent embedding: ¢ : RM — RP
of the features (the flattened layer after the final convolution block in our case),
which is then passed to the prediction layer: ¢ : RP — RE, for the sake of
notational brevity, we will use ¢ and 1 interchangeable with their parameters.
The estimated target variable is therefore 4, := ¥(é(x,,)),Vn € {1,..., N} and
the respective objective function:

N
arg min L(Yn, T
g nz::l (Yn> V(B(xn))) (1)

In this work we propose to make use of the shared similiarities among the in-
stances belonging to the same class and leveraging the collective learned repre-
sentations of a small subset of instances to generalize the final embedding space.
This is done by sampling a ‘micro-cluster’ of instances belonging to the same
class. Note here that ‘cluster’ is being used in terms of a ‘group’ and has no
relation to the unsupervised clustering methods.

Let us denote the number of instances in each micro-cluster as K € N and the
number of instances in each respective class as N; € N, VI € {1,..., L} therefore
for each class it is possible to draw (1}\@) many random choices. On these choices,
consider, a new dataset transformation (x,y) — (2’,3’), where each element of
2’ represents a homogeneous cluster from x with K members and each element
y' is the respective label of the instances within a homogeneous cluster. Since
we are sampling homogenous clusters, 3’ = y. The total number of clusters is
defined as N’ = Zle (JI\Q) The new input features are then z’ € RN #KzM and
the new targets ¢/ € {1,..., L}

This new dataset transformation leads to a model output: v, = ¥(é(z], 1))
where ¢(z;, ;) is the kth latent embedding and k € K. These K latent embed-
dings will be used to generalize the final learned embedding by aggregating them
as see in Fig. 2. In our proposed approach we use a "Mean Emdedding Space
Aggregator” which is explained as: ¢/ (z,) = # Zszl ¢(x7,) where ¢'(z,) is the
phantom embedding from the micro-cluster. The naive approach would be to use
this phantom embedding directly in the optimization,resulting in the folllowing
objective function:

N’ K
argmin Y £ (40 Y- 0000))
’ n=1 k=1

However, Eq. 2 poses a problem since the intra-class variation of challenging
datasets can cause the embedding to be too drastically modified, Also, datasets
with multi-modal distributions and non-convex hulls can be adversely effected
by the naive objective function (Eq. 2) since the micro-cluster can be sampled
from the different modes of the data distribution. In its place we propose to use
the phantom embedding in the loss function:

L = aL(yp, b(d(x, 1=0))) + (1 =) L(yp, ¥(¢'(27,))) 3)

In Eq. 3 we treat the first sample (kK = 0) as the main instance and the others
serve as a guide to improve the embedding space for this instance by ‘pulling’ the
k = 0 towards the phantom embedding. We draw « from the beta distribution
and it serves to add stochasticity in the combination of the embeddings and also
removes the need for tuning «. Therefore our final objective function is:

iy o (s (0 sce))) + (-)£ (o0l i o))| @

o

4 Experiments

In this section, we showcase the results of our approach and compare them with
other methods in the domain. All the results presented have been recreated using
the original author’s provided implementations. These experiments were carried
out on NVIDIA 1080Ti, 2080Ti, and V100 GPUs.

4.1 Datasets and Implementation Details

To verify the efficacy of our proposed approach we have chosen two publically
available datasets. CIFAR10 [9] and FashionMNIST [24] are popular image clas-
sification datasets and are widely used in the computer vision domain for testing
new research. They comprise 60000 and 70000 images sized at 32x32 and 28x28
respectively. They offer a challenging problem setting due to the wide intra-class
variation and inter-class similarities. Furthermore, these datasets are also easy to
overfit the deep convolutional neural networks. Therefore, these datasets provide
all the necessary challenges that our work proposes to address.

Our method can be readily included in any machine learning model, for our
experiments we have chosen Deep Residual Networks (ResNet-18, ResNet-34,
and ResNet-50) as proposed in [7] and as implemented in [13]. The networks
under test were initialized as specified in [6] and optimized using Stochastic
Gradient Descent(SGD) [12] with batch normalization [8] and a weight decay [11]
factor of 0.0005, it should be noted here that the original ResNet architecture
used 0.0001. The learning rate was set at 0.1 at the start than the scaled down
by a factor of 10 at the 32k and 48k iterations as in [7], training was terminated
at 64k iterations. We used a batch size of 128 and the dataset was augmented
by padding 4 pixels to the image and translating the image accordingly, the
images were also flipped horizontally and normalized by the mean and standard
deviation of the entire dataset.

4.2 Results

In this section we evaluate our model by answering the following research ques-
tion:.

1. RQ1: Can classification accuracy be improved by creating a phantom em-
bedding for data points?

2. RQ2: Can a better embedding space lead to a more robust model?
3. RQ3: Can we add intrinsic regularization by using the embedding space
direclty?

4.3 RQ1: Classification Accuracy

The baselines were chosen based on their relevance to the approach that we have
outlined in this paper. We have used the DisturbLabel [25] as implemented in
[3], ResNet with Dropout [19] and we also compare against the vanilla variants of
the ResNet architectures. DisturbLabel seeks to regularize the loss layer rather
than the parameters and DropOut seeks to create an inherent ensemble of neural
networks by stochastically turning off a certain amount neurons in the embedding
layer to prevent the models from learning the training data. A comparison of
our method to the baselines can be seen in Tab. 1.

Table 1. Classification Accuracy on CIFAR using ResNet-18 architecture. We report
the final accuracy as Acc and also the Mean and Max accuracies for the last 5 epochs
to illustrate training stability towards convergence.

Accuracy
Method Acc |Mean Acc|Max
ResNet18 93.5 [93.68 93.68
ResNet18 Dropout 94.11 |94.09 94.21
ResNet18 DisturbLabel|94.2 |94.28 94.33
[Phantom ResNet18 [94.91[94.84 [94.91]

It can be seen in Tab. 1 and 2 that our proposed method is performing better
than all the baselines in terms of the accuracy, however, it should also be noted
that the overall variance in the results at the time of convergence is also better
than the baselines.

Table 2. Classification Accuracy on CIFAR using ResNet34

Accuracy
Method Acc |Mean|Max
ResNet34 93.65 {93.71 [93.79

ResNet34 Dropout 93.92 (93.97 |94.03
ResNet34 DisturbLabel{93.73 [93.79 [93.81

[Phantom ResNet34 [94.52[94.52[94.6 |

For Phantom ResNet, we see a 1.47% and 0.88% gain for ResNet-18 and
ResNet-34 accuracies respectively. The decrease in the overall ‘performance gain’
when moving from ResNet-18 to ResNet-34 can be attributed to the fact that

Test loss Accuracy

0.30 Train loss 1.0 i
—— Baseline aseline
0.25 —— DO (0.2) 08 ~— DO (0.2)
—— DL —— DL
0.20 —=— Phantom ResNet 0.6 Phantom ResNet
" o
8015 S o
0.4 —— Baseline
0.10 50 —— DO (0.2)
0.05 0.2 ™ bL
40 —=— Phantom ResNet
0.00 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs
(a) Train loss (b) Test loss (c¢) Test Accuracy

Fig. 3. ResNet-18 Training and testing behaviors: Baseline refers to the original net-
work baseline while DO and DL refer to the DropOut and DisturbLabel baselines.

ResNet-34 is a more complex model. ResNet-18 has 0.27M parameters while
ResNet-34 has 0.46M, so by doubling the parameters of the network we expect
a more expressive model that already improves upon the shortcomings of the
former. A more important trend in Tab. 2 is the behavior of ResNet34 Dropout
and ResNet34 DisturbLabel values for which we only see an improvement over
ResNet34 of 0.27% and 0.1% respectively. In Tab. 1, for ResNet18 Dropout and
ResNet18 DisturbLabel we saw an improvement of 0.61% and 0.7% over the
vanilla ResNet18. It can be see that the Dropout and DisturbLabel, while still
better than the vanilla ResNet lose a significant amount of their gains when
the model parameters double from ResNet18 to ResNet34 i-e model complexity
increases. These methods do not take into account the highly similar embeddings
of data points from different classes during optimization and thus, suffer in final
accuracies. Our method uses the latent representation from multiple instances of
a class to regularize the model and prevent the highly similar data points from
different classes from being too close to the decision boundary.

Table 3. Classification Accuracy on FashionMNIST

Accuracy
Method ResNet-18|ResNet-34
ResNet 94.78 94.93
ResNet-Dropout 94.97 95.11
ResNet-Disturb 94.95 94.97
[Phantom ResNet[95.07 95.38

In Tab. 3 we can see that the results for our approach continue to out-
perform the baselines on the FashionMNIST dataset which comes with its own

Test loss Accuracy

0.30 Train loss 1.0 :
—+— Baseline —+— Baseline 90
0.25 —— D0 (02) 0.8 T~ DO(0.2) 80
—e— DL
0.20 —=— Phantom ResNet 0.6 Phantom ResNet 70
0 o o
8015 S £60
0.4 —— Baseline
0.10 50
—— DO (0.2)
0.05 0.2 40 —— DL
—=— Phantom ResNet
0.0 30
0.00%5 50 100 150 200 o 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs
(a) Train loss (b) Test loss (c¢) Test Accuracy

Fig. 4. ResNet-34 Training and testing behaviors: With a more complex network, our
method continues to outperform the baselines.

set of challenges since the images are now 28x28 and comprise of a single channel
rather than the standard RGB channels of CIFAR.

Consistent accuracy improvement across these datasets and over varying ar-
chitecture complexities shows that our method is robust enough to deal with a
wide variety of scenarios. Furthermore, it should be pointed out that the accu-
racies for the baselines required a large hyper-parameter search to get to these
values whereas our proposal required no such search for performance.

4.4 RQ2: Robustness

A sufficiently well-trained algorithm should be able to reduce the error on the
test set, the reduction of test error is inextricably tied to the training process.
Our proposed methods seeks to mitigate overfitting by enriching the embedding
space ensuring that the model generalizes well thus preventing errors in similar
classes. It can be seen in Fig. 3b that our model is converging to a lower Test
loss, this is an outcome of the enriched embedding space that actively helps
optimize the model to learn a more general representation from the training data.
The outcome of this approach reflects readily in Tab. 1 in the final accuracies,
furthermore considering Fig. 3c it can be seen that our proposed model takes
a more deliberative approach in the initial learning stage up to the first 100
epochs. While other models are shooting up quickly in accuracy values, and
then later failing to maintain their lead, our approach focuses on learning better
representations and penalizing itself when it doesn’t more aggressively in order
to arrive at the better final optimal network weights.

The same trend is observed when training ResNet-34 as shown in Fig. 4. The
only difference being that models not trained with inherent embedding space
enrichment in mind suffer more due to the higher complexity of the underlying
networks. In both Fig. 3 and Fig. 4 it can be seen that ResNet-Dropout seems
to be more stable in terms of its fluctuations during the middle of the training
process, between epoch 100 and 150, however it still fails to match our method

Table 4. Classification Accuracy on CIFAR using ResNet50

Accuracy
Method Acc |Mean|Max
ResNet50 93.86 |93.25 |93.34

ResNet50 Dropout 93.21 [93.17 |93.25
ResNet50 DisturbLabel|{94.37 [94.352(94.38

[Phantom ResNet50 [94.48]94.54 [94.71]

in the final loss as well as final accuracy. This highlights the problems laid out
in the introduction section where a model loses on accuracy in an attempt to
not overfit.

4.5 RQ3: Intrinsic Regularization

As stated earlier, training deep models are hampered by the model memorizing
the training data and then showing poor performance on the test data. This
problem comes to the forefront when dealing with a truly deep model like ResNet-
50 which comes with 0.88M trainable parameters. Training such a model from
scratch requires an immense amount of data or a clever regularization scheme.
The scheme needs to be searched for over several runs and hyper-parameter
configurations. This is a time-consuming and expensive procedure since training
ResNet-50 can take up to 7-11 hours on a modern GPU. Our proposed method
allows for the data samples to contribute not just to the learning but to the
regularization as well, Tab. 4. By intrinsically learning the regularization with
the help of similar images and generalizing the weights of our embedding layer
with our proposed phantom embeddings we are able to regularize the model as
it trains. This behavior is on display in Fig. 5 where it can be seen that our
model is leading to a marked lower test loss while the baseline models struggle
to match its performance. Given enough time (days) an ideal configuration for
the baselines could be arrived to match the performance of our model however,
our model provides it without the need for the extensive search required by the
baselines.

In Fig. 5b we intentionally allowed the models to run past their convergence
point to see how the baseline and our model handle such cases. It can be seen
that the baselines runs off and starts to overfit, leading to an increasing test loss
while our method shows a noticably better performance and maintains a lower
test loss.

4.6 Ablation Study

In order to showcase the effect of different numbers of samples from the same
class (K') we varied K from 1 (baseline) to 7 and in Tab. 5. It was seen that while
increasing K led to increasing performance over the baselines, the percentage
gain vs model complexity didn’t justify the use of higher K. All the results
reported have been therefore conducted with K = 2

Test loss

1.0 Test loss 1.0
‘ —— Baseline u —— Baseline
0.8 —— DO (0.2) 0.8 —=— Phantom ResNet
0.6 —-; YPhantom ResNet . 0.6
g 8
S S
0.4 0.4
0.2 0.2
: 0.0
0.0 0 50 100 150 200 0 100 200
Epochs Epochs

(a) CIFAR10 (b) FashionMNIST

Fig. 5. Intrinsic Regularization in ResNet50: The phantom embeddings prevent over-
fitting even when the training regime is specifically aiming to overfit.

Table 5. Ablation Study: Investigating the effect of increasing K on the classification
accuracy.

Accuracy

Model

K=1

K=2

K=3

K=4

ResNet 18

93.5

94.91

94.01

93.9

ResNet 34

93.65

94.58

94.3

94.2

5 Conclusion

In this paper, we have shown how embedding spaces can be directly used to
regularize deeper neural networks by creating phantom embeddings around the
true data points by aggregating the embeddings together and then optimizing
the model with the phantom embedding as a co-target. We have shown how
our method outperforms the baselines two famous and competitive datasets.
Our method also introduces an intrinsic regularization which enables us to train
deeper models without an extensive hyper-parameter search.

References

1. Chapelle, O., Weston, J., Bottou, L., Vapnik, V.: Vicinal risk minimization. In:
Advances in neural information processing systems. pp. 416-422 (2001)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-

scale hierarchical image database. In: 2009 IEEE conference on computer vision

and pattern recognition. pp. 248-255. Ieee (2009)

Farzaneh, A.: Disturblabel-pytorch (2019), https://github.com/amirhfarzaneh/disturblabel-

pytorch

Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on

computer vision. pp. 1440-1448 (2015)

5. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. In: International conference on machine learning. pp. 1319-1327 (2013)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026-1034 (2015)

. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

. loffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

. Krizhevsky, A., Nair, V., Hinton, G.: The cifar-10 dataset. online: http://www. cs.

toronto. edu/kriz/cifar. html 55 (2014)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097-1105 (2012)

Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In:
Advances in neural information processing systems. pp. 950-957 (1992)

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541-551 (1989)

Li, K.: kuangliu/pytorch-cifar (2017), https://github.com/kuangliu/pytorch-cifar
Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML (2010)

Pratt, L.Y.: Discriminability-based transfer between neural networks. In: Advances
in neural information processing systems. pp. 204—211 (1993)

Simard, P.Y., LeCun, Y.A., Denker, J.S., Victorri, B.: Transformation invariance in
pattern recognitiontangent distance and tangent propagation. In: Neural networks:
tricks of the trade, pp. 239-274. Springer (1998)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Ra-
jpoot, N.M.: Locality sensitive deep learning for detection and classification of
nuclei in routine colon cancer histology images. IEEE transactions on medical
imaging 35(5), 1196-1206 (2016)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15(1), 1929-1958 (2014)

Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In:
Advances in neural information processing systems. pp. 2377-2385 (2015)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 1-9 (2015)
Vapnik, V., Vapnik, V.: Statistical learning theory wiley. New York 1 (1998)
Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-
cies of events to their probabilities. In: Measures of complexity, pp. 11-30. Springer
(2015)

Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)
Xie, L., Wang, J., Wei, Z., Wang, M., Tian, Q.: Disturblabel: Regularizing cnn on
the loss layer. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 4753-4762 (2016)

Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412 (2017)

