
Using Probabilistic Soft Logic to Improve
Information Extraction in the Legal Domain

Birgit Kirsch1, Sven Giesselbach1, Timothée Schmude1, Malte Völkening3,
Frauke Rostalski3, and Stefan Rüping1,2

1 Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin
<name>.<surname>@iais.fraunhofer.de

2 Fraunhofer Center for Machine Learning, Schloss Birlinghoven, Sankt Augustin
3 Institute for Criminal Law and Criminal Procedure, University of Cologne, Cologne

Abstract. Extracting information from court process documents to pop-
ulate a knowledge base produces data valuable to legal faculties, publish-
ers and law firms. A challenge lies in the fact that the relevant informa-
tion is interdependent and structured by numerous semantic constraints
of the legal domain. Ignoring these dependencies leads to inferior so-
lutions. Hence, the objective of this paper is to demonstrate how the
extraction pipeline can be improved by the use of probabilistic soft logic
rules that reflect both legal and linguistic knowledge. We propose a prob-
abilistic rule model for the overall extraction pipeline, which enables to
both map dependencies between local extraction models and to integrate
additional domain knowledge in the form of logical constraints. We eval-
uate the performance of the model on a German court sentences corpus.

Keywords: Information Extraction · Probabilistic Soft Logic · Legal-
Tech

1 Introduction

In the year 2018 alone, there were approximately 870,000 court procedures in
Germany4. All of them are documented in text, however to this date there are
still only rudimentary solutions as to how to search for information within these
documents. Transforming these documents into structured form produces data
that can give insight into court processes and may be a valuable source to ex-
amine research questions such as the perceived imbalance in degrees of penalty
between different regions in Germany, as described in Grundies (2018). Accord-
ing to the examinations of Grundies, there are substantial deviations (up to
15%) in how the same crime is punished in southern and northern Germany.
The objective of this paper is to extract relevant information from these docu-
ments to populate a database that can be used for further analysis. While one

Copyright c© 2020 by the paper’s authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

4 https://www.destatis.de/DE/Themen/Staat/Justiz-Rechtspflege/ inhalt.html



might think of using standard natural language understanding approaches to
tackle this task, the particular challenge lies in the fact that the relevant infor-
mation in these texts is interdependent and structured by complex legal domain
knowledge. For example, the probability of occurrence of a monetary fine in the
court sentence obviously depends on the type of court sentence (imprisonment
or fine). Ignoring these dependencies leads to inferior solutions for information
extraction. Hence, we demonstrate how the extraction of information from legal
texts can be improved by the use of probabilistic soft logic rules that reflect legal
knowledge.

Fig. 1. Extraction process

Each document results in one entry in a knowledge base with seven facts
about the document specific case and defendant, delineated in Section 3. Figure 1
displays the extraction pipeline to populate such a knowledge base and visualizes
the dependencies between local components. It consists of the following two
stages:

1. Document Classification: classification on document level predicts database
entries with a fixed set of possible values, such as the type of court sentence
(fine, imprisonment or acquittal).

2. Named Entity Recognition (NER): classification on token basis extracts
all information with an unlimited set of possible values that have to be ex-
tracted from the document text itself, such as the duration of imprisonment.
This will be treated as a named entity recognition task with the objective
to assign a fixed set of classes to each token and extract the information



from the token text that is assigned the respective entity class. If a model
assigns the same class to multiple text spans, they have to be consolidated
to extract one value per document.

This baseline approach introduced for the use case raises multiple challenges:
error propagation in the pipeline, value consolidation of NER predictions and
the sparsity of training data.

Error propagation: One major disadvantage of this approach is that errors
are propagated from the first classification component on document basis to
the second classification component on token basis. This may lead to a lower
performance with respect to the final aggregated document results. This problem
is known from other NLP tasks such as knowledge base population. Recent work
therefore focused on solving multiple tasks and modeling it as an end-to-end
statistical inference problem (Sachan et al., 2018).

Value consolidation: One additional source of error is the consolidation of
multiple token spans in the same document to extract one value per document.
A NER classifier may in one document classify multiple token spans with the
same class and as a consequence create multiple candidates that need to be
consolidated to generate one valid value per NER class and document. Assigning
the same NER class to multiple spans in one document is only valid when they
refer to the same entity, e.g. the text span is similar. Integrating this as a hard
constraint in a post-processing step may introduce additional errors.

Label sparsity: Since obtaining, anonymizing and labeling court sentence
documents is a tedious process, the corpus available to train the pipeline classi-
fiers is rather small. Beside the raw data there is valuable knowledge, both about
dependencies between the information (e.g., a defendant with previous convic-
tions is more likely to get imprisoned) and about the document structure (e.g.,
date and location of the court are likely to be in the beginning of the document).
This sort of knowledge is not exploited in traditional approaches.

In order to address these challenges, we propose a probabilistic model con-
structed with a logical templating language that models a joint objective over
the whole pipeline. By reasoning over all pipeline tasks jointly, we try to weaken
the effect of propagated errors. By then modeling dependencies between NER
candidates per document we address value consolidation challenges and with us-
ing a logical templating language, we enable to integrate additional background
knowledge. Contributions of this paper can be summed up as the following:

– We propose a probabilistic model based on PSL for the overall extraction
pipeline, which enables to map dependencies between local classification
models.

– We model relevant concepts from the legal domain in the form of logical
constraints and integrate them into the probabilistic model.

– We provide an empirical evaluation of the approach on a data set of court
sentences and compare results with the traditional pipeline approach.

The remainder of this paper is organized as follows: Section 2 gives an overview
of related work in the field of joint information extraction and probabilistic



pipelines, Section 3 describes our approach, Section 4 provides an experimental
evaluation on a German sentencing corpus and reviews benchmarks in compar-
ison with a traditional pipeline approach, Section 5 concludes with a summary
and future work.

2 Related Work

Modeling pipelines in NLP and handling error propagation is a well known prob-
lem in multiple fields of research. Former work proposed diverse approaches
to tackle this, e.g. by using graphical models or inductive logic programming.
Marciniak and Strube (2005) introduced a model built upon linear program-
ming for NLP pipelines of cascading classifiers and Roth and Yih (2002) use
a bayesian belief network for joint prediction for entity and relation classifica-
tion models. Singh et al. (2013) apply a joint graphical model for the tasks
entity tagging and relation extraction including co-reference resolution to al-
low flow of uncertainty across task boundaries. Besides the mere modeling of
multiple tasks, former work also focused on incorporating on additional domain
knowledge. Pawar et al. (2017) introduce a neural model to address boundary
identification, entity type classification and relation type classification jointly
(AWP-NN) and show that refining the output with a Markov Logic Network to
incorporate additional knowledge improves the results. Min et al. (2017) propose
a probabilistic graphical model to extract facts from documents end-to-end to
fill a knowledge base. Besides taking into account full corpus information for
joint inference, they empirically show that integrating knowledge about entity
and relation occurrences improves the results. This work is based on Sachan
et al. (2018), who propose to use the statistical relational learning framework
PSL to model the pipeline in a probabilistic way. To our knowledge we are the
first to introduce a rule based probabilistic model for the aforementioned NLP
extraction pipeline that is able to incorporate additional domain knowledge and
apply and evaluate it on a legal corpus. The concept of automatically extracting
information from court procedure documents was proposed and developed as a
prototype in the Legal Tech Lab Cologne5 in early 2019 – an initiative, formed
to find solutions for digitisation of legal procedures.

3 Approach

We propose a probabilistic model for an information extraction pipeline that
jointly reasons over two pipeline stages: the Document Classification Stage
and the NER Stage. This model is constructed using the logical templating
language Probabilistic Soft Logic introduced by Bach et al. (2017). The following
subsections explain both pipeline stages and the probabilistic model in detail.

5 https://legaltechcologne.de/



3.1 Document Classification Stage

In this stage, all defendant and case-related information such as the type of court
sentence is extracted. The objective of this stage is to perform three separate
classification tasks and assign the following categories to each document:

– Previous Convictions (PC) : Yes/No

– Type of court sentence6 (TS): Imprisonment/Fine/Acquittal

– Probation (PR): Yes/No

For each classification task, two separate model architectures are trained and
applied, the inbuilt convolutional neural network (CNN) based model provided
by spaCy7, as well as a transformer based classification model, BERT (Devlin
et al., 2018), which we will shortly discuss in the following subsections. The
labels for the classification are assigned per court sentence in the documents.

BERT Classifier: Devlin et al. (2018) introduce a language model based on
transformer networks (Vaswani et al., 2017), which has been shown to yield
state-of-the-art performance in many natural language understanding tasks. We
use the small German BERT model integrated in the hugging-face library8.
Since BERT is restricted by memory constraints in the amount of tokens it can
process and the document classes are available on a sentence level in the training
set, indicating wether a sentence mentions a previous conviction (yes, no), a
probation (yes, no) and the type of sentence, we train BERT to classify sentences
instead of document classes. We train a separate classification model for each of
the aforementioned categories and introduce the class Other for sentences which
do not contain any class annotation. The values are aggregated to document
classes. Therefore, we first filter out sentences in which the model predicts Other
as the most likely class. Out of all remaining sentences we return the class
probabilities for the sentence with the highest confidence of the classifier, i.e.
where the maximum probability is the highest. If no sentences remain, we pick
the highest probability for each of the classes, normalize and return the tuple of
the new class probabilities.

spaCy Classifier: This architecture is based on a CNN with mean pooling and
a final feed-forward layer. The network is fed with pretrained word embeddings
trained on the German Wikipedia and the German common crawl (Ortiz Suárez
et al., 2019).9

6 Note that in the following it will be important to carefully distinguish between court
sentences and sentences as a linguistic construct!

7 An open-source library for Natural Language Processing, https://spacy.io/
8 Model pretrained on the German Wikipedia, an online collection of legal court sen-

tences and news texts, https://huggingface.co/bert-base-german-cased
9 https://oscar-corpus.com/



3.2 Named Entity Recognition (NER) Stage

In the NER stage all document-class specific information such as amount of
the fine have to be extracted from the document. Objective of the NER stage
is to assign one of the following classes to each token in the document: date
of the court sentence (date), court location (loc), amount of the fine (f amnt),
number of day-fines (f units)10 and duration of imprisonment (d impr). Whether
f amnt and f units or d impr are present in a document depends on the type of
court sentence (imprisonment or fine). For this classification task we rely on two
architectures described below.

BERT NER: The named entity recognition model based on BERT has the
same general transformer architecture as the classifier. Instead of predicting
the class of sentences, a per-token classification takes place. We use a single
feedforward layer with softmax activation to calculate the token labels.

spaCy NER: The spaCy NER model11 utilizes a different architecture. Its
embedding layer consists of two parts incorporating syntactic knowledge about
the word, and a stack of 4 residual CNN layers to capture contextual information.
Both layers are followed by a feed-forward network. Finally, a form of attention
mechanism is used to incorporate additional information about the previous
tokens and previous entity predictions. The final layer is a feed-forward and
correction layer, which prevents illegal state shifts

3.3 Probabilistic Pipeline

We introduce a graphical model of a joint probability distribution to reason
over all stage outputs at the same time. This model integrates both local stage
model predictions, dependencies between the stages and additional background
knowledge. For model construction we use the Statistical Relational Learning
Framework PSL, introduced by Bach et al. (2017). It provides a First Order
Logic templating language to define a joint probability distribution over a set of
random variables. Therefore, rule templates are translated to a special type of
Markov Random field, a Hinge-Loss - Markov Random Field (HL-MRF). In this
graphical model, each node represents a random variable and each edge a depen-
dency between variables. Given a set of observed variablesX = (X1, ..., Xn), a set
of random variables Y = (Y1, ..., Yn′), a set of potential functions φ = (φ1, ..., φm)
and a set of weights ω = (ω1, ..., ωm), a HL-MRF represents the following prob-
ability density function over Y conditioned on X:

P (Y |X) =
1

Z(ω,X)
exp[−

m∑
j=1

ωjφj(X,Y )] (1)

10 In German criminal law, fines are calculated in day-fines. The number of day-fines
depends on the severeness of the offense while the amount of each day-fine is based
on the offender’s personal income.

11 https://spacy.io/universe/project/video-spacys-ner-model



with Z as a normalization factor.

φj(X,Y ) = (max{lj(X,Y ), 0})pj (2)

with lj representing a linear function and pj ∈ {1, 2}.
Potential functions φj are defined per clique, a subset of fully connected

nodes in the graph, assigning a probability mass to each clique state. A clique
state is one assignment of values to all random variables participating in the
clique. Assignment of a higher value to one clique state means that this state
will be interpreted as being more likely. In PSL, these potential functions are
generated using logical first order rules, such as:

w : Friends(A,B) ∧ Friends(B,C)⇒ Friends(A,C) (3)

A weight w is assigned to each rule and indicates its importance. Friends is
called a predicate. Predicates can take one to multiple arguments, such as A and
B. BothA andB are variables and serve as placeholders. They can be substituted
by concrete instances, referred to as constants. A PSL-model itself consists of a
set of these template rules and a weight for each. Substituting all variables in
the rule template set with their respective constants is called grounding. Every
grounded rule represents one clique in the underlying graph structure and every
grounded predicate is an observed or unobserved random variable mapped to a
node in the clique. The weight of a grounded rule determines the weight ωj of a
potential function. A potential function assignment denotes the degree to which
a rule is satisfied. Clique states that lead to satisfying a rule will be assigned a
higher value than clique states that lead to the violation of a rule. Intuitively
spoken, assignments of Y are more likely the fewer rules they violate.

Our proposed rule set can be categorized into four rule types: basic rules,
domain rules, pipeline rules and similarity rules, examined in the following sub-
sections. Table 1 provides a detailed explanation for all elements participating
in each rule.

Basic Rule Set: The basic set models the relationship between the local clas-
sification models (reflected by the observed predicate f cls pc(s1) for stage one
and f cls(s2) by stage two respectively) and the true unobserved stage prediction
(cls pc(s1) for stage one and cls(s2) for stage two).

f cls pc(s1)(d,m, c pc) ∧ T (m, c pc)⇒ cls pc(s1)(d, c pc)2 (4)

!f cls pc(s1)(d,m, c pc) ∧ T (m, c pc)⇒!cls pc(s1)(d, c pc)2 (5)

f cls(s2)(d, z,m, c) ∧ T (m, c)⇒ cls(s2)(d, z, c)2 (6)

!f cls(s2)(d, z,m, c) ∧ T (m, c)⇒!cls(s2)(d, z, c)2 (7)

cls pc(s1)(d,+c pc) = 1. (8)

!cls(s2)(d, z, c) (9)



Domain

d = {1, ..., D} with D as the number of documents in the corpus
m = {SPACY,BERT} local stage model
z = {1, ..., Z} with Z as the number of token candidates
c pc = {yes, no} class types predicted by PreviousConviction clas-

sifier
c st = {Fine, Imprisonm.,Acq.} class types predicted by courtsentencetype classifier
c pr = {yes, no, other} class types predicted by probation classifier
c = {date, ..., loc} class types predicted by NER classifier
Observed Predicates

f cls pc(s1)(d,m, c pc) prediction output of the local PreviousConviction
classifier model m for document d and class c pc

f cls st(s1)(d,m, c st) prediction output of the local courtsentencetype
classifier model m for document d and class c st

f cls pr(s1)(d,m, c pr) prediction output of the local probation classifier
model m for document d and class c pr

f cls(s2)(d, z,m, c) prediction output of the local model m for document
d, token candidate z and class c

CLOSE(d, z1, z2) assigned 1, when there are at most 20 token between
z1 and z2, 0 otherwise

SIM(d, z1, z2) assigned 1, when the text z1 and z2 span over is
equal, 0 otherwise

Unobserved Predicates

cls pc(s1)(d, c pc) global prediction of stage one for document d and
document class type c pc

cls ts(s1)(d, c ts) global prediction of stage one for document d and
document class type c ts

cls pr(s1)(d, c pr) global prediction of stage one for document d and
document class type c pr

cls(s2)(d, z, c) global prediction of stage two for document d, can-
didate z and NER type c

Table 1. Variables and predicates participating in the rule model.

Rules 4 and 5 display the rules for the local classification models from stage one
for PreviousConvictions. T (m, c) is a trust score introduced by Sachan et al.
(2018) that denotes the trustworthiness of a local model m when predicting a
class c. Intuitively spoken, Rule 4 encodes that when a local model m predicts
a class c pc for a document d and the model is trustworthy, then the predicted
unobserved class is more likely to be c pc. A similar rule set exists for the class
types Typeofsentence and Probation. Rules 6 and 7 show the rules for the local
NER classification models from stage two respectively. Rules 8 and 9 model the
prior beliefs that the prediction probability for all class types of the PC-classifier
sum up to one and that a token candidate z is not assigned the NER-class type.

Figure 2 displays a simplified model of the grounded observed (grey nodes)
and unobserved predicates (white nodes) according to the above rule sets. The
model is grounded only for one class (c1 pv, c1 pr) of the document classifiers pc
and pr, for one document d1, two local stage one models m1 and m2, two local
stage two models m3 and m4 to predict one class c3 and two NER candidates



Fig. 2. Simplified grounding for rule model

z1 and z2 for which class c3 should be predicted. Potential functions resulting
from the baseline rules are presented as red squares.

Pipeline Rule Set: This rule set incorporates relationships between prediction
outputs of the document and NER classification stages and relationships between
local models from one stage. Rule 10 for example expresses the dependency
between the st classifier and the NER classifier. Whenever the predicted value
for court sentence type is not ”fine”, it is unlikely that the information about
the amount of the fine is present in the document

Rule 11 models the dependency between the PR and the ST classifiers for
of the first stage.

!cls st(s1)(d,′ fine′)⇒!cls(s2)(d, z,′ f amount′)2 (10)

cls pr(s1)(d,′ no′)⇒ cls st(s1)(d,′ imprisonment′)2 (11)

Domain Rule Set: The domain rules permit to incorporate knowledge about
the document structure (e.g. in Rule 12) and class dependencies such as that
defendants with previous convictions are more likely to be sentenced to impris-
onment or that the height of the fine and the number of day-fines are most likely
mentioned in the same paragraph (see Rule 13).

cls pc(s1)(d,′ yes′)⇒ cls st(s1)(d,′ imprisonment′)2 (12)

cls(s2)(d, z1,′ f amnt′)∧!CLOSE(d, z1, z2)⇒ cls(s2)(d, z1,′ f units′)2 (13)



Similarity Rule Set: The similarity rules model the relationship between mul-
tiple mentions of the same entity in one document. Rule 14 denotes that when
two candidates in one document span over similar strings, they are more likely
to be assigned the same NER type. This ensures that when one information like
the date of the court sentence is mentioned multiple times in the document it is
always assigned the same NER class type and when two candidates don’t have
equal content, they are unlikely to refer to the same entity (Rule 15).

cls(s2)(d, z1, c) ∧ SIM(d, z1, z2)⇒ cls(s2)(d, z2, c)2 (14)

cls(s2)(d, z1, c)∧!SIM(d, z1, z2)⇒!cls(s2)(d, z2, c)2 (15)

4 Evaluation

Data: We evaluate the performance of the model introduced in Section 3 using a
corpus with 146 German court sentences12. Each document describes an offence
(theft), where the defendant is either sentenced to imprisonment or to a fine,
and which is only related to one case and one defendant. The documents are
split into training, validation and test set.

PSL Pipeline Model: For the probabilistic model we train local stage classi-
fiers for document and token classification using the architectures described in
Section 3. All classifiers are trained on the training set and applied to the val-
idation and test set. We use the validation set to estimate the trustworthiness
scores (Rules 4, 5, 6, 7) and to refine weights. To evaluate the performance of the
rule model and its subsets, we do not provide an evaluation for the local stage
tasks (document and token classification), but focus on the amount of correctly
extracted values per document. We perform inference for the unobserved vari-
ables listed in Table 1 to predict all layer outputs at the same time. As proposed
in Bach et al. (2017), we use the consensus optimization approach Alternating
Direction Method of Multipliers (ADMM).

Basic Pipeline Model: We compare the proposed solution to the pipeline
approach visualized in Figure 1, where all local models are trained using the
BERT architecture (see Section 3). Since the models that were trained using the
architecture of spaCy had a poor performance on the test set, the performance
of the pipeline model based on these classifiers is not evaluated here. The local
document classification models are trained on both training and validation set
and are applied to the test set to predict document class labels. The local to-
ken classification models are trained both on training and validation set and are
then applied to the test set. The NER classification results per document are
consolidated by selecting the candidate with the highest probability score pre-
dicted by the model for each NER class. We model dependencies between the

12 manually annotated by the University of Cologne



predicted type of sentence and the NER prediction as hard constraints. When
the predicted class is ”Fine”, prediction for ”f amnt” and ”f units” are set to
”NaN” (for document class ”Imprisonment”, prediction for ”d impr” is set to
”NaN” respectively). We additionally provide results for the extraction work-
flow where this stage dependency is not modeled and contradicting results are
not removed. Table 2 provides a comparison of model performances. The first
seven entries denote the performance of the rule models consisting of different
rule subset: basic (basic rules), sim (similarity rules), pipe (pipeline rules) and
domain (domain rules). The scores per extracted information type reflect the
amount of correctly extracted values on the test corpus.

Model Date Loc f amnt f units d impr pc st pr avg.

PSL: basic sim domain 0.783 0.913 0.826 0.826 0.870 0.870 0.913 0.783 0.848
PSL: basic sim 0.783 0.913 0.826 0.826 0.870 0.826 0.957 0.783 0.848
PSL: basic domain 0.783 0.913 0.826 0.870 0.826 0.870 0.913 0.783 0.848
PSL: basic pipe 0.783 0.913 0.826 0.783 0.957 0.826 0.913 0.913 0.864
PSL: basic sim pipe 0.783 0.913 0.826 0.783 0.957 0.826 0.913 0.913 0.864
PSL: basic sim pipe domain 0.783 0.913 0.870 0.870 0.913 0.913 0.913 0.913 0.886
PSL: basic pipe domain 0.783 0.913 0.870 0.870 0.913 0.913 0.913 0.913 0.886

BERT: constraints 0.826 0.870 0.870 0.826 0.957 0.826 0.957 0.783 0.864
BERT: no constraints 0.826 0.870 0.826 0.783 0.957 0.826 0.957 0.783 0.853

Table 2. Extraction performance of rule models

The two PSL models achieving the highest overall matching rate both contain
basic, pipeline and domain rules. Modeling relations between NER candidates
by integrating the similarity rules does not seem to have an influence on the per-
formance in this experiment. On average over all information types, the highest
scoring PSL model outperforms both BERT benchmark models. For some partic-
ular types (Date, d impr and st) the BERT benchmark model achieves a higher
matching rate. These results indicate that modeling the pipeline in a probabilis-
tic way and integrating domain knowledge improves the overall performance.
Since the data set is very small, further analysis on a bigger corpus and a more
detailed analysis of the rule model effects are required.

5 Summary

This paper proposes a rule based probabilistic model to improve the extraction
pipeline for information extraction from court sentence documents. The model
enables to both map dependencies between local extraction components and to
integrate additional domain knowledge in the form of logical constraints. We
evaluate the performance of the model on a German court sentences corpus and
show that the model improves results compared to a BERT benchmark model.

6 Acknowledgements

This research has been funded by the Federal Ministry of Education and Re-
search of Germany as part of the competence center for machine learning ML2R
(01IS18038B)



Bibliography

Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random
fields and probabilistic soft logic. J. Mach. Learn. Res. 18(1), 3846–3912 (2017)

Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR abs/1810.04805
(2018)

Grundies, V.: Regionale unterschiede in der gerichtlichen sanktionspraxisin der
bundesrepublik deutschland. eine empirische analyse. In: Kriminalsoziologie.
Handbuch für Wissenschaft und Praxis. pp. 295–316. Baden-Baden, Germany
(2018)

Marciniak, T., Strube, M.: Beyond the pipeline: Discrete optimization in NLP.
In: Proceedings of the Ninth Conference on Computational Natural Language
Learning (CoNLL-2005). pp. 136–143. Association for Computational Linguis-
tics, Ann Arbor, Michigan (Jun 2005)

Min, B., Freedman, M., Meltzer, T.: Probabilistic Inference for Cold Start
Knowledge Base Population with Prior World Knowledge 1, 601–612 (2017)

Ortiz Suárez, P.J., Sagot, B., Romary, L.: Asynchronous Pipeline for Processing
Huge Corpora on Medium to Low Resource Infrastructures. In: Bański, P.,
Barbaresi, A., Biber, H., Breiteneder, E., Clematide, S., Kupietz, M., Lüngen,
H., Iliadi, C. (eds.) 7th Workshop on the Challenges in the Management
of Large Corpora (CMLC-7). Leibniz-Institut für Deutsche Sprache, Cardiff,
United Kingdom (Jul 2019), https://hal.inria.fr/hal-02148693

Pawar, S., Bhattacharyya, P., Palshikar, G.: End-to-end relation extraction us-
ing neural networks and Markov logic networks. In: Proceedings of the 15th
Conference of EACL: Volume 1, Long Papers. pp. 818–827. Association for
Computational Linguistics, Valencia, Spain (Apr 2017)

Roth, D., Yih, W.t.: Probabilistic reasoning for entity & relation recognition.
In: COLING 2002: 19th Intern. Conf. on Computational Linguistics (2002)

Sachan, M., Dubey, K.A., Mitchell, T.M., Roth, D., Xing, E.P.: Learning
pipelines with limited data and domain knowledge: A study in parsing physics
problems. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in NIPS 31, pp. 140–151. Curran
Associates, Inc. (2018)

Singh, S., Riedel, S., Martin, B., Zheng, J., McCallum, A.: Joint inference of
entities, relations, and coreference. In: Proceedings of the 2013 Workshop on
AKBC. p. 1–6. AKBC ’13, Association for Computing Machinery, New York,
NY, USA (2013), https://doi.org/10.1145/2509558.2509559

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in NIPS 30, pp. 5998–6008. Curran Associates, Inc. (2017)


