
A Concept for the Automated Reconfiguration
of Quadcopters

Kaja Balzereit1[0000−0001−9203−5902], Marta Fullen1, and Oliver Niggemann2

1 Fraunhofer IOSB, Industrial Automation Branch (INA), Fraunhofer Center for
Machine Learning, Lemgo, Germany

{name.surname}@iosb-ina.fraunhofer.de
2 Faculty of Machine Construction, Helmut-Schmidt-University, Hamburg, Germany

oliver.niggemann@hsu-hh.de

Abstract. Quadcopters are susceptible to internal and external influ-
ences, many of which may lead to faults. To ensure a safe and reliable
flight, the quadcopter needs to recover autonomously from faults. How-
ever, existing approaches mainly rely on parametrical faults or require a
predefinition of possible faults which is not realistic for a complex real-
world scenario. The recovery from unforeseen faults and structural faults
like a failing engine is still an open research gap.
Hence, in this paper, a concept for the automated reconfiguration, i.e.
the automated recovery from a fault, which only uses information about
non-faulty system behavior and is able to handle structural changes is
presented. From the information about non-faulty behavior a non-faulty
system model is created using established machine learning methods.
Thus, faults are detected by learned model and no pre-definition of faults
is needed. The system structure is modeled using a logical calculus which
allows for modeling available system parts and the causal coherences
between these.
The approach is applied to a simulation of a quadcopter which underlies
a structural fault. It is shown that the approach extends the capabilities
of a quadcopter to handle faults autonomously and ensure stability and
reliability.

Keywords: Automated Reconfiguration · Symptom Generation · Fault
Recovery · Quadcopter

1 Introduction

Unmanned Aerial Vehicles (UAVs) are an emerging technology of great interest
in military and civil applications [21,11]. The market for UAVs has emerged es-
pecially in the last years and is expected to rise continuously [11,7]. One type
of UAVs, the quadcopters which consist of four rotors that can be controlled in-
dependently from each other, is in the scope of most research studies [21]. Since

Copyright c© 2020 by the paper’s authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).



quadcopters operate in an open world, the requirements towards reliability and
safety are very high. Today, due to many safety concerns, the usage of quad-
copters is subject to massive restrictions [11]. It stems from a fact that minor
UAV fault can lead to major consequences, including huge damage to humans or
environment. Hence, quadcopters need to be designed to be robust to environ-
mental disturbances and tolerant towards internal faults. Currently, controllers
used for Cyber-Physical Systems, including quadcopters, are static and at most
applicable to a predefined set of faults [24]. An automated reconfiguration of the
control is needed to maintain a stable flight in presence of faults [5]. Reconfigu-
ration is the task of recovering a valid system state after a fault has occurred [3].
However, the automated reconfiguration for quadcopters is still an open research
gap due to some unanswered research questions, two of which follow.

RQ1: How can automated reconfiguration handle unforeseen faults? Exist-
ing approaches on fault-tolerant control are mostly based on an enumeration
of known faults and the storage of control instructions specific to these faults
[21]. However, when it comes to unknown faults, these approaches can no longer
guarantee stable control. Hence, in this paper, a concept which needs no in-
formation about known faults but only works on information about non-faulty
behavior is presented. Quadcopters contain a multitude of sensors, continuously
logging data during the flight. This huge amount of data can be analyzed in an
intelligent way using Machine Learning (ML) methods. These methods enable
learning a model of the system from historical data and can then be used to de-
tect anomalous behavior, which might indicate the presence of faults [18]. The
data used for training contains only measurements from non-faulty flights, thus
deviations from non-faulty behavior are handled as candidates for faults.

RQ2: Which formalism is able to handle structural faults? Control theory in
general is concerned with a static system model. However, when major faults
like an engine failure or a rotor ripping off occur, the system is no longer repre-
sentative, leading to the control becoming invalid. Logical reasoning can be used
here to draw conclusions about the impact of a fault as well as still available
and functional components and actions [3]. Thus, new control instructions can
be determined even in the presence of major faults.

The contribution of this paper is twofold: (1) A concept for the automated re-
configuration of quadcopters that handles unforeseen faults is presented. There-
fore, only information and data about non-faulty flights is used. Thus, faults are
detected as deviations from non-faulty behavior and do not have to be known
a-priori. (2) An encoding of the reconfiguration problem into first-order logic
(FOL) is presented that allows for analyzing the extent of structural faults is
presented. Thus, also major faults like component failure (e.g. an engine) can be
handled.

Please note that the scope of this paper is not to handle one given fault in an
optimal way but to present a concept that restores a safe flight in the presence of
unforeseen faults and disturbances. The paper is structured as follows: First, in
section 2 the related work is presented and discussed. Then, the solution concept



is presented in section 3. In section 4, using a simulation of a quadcopter, the
applicability of the solution concept is evaluated.

2 Related Work

Most research on quadcopter control is concerned with fault-tolerant control
(FTC) [22,17]. The goal of FTC is to maintain a stable flight in the presence of
wind as well as actuator and sensor faults. Therefore, the quadcopter is described
in quantitative terms [26] using the equations

x(t+ 1) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(1)

where x describes the system states, u describes the input (e.g. the rotor ve-
locities) and y describes the output (e.g. the altitude and attitude of the quad-
copter). f, g are functions describing the properties of the quadcopter. Using
this equation system, the optimal input to change the attitude or altitude of the
quadcopter can be determined, and thus, the quadcopter can adapt to environ-
mental changes of the wind speed or sensor faults. However, major disturbances
like a rotor ripping off or the battery failing cannot be represented by a static
model (1) and require a new type of model. These disturbances lead to changed
dynamics such that the functions f, g are no longer valid and need to be adapted.
However, this adaption cannot be done online but requires expert knowledge.
To handle these changes, a reconfiguration of the controller is needed [5].

Lunze [14] presented a concept towards reconfigurable control for UAVs us-
ing overdetermined sets of equations. However, this approach requires explicit
modeling of the quadcopter behavior and thus a large amount of expert knowl-
edge. Wang et al. [27] presented a combination of classical control and constraint
satisfaction. The scope of this work is slightly different: no faults are handled
but an optimal control for a given path is searched. Chen et al. [6] presented an
approach to reconfiguration of actuator faults by an advanced estimation proce-
dure. However, the faults need to be modeled explicitly. Thus, no unknown faults
can be handled. Adaptive control algorithms, as presented by Huynh et al. [10]
among others, are concerned with continuous disturbances like wind or varying
parameters. Unknown or structural faults cannot be handled [21]. Robust control
algorithms as presented by Thanh et al. [23] and Ton et al. [25] handle paramet-
ric uncertainties and are even adaptable to nonlinear disturbances. However, no
structural faults can be handled [21].

The reconfiguration concept presented here can be seen as an extension to
classical control theory. The goal is not to determine control instructions for an
optimal flight, but to identify the necessary actions to recover a stable flight in
the presence of faults.



3 Solution Concept

The goal of automatic reconfiguration is to manipulate the system inputs to re-
store valid system behavior [3]. To perform automatic reconfiguration, some kind
of redundancy is necessary [5]. This can be either physical redundancy, e.g. dupli-
cate components or sensors, or analytical redundancy, i.e. information about the
relation between different values measured by the system. Quadcopters in general
contain numerous redundancies to ensure safety and reliability requirements are
fulfilled. Typical examples for physical redundancy are multiple engines, multi-
ple batteries or multiple sensors. Analytical redundancy can be asserted through
knowledge about coherences and relations between sensor and actuator values.

Control

Data Anomaly

2. Reconfiguration of Control Unit

No Anomaly

1. Recovering stable flight

Fig. 1. Concept for the automated reconfiguration of quadcopters. First, a symptom
generation is performed on the data. If at least on symptom is present, reconfiguration
is performed in two steps.

Faults can be differentiated using the component they concern. Thus, we
divide actuator faults which are usually modeled as loss of effectiveness of one
rotor, sensor faults which are modeled as sensors returning wrong values and
strutuctual/system faults which affect system components like engines or batter-
ies. Actuator faults can be handled using robust control methods, sensor faults
usually are handled using Kalman filters [15]. In general, not every possible
fault and its consequences is known a-priori because quadcopters operate in a
non-deterministic environment, many different factors like wind speed, rain and
air humidity have an impact on the behavior of the quadcopter. Thus, foresee-
ing every possible consequence of environmental influences on the quadcopters
behavior and enumerate every possible fault is impossible. The goal of reconfig-
uration is to adapt the rotor speeds to recover a stable flight in case of every
unforeseen fault or at least to perform a safe emergency landing.

The basic concept of automatic reconfiguration for quadcopters is shown in
Figure 1. The reconfiguration system operates while the quadcopter is flying
and continuously checks for deviations. First, the data delivered by the sensors



of the quadcopter is compared to the learned models, checking for deviations
and the presence of symptoms. If no symptoms are present, no further actions
are needed and neither the control unit nor the system goal are changed. In case
of at least one symptom, the reconfiguration unit first estimates the extent of
the deviation. Then, reconfiguration is performed in two steps [5]:

1. A set of actions that moves the quadcopter back into a valid flight is searched
and applied directly.

2. A controller that stabilizes the quadcopter in its valid flight in the presence
of faults (e.g. a different control structure due to a failure of one sensor) is
determined using well known controller design methods.

In some cases, the reconfiguration to a valid flight is no longer possible since
the damage is too high. Then, during the first reconfiguration step, actions to
perform an emergency landing or a return to launch, if possible, are applied until
the quadcopter has landed. The control unit is not reconfigured, since a stable
flight cannot be recovered.

3.1 Modeling the System Structure

To enable the reconfiguration unit to handle structural faults, it needs to reason
about the consequences of a fault. Therefore, information about the causal co-
herences, i.e. the impact of a change in one component to other components is
needed. Logic is used widely in Artifical Intelligence since it allows for modeling
causal coherences and drawing logical conclusions about the system [20]. Basic
physical and mathematical knowledge can be modeled in logic to support the
reconfiguration unit in its decision making [13]. Using the logical calculcus Sat-
isfiability Modulo the Theory of Linear Arithmetic [4], also continuous variables
(e.g. rotor velocity, wind speed, ...) can be modeled.

0

𝑟1 𝑟2

𝑟3 𝑟4

𝑒01 𝑒02

𝑒04𝑒03

Fig. 2. Topology of a quadcopter.

To model the causal coherences of the quadcopter, first, the system topology
is analyzed. Thus, the coherences between the components can be described in
terms of a logical calculus. Therefore, the fuselage 0 and each rotor r1, r2, r3, r4
are modeled as nodes, the set of all nodes is represented by N . Since every rotor
is connected to the fuselage, the edges are represented by E = {e01, e02, e03, e04}.
Fig. 2 shows the resulting graph for a quadcopter.



3.2 Symptom Generation

The behavior of every component, i.e. the rotors and the fuselage, is moni-
tored using component models [8]. Today, due to sophisticated learning meth-
ods, these models no longer need to be created manually but can be learned
[19,2]. Comparing the current behavior of a component to the model, deviations
indicating faults are detected. This information is encoded by a binary assign-
ment ω : N → {>,⊥} which is true if the component behaves non-faulty and
false otherwise. A connection between two components may only be used if the
components are non-faulty, i.e. b+eij ⇒ ω(i) ∧ ω(j) ∀eij ∈ E.

Thus, component faults are directly taken into account by the reconfiguration
unit. Structural changes due to a component fault (e.g. a failing engine) can
be represented by the component model of the corresponding rotor showing a
deviation to the current behavior. Hence, the reconfiguration unit identifies the
necessary changes under consideration of the impact of the fault.

Therefore, every components behavior is monitored using sophisticated ma-
chine learning methods utilizing a normal behavior system model. Here, a model-
ing formalism which transforms the data into a black- or gray-box representation
is used. Such a structure does not explicitly model each observation but creates
a new representation based on the normal behavior data. Depending on the for-
malism used, various measures describe how well the current status fits into the
model. An example well-known algorithm is Self-Organizing Map [12], a type
of neural network. The measure of fitting in this case is the quantization error,
which is the difference between the current status location mapping and the best-
matching neuron neighborhood in the model. If this quantization error is high,
the component is assumed to behave anomalously, so a symptom is reported to
the reconfiguration unit to trigger further actions.

For the creation of these models only data about non-faulty system behavior
is required. Thus, no fault modes or an enumeration of known faults has to be
given.

3.3 Reconfiguration

As mentioned above, the reconfiguration is performed in two steps: One step
to regain a stable flight and one step to maintain this stable flight. Whilst the
second step can be done using well–known controller design methods, the first
step is still an open research gap [5].

For each rotor, the impact of acceleration and deceleration on the attitude
and altitude of the quadcopter is modeled in terms of logical constraints, for
example

If rotor r1 is accelerated, the pitch angle decreases.
or
If all rotors are accelerated proportionally, the height increases.
Thus, the impact of changing rotor velocities on the behavior of the quad-

copter can be modeled. Based on this, the reconfiguration unit is able to choose
an intelligent combination of rotor accelerations and decelerations to recover a



stable flight, if possible. Otherwise, the reconfiguration unit tries to bring the
quadcopter to a safe state (e.g. by a return to launch or an emergency landing).

To enable the reconfiguration method to change the velocity of the rotors,
every connection is assigned with two binary variables that lead to an increase
or decrease of the current velocity of the corresponding rotor. Therefore, for each
edge e ∈ E two binary variables b+eij , b

−
eij that trigger an increase or decrease of

the corresponding rotor are introduced. Thus, b+eij → inc(rj), b
−
eij → dec(rj). The

predicates inc, dec indicate that the velocity of the corresponding rotor needs to
be increased or decreased. How this is realized in detail needs to be defined by
an expert, e.g. that an increase is always realized by increase the velocity given a
fixed difference or a percentage amount. To avoid that both variables are set to
true at the same time (which would require a simultaneous increase and decrease
of the velocity of one rotor) the constraint b+eij ⊕ b

−
eij ∀eij ∈ E is needed.

Thus, the reconfiguration problem is modeled as a first-order logic formula.
If at least one symptom occurs, i.e. one component behaves anomalously, the
reconfiguration unit determines for every connection, if the velocity of each rotor
has to be increased, decreased, or does not have to be changed by setting the
corresponding binary variable to true. Thus, the changes for recovering a stable
flight are identified by a combination of acceleration and deceleration of rotor
velocities.

4 Results

This section presents the results of symptom generation and reconfiguration ex-
periments. The symptom generation approach has been tested on real quadcopter
data, to validate the approach as feasible in real-life scenarios. Reconfiguration
experiments utilize a simulation to verify the outcome of reconfigured and non-
reconfigured fault scenario. The used simulation of the quadcopter is described
in the appendix. The free variables in the logical formula created as described
above are assigned with the current values of the sensors. Then, the formula is
checked for satisfiability to determine which rotors needs to be accelerated and
which need to be decelerated to recover a stable flight in the presence of faults
using the Z3 solver [16].

4.1 Symptom Generation

To evaluate the concept, we show that it is indeed possible to detect anoma-
lies in quadcopter behavior using machine learning-based modeling formalisms.
Self-Organizing Map (SOM) model formalism is used to perform a preliminary
analysis and investigate whether the methods are feasible to detect anomalies
in quadcopter flight. We consider an approach feasible for symptom generation
if it is possible, at least partially, to differentiate between normal behavior and
anomalous behavior using the model.

The symptom generation is performed on data from an industrial drone,
to ensure the first step of the concept is viable in real-life applications. Quad-
copters are operated using the PX4, an open source flight control software for



Fig. 3. SOM quantization error (QE) over time for anomalous (red) and non-anomalous
(blue) flights. QE generated by a 10x10 SOM from a select combination of sensors and
learned on non-anomalous data.

quadcopters and other unmanned vehicles. It allows logging device inputs (sen-
sors etc.), internal states (CPU load, attitude etc.) and log messages. The log
structure requires that sensors are organized within predefined sensor groups,
however the sampling rates, and therefore timestamps, of different sensor groups
are independent from each other. It is therefore only possible to match the values
from one sensor group at a time. The SOM model of normal behavior has been
learned from chosen sensor logs of quadcopter flights where no faults occurred
and the drone was considered to behave entirely correct. This model has then
been used to detect anomalies in faulty flight logs.

It is expected that the anomalous behavior data at least partially overlaps the
normal behavior in terms of quantization error, however, the results have shown
that some sensor combinations generate a quantization error much higher in the
case of faulty behavior than normal behavior. This outcome creates a perfect
opportunity for symptom generation, where the maximum quantization error of
normal behavior is used as the error threshold for a symptom, and a symptom
is reported as soon as the error crosses the threshold. Figure 3 illustrates the
difference in quantization error over the initial flight period of flight: the error
generated by SOM from the anomalous behavior data is decidedly higher than
for normal behavior data.

4.2 Fault Scenario: Engine Failure

The Engine Failure fault scenario focuses on a quadcopter flight, where one of
the four engines that provide acceleration to the rotors fails mid-flight. The flight
begins with a stable flight at the height of 10 meteres, until one engine fails and its
corresponding rotors velocity decreases to 0. Only the three remaining rotors can



0 2 4 6 8
0

5

10

time in s

h
ei

g
h
t

in
m

without reconfiguration

with reconfiguration

Fig. 4. Height of quadcopter with one engine failing at time tf = 0s.

be used to control the flight and the goal is to adjust their corresponding motor
parameters in such a way that the drone does not suffer a catastrophic failure.
Classical control is not capable of handling the new situation with one less rotor:
the control unit only recognizes a deviation in the attitude of the quadcopter
and tries to adapt the velocity of the quadcopter rotor such that stability is
regained. It is not taken into consideration, that one rotor is non-functional.
Even in the presence of a fault, all of the engines are controlled similarly. No
distinction between available and crashed engine can be made. The control unit
uses all four rotors to adapt to the deviation, even though only three rotors are
still available. Thus, no stable flight can be regained leading to a crash of the
quadcopter. The reconfiguration method based on logical calculus enables the
quadcopter to handle the fault and avoid a crash. First, the faulty component, in
this case the failing engine is identified using the component models. Then, the
reconfiguration unit calculates new control instructions to stabilize the flight by
increasing the velocities of the rotors which are still available. However, a stable
flight cannot be regained since the disturbance of a failing engine is to severe.
Thus, an emergency landing is performed.

The simulated behavior of quadcopters equipped with classical control ap-
proach and reconfiguration approach is shown in Figure 4. Using the classical
control, which does not adapt to the changed structure of the quadcopter, the
quadcopter crashes within approximately 2 seconds. Since the quadcopter ac-
celerates while falling, the velocity when touching the ground is around 13.4
meters per second which can lead to massive damages of the quadcopter and the
surroundings. When the reconfiguration is enabled, the fall of the quadcopter is
decelerated. The quadcopter touches the ground after approximately 8.4 seconds
with a velocity of approximately 1.3 meters per second. Thus, damage to the
quadcopter and the surrounding can be reduced significantly.

5 Summary and Outlook

Quadcopter flights are susceptible to internal disturbances, like failing compo-
nents, as well as environmental disturbances like winds. Today, FTC is commonly
used to enable a quadcopter to maintain a stable flight even in the presence of



faults. However, FTC is focused on handling numerical faults, which, in addition,
often have to be predefined. Thus, major faults which cause structural changes
of the quadcopter cannot be handled by classical FTC. Therefore, this paper
presents a concept for the automated reconfiguration to enable quadcopters to
handle structural and unforeseen faults. The concept is based on the combination
of a logic-based reconfiguration method. Faults are detected as deviations from
models which are learned from non-anomalous behavior. Based on this infor-
mation, reconfiguration is initiated – if necessary. During reconfiguration, stable
flight of a quadcopter is described in terms of a logical calculus which allows
for modeling condition of a stable flight and requirements to recover a stable
flight, if possible. The approach is evaluated using an interactive simulation of
a quadcopter. One of the four engines failing represents the structural fault. It
is shown that without reconfiguration, the quadcopter crashes within 2 seconds
and the velocity when touching the ground is high. With reconfiguration, the
quadcopter touches the ground after 8 seconds with a far lower velocity.

Future work will focus on further fault scenarios like failures leading to a
reduced engine performance or failing battery cells to prove the applicability of
the concept. Then, also the scalability of the approach will be examined by using
more detailed models.

Acknowledgments

This work was founded by the Fraunhofer Cluster of Excellence ”Cognitive In-
ternet Technologies”.

A Appendix

Evaluation is performed using a simulation implemented in Modelica [9] is used.
The flight of the quadcopter is described as a state space model (referring to [1])

φ̈ = θ̇ψ̇a1 + θ̇a2Ωr + b1U2 (2)

θ̈ = φ̇ψ̇a3 − φ̇a4Ωr + b2U3 (3)

ψ̈ = φ̇θ̇a5 + b3U4 (4)

ẍ = (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))U1/m (5)

ÿ = (cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ))U1/m (6)

z̈ = −g + (cos(φ) cos(θ))U1/m (7)

with

U1 = b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4), U2 = b(Ω2
2 −Ω2

4), U3 = d(−Ω2
1 +Ω2

3), (8)

U4 = d(−Ω2
1 +Ω2

2 −Ω2
3 +Ω2

4), Ωr = −Ω1 +Ω2 −Ω3 +Ω4, (9)

a1 =
Iyy − Izz
Ixx

, a2 =
Jx
Ixx

, a3 =
Izz − Ixx
Iyy

, a4 =
Jr
Iyy

, a5 =
Ixx − Iyy

Izz
, (10)



b1 =
l

Ixx
, b2 =

l

Iyy
, b3 =

1

Izz
. (11)

Variable Value Unit Description

m 1.1 kg mass of drone
Jr 8.5 · 10−4 kg ·m2 rotor inertia

Ixx = Iyy 1.96 · 10−2 kg ·m2 quadcopter inertia around x/y-axis
Izz 2.62 · 10−2 kg ·m2 quadcopter inertia around z-axis
l 0.21 m length of arms
b 9.29 · 10−5 N · s2 thrust coefficient
d 1.1 · 10−6 N ·m · s2 drag coefficient
Table 1. Values for the parameters of the quadcopter

The values of the parameters are shown in Table 1 (also referring to [1]). The
inputs of the system are represented by the velocities of the rotors Ω1, Ω2, Ω3, Ω4.

References

1. Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor control: atti-
tude, altitude and position experimental studies. IET Control Theory & Applica-
tions 6(12), 1812–1827 (2012)

2. Balzereit, K., Maier, A., Barig, B., Hutschenreuther, T., Niggemann, O.: Data-
driven identification of causal dependencies in cyber-physical production systems.
In: 11th International Conference on Agents and Artificial Intelligence (02 2019)

3. Balzereit, K., Niggemann, O.: Automated reconfiguration of cyber-physical pro-
duction systems using satisfiability modulo theories. In: 3rd IEEE International
Conference on Industrial Cyber-Physical Systems (2020)

4. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer (2018)

5. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and fault-tolerant
control, vol. 2. Springer (2006)

6. Chen, F., Lei, W., Tao, G., Jiang, B.: Actuator fault estimation and reconfiguration
control for the quad-rotor helicopter. International Journal of Advanced Robotic
Systems 13(1), 33 (2016)

7. Cohn, P., Green, A., Langstaff, M., Roller, M.: Commer-
cial drones are here: The future of unmanned aerial sys-
tems. McKinsey & Company (2017), https://www.mckinsey.com/

industries/capital-projects-and-infrastructure/our-insights/

commercial-drones-are-here-the-future-of-unmanned-aerial-systems#,
called 22.04.2020

8. De Kleer, J., Brown, J.S.: Mental models of physical mechanisms and their acqui-
sition. Cognitive skills and their acquisition pp. 285–309 (1981)

9. Elmqvist, H., Mattsson, S.E., Otter, M.: Modelica: The new object-oriented mod-
eling language. In: 12th European Simulation Multiconference, Manchester, UK
(1998)



10. Huynh, M.Q., Zhao, W., Xie, L.: L 1 adaptive control for quadcopter: Design and
implementation. In: 2014 13th International Conference on Control Automation
Robotics & Vision (ICARCV). pp. 1496–1501. IEEE (2014)

11. Joshi, D.: Drone technology uses and applications for commercial, industrial
and military drones in 2020 and the future. Businees Insider (2019), https://

www.businessinsider.com/drone-technology-uses-applications?r=DE&IR=T,
called 22.04.2020

12. Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences,
vol. 30. Springer-Verlag, Berlin Heidelberg, 3 edn. (2001)

13. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines
that learn and think like people. Behavioral and brain sciences 40 (2017)

14. Lunze, J.: From fault diagnosis to reconfigurable control: A unified concept. In:
2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol). pp. 413–
421. IEEE (2016)

15. Moghadam, M., Caliskan, F.: Actuator and sensor fault detection and diagnosis
of quadrotor based on two-stage kalman filter. In: 2015 5th Australian Control
Conference (AUCC). pp. 182–187. IEEE (2015)

16. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. pp.
337–340. Springer (2008)

17. Nguyen, N.P., Hong, S.K.: Fault diagnosis and fault-tolerant control scheme for
quadcopter uavs with a total loss of actuator. Energies 12(6), 1139 (2019)

18. Niggemann, O., Frey, C.: Data-driven anomaly detection in cyber-physical produc-
tion systems. at-Automatisierungstechnik 63(10), 821–832 (2015)

19. Niggemann, O., Lohweg, V.: On the Diagnosis of Cyber-Physical Production Sys-
tems - State-of-the-Art and Research Agenda. In: Proceedings of the Twenty-Ninth
Conference on Artificial Intelligence (2015)

20. Nilsson, N.J.: Logic and artificial intelligence. Artificial intelligence 47(1-3), 31–56
(1991)

21. Shraim, H., Awada, A., Youness, R.: A survey on quadrotors: Configurations, mod-
eling and identification, control, collision avoidance, fault diagnosis and tolerant
control. IEEE Aerospace and Electronic Systems Magazine 33(7), 14–33 (2018)

22. Tabata, A., Satoh, Y., Nakamura, H., Kato, K.: Adaptive fault tolerant control of
quadcopter by using minimum projection method. In: IECON 2018-44th Annual
Conference of the IEEE Industrial Electronics Society. pp. 2201–2206. IEEE (2018)

23. Thanh, H.L.N.N., Hong, S.K.: Quadcopter robust adaptive second order sliding
mode control based on pid sliding surface. IEEE Access 6, 66850–66860 (2018)

24. Tomiyama, T., Moyen, F.: Resilient architecture for cyber-physical production sys-
tems. CIRP Annals 67(1), 161–164 (2018)

25. Ton, C.T., Mackunis, W.: Robust attitude tracking control of a quadrotor heli-
copter in the presence of uncertainty. In: 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC). pp. 937–942. IEEE (2012)

26. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of
process fault detection and diagnosis: Part i: Quantitative model-based methods.
Computers & chemical engineering 27(3), 293–311 (2003)

27. Wang, Y., Ramirez-Jaime, A., Xu, F., Puig, V.: Nonlinear model predictive control
with constraint satisfactions for a quadcopter. In: Journal of Physics: Conference
Series. vol. 783, p. 012025. IOP Publishing (2017)


