
Bringing Clouds Down to Earth: Modeling
Arrowhead Deployments via Eclipse Vorto

Géza Kulcsár
IncQuery Labs Ltd.
Budapest, Hungary

geza.kulcsar@incquerylabs.com

Sven Erik Jeroschewski, Kevin Olotu, Johannes Kristan
Bosch.IO GmbH
Berlin, Germany

{name.surname}@bosch.io

Abstract—The design and development of interconnected in-
dustrial production facilities, which integrate aspects of the
Internet of Things (IoT) or, more specifically, the Industrial IoT
(IIoT), often deals with complex scenarios involving dynamic
System of Systems (SoS), resulting in immense development and
deployment efforts. The Arrowhead community aims at deliv-
ering mechanisms and technologies to cope with such complex
scenarios. In particular, the concept of local clouds constitutes a
service-oriented architecture (SOA) framework for IIoT. Here,
a central challenge is the conceptual modeling of such use-
cases. SysML is widely established as a standardized modeling
language and framework for large-scale systems engineering and,
thus, for Arrowhead local cloud designs. However, SysML and
its Arrowhead profile lack a canonical way to support actual
platform modeling and device involvement in heavily distributed
IIoT scenarios. The Eclipse Vorto project is ideal for filling
this gap: it provides a modeling language for IoT devices, a
set of modeling tools, and already existing reusable templates
of device models. In this paper, we propose an approach to
integrating Eclipse Vorto models into Arrowhead SysML models.
We illustrate the concept with a realistic yet comprehensible
industrial scenario and also present a prototype to emphasize
the benefits of our novel integration platform.

Index Terms—System Modeling, SysML, Eclipse Vorto, Eclipse
Arrowhead, IoT, IIoT

I. INTRODUCTION

Many IoT and, especially, industrial IoT (IIoT) scenarios
introduce high complexity in all phases of their life cycle.
Reasons for this are, among others, the use of multiple
hardware and software platforms or heterogeneous protocols
and data formats. With the recent trends of the increasing
volume and complexity of such scenarios, it becomes more
difficult and more expensive to model, operate, and manage
such complex Systems of Systems (SoS) [1]. The Arrowhead
initiative aims at overcoming these issues using a holistic,
comprehensive methodology and mindset. One of the central
facets of Arrowhead, also being highly relevant for the present
paper, is the application of the concepts of Service-Oriented
Architectures (SOA). In turn, Arrowhead introduces local
clouds for service-providing and service-consuming system
resources that can be grouped logically or geographically.

In turn, a novel kind of architectural and design challenges
arises in this context of SoS design combined with dynamic,
service-oriented orchestration principles, calling for new meth-
ods to cope with them. However, established techniques within
model-based systems engineering (MBSE) [2] serve as a

convenient baseline for introducing a new level of dynamicity
for system (of system) architectures. MBSE arguably provides
a great compromise between domain-specific expectations and
rigorous design on the one hand, and a flexible, accessible
modeling approach on the other hand. Besides, SysML is
an excellent base for formulating and validating the well-
formedness of complex systems.

Consequently, the Arrowhead approach to IIoT modeling
relies on SysML for specifying local cloud architectures. A
major challenge of such a modeling scenario is to integrate
the abstract architecture models created in design-time with the
actual IoT deployments, more precisely, with their digital twin
representations. Naturally, the device-specific and deployment-
specific details of these representations are out of scope in
abstract SoS (local cloud) models. The very metaphor in the
title of the paper, bringing clouds down to earth, unites two
key points of this conceptual hiatus: (1) while those platform-
and hardware-independent local cloud plans lack a connection
to their future embodiment, and thus, still have to be brought
down to earth, (2) such a device-oriented addition allows the
expression of those real communication channels which have
to be established between the systems taking part in a given
cloud architecture.

As for existing approaches to IoT deployment modeling,
VORTOLANG from the Eclipse Vorto1 project is one of
the most relevant and prevalent examples. Other benefits of
Eclipse Vorto are that it allows the reuse of existing models
through shared repositories and provides plugins for code
generation to integrate with other projects and platforms. As a
consequence, it seems promising to use Eclipse Vorto to ease
the modeling of local clouds by mapping those resources into
SysML models. In this paper, we investigate this approach
further. In particular, the main contribution of this work,
with potential industrial relevance, is an integration concept
for coping with the design complexity of industry-scale IoT
installations through an integrated modeling approach. As
an additional benefit, a baseline arises for a bilateral cross-
fertilization: we extend Eclipse Vorto towards functional and
architectural design, and systems modeling towards detailed
device platform specifications.

Therefore, we first introduce the Eclipse Vorto project and

1https://www.eclipse.org/vorto/

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

72



its VORTOLANG in Sect. II and give an example use case
in Sect. III to which we later apply our modeling approach.
Sect. IV introduces the Arrowhead Framework while Sect. V
presents the current model-based system engineering process
in the Arrowhead Framework with SysML. In Sect. VI, we
explain our approach for a mapping between SysML and
Eclipse Vorto. This mapping is then illustrated in Sect. VII.

II. ECLIPSE VORTO

Eclipse Vorto [3] is an open-source project for modeling
digital twins. The goal of the project is to provide platform-
independent and vendor-neutral tools to model digital twins
and to make use of the models by supplying plugins to ease
the integration in existing IoT ecosystems. The project consists
of 4 main components:

• VORTOLANG: a domain specific language (DSL) to de-
scribe digital twins

• Repository: a repository to create, manage and distribute
models

• Plugins: transform Vorto models into source code, request
templates or other representations

• Telemetry Payload Mapping: maps the telemetry data sent
by a device using a mapping specification based on a
Vorto model

A. VORTOLANG - The Vorto Language
VORTOLANG is the domain specific language used to de-

scribe digital twins. It consists of four different kinds of
elements:

• Information Model (IM): describes a digital twin and its
capabilities

• Function Block (FB): describes a set of capabilities that
are implemented by the digital twin. Function Blocks can
be designed hierarchically by extending other Function
Blocks. The individual capabilities are grouped into the
following property groups:

– Status: contains properties of the digital twin that can
only be read (read-only)

– Configuration: contains properties of the digital twin
that can be both read and set (read-write)

– Event: contains events that can be emitted by the
digital twin

– Operation: contains functions that can be invoked on
the digital twin

– Fault: contains fault states that can occur on the
digital twin

• Data Type (DT): describe complex data types or enumer-
ations that can be assigned to Function Block properties

• Mapping: describes platform-specific or implementation-
specific information that can be added to a generic
Information Model or Function Block.

B. Vorto Repository
The committers of Eclipse Vorto host an official public

instance of the repository2. The official repository is an

2https://vorto.eclipse.org

Fig. 1. A simplified model of VORTOLANG

offering for device manufacturers and IoT solution developers
to develop and publish re-usable models of their devices /
digital twins in a standardized way. However, it is also possible
to self-host a Vorto repository (e.g. for on-premise solutions
without internet access). The repository offers several features
to interact with the Vorto models:

• UI and APIs to interact with the repository and the models
• A web editor to create and edit models
• A review and release process for models
• Different levels of visibility (private / public)
• Import and export functionality of models
• Direct integration with Vorto plugins
• Java client that can interact directly with the APIs of the

repository

Fig. 2. Screenshot of the landing page of the public Eclipse Vorto repository
(https://vorto.eclipse.org/#/, accessed 04.08.2020)

73



C. Vorto Plugins

Vorto Plugins can be used to process Vorto models to
transform them into different formats, representations, source
code, and request templates. Currently, there are five officially
supported plugins:

• Eclipse Hono Plugin: transforms Vorto models into
source code to connect devices to Eclipse Hono via
MQTT

• Eclipse Ditto Plugin: transforms Vorto models into
Eclipse Ditto Digital Twin representations (JSON or
OpenAPI)

• JSON Schema Plugin: transforms Vorto models into a
JSON Schema representation

• OpenAPI Plugin: transforms Vorto models into an Ope-
nAPI YML representation

• Bosch IoT Suite Plugin: transforms Vorto models into
source code to connect to the Bosch IoT Suite or into a
request template to provision devices

In addition to the officially supported plugins, several ex-
perimental plugins offer other transformations. Experimental
plugins are managed in a separate Github repository.3 All
plugins can be used either as local run applications or as AWS
Lambda functions. The public Vorto repository is integrated
with the official plugins as AWS Lambda functions and can
thus be used directly from the Vorto Repository UI. One can
also use the plugin API to develop custom plugins.

D. Vorto Telemetry Payload Mapping

The Vorto Telemetry Payload Mapping engine is a stan-
dalone application to map telemetry data that is sent by a
device. To use the mapping application, one needs to create
a payload mapping configuration, to understand the source
format used by the device and the desired normalized target
format. The payload mapping engine offers a canonical JSON
target format and the Eclipse Ditto JSON format. The normal-
ized payload data can then be used to build applications with
normalized APIs based on the Vorto models.

III. EXAMPLE MODELS

In the following, we define an artificial example use case to
showcase the capabilities of the Eclipse Vorto models. Later in
this paper, we use these models for an example mapping of the
Vorto meta-model to an Arrowhead SysML Profile. Figure 3
gives an overview of the use case. In the depicted setup, we
assume a production facility with several units like conveyors
and an assembly robot. A server back end system allows
the collection of production data by providing connectivity,
a digital twin device abstraction, and storage e.g. through
instances of Eclipse Hono4, Eclipse Ditto5 and a database.
The back-end server also hosts Arrowhead core services to
provide the infrastructure for a local cloud with the mentioned
machines and software systems. The objective of the use case

3https://github.com/eclipse/vorto-examples/tree/master/vorto-generators
4https://www.eclipse.org/hono/
5https://www.eclipse.org/ditto/

/offset

/currentItem
/opshours

/distance

Local Cloud

Arrowhead mandatory core services

Demo Machine

Distance Measurement Machine

Off-Setter Machine

Fig. 3. Demo Setup

is to collect and centrally store data from the various units and
to perform basic control operations between the machines.

The local cloud has three machines. One of them is a demo
machine for which we created a custom Vorto model. The
starting point of the modeling approach is the information
model in Listing 1.

Listing 1. Information model for demo machine
1 vortolang 1.0

3 namespace org.arrowhead.demo
4 version 1.0.0
5 displayname "demo-machine"
6 using org.arrowhead.demo.CurrentItem ; 1.0.0
7 using org.arrowhead.demo.OpsHours ; 1.0.0

9 infomodel DemoMachine {

11 functionblocks {
12 currentItem as CurrentItem
13 opsHours as OpsHours
14 }
15 }

In our case, this machine tracks its operation hours and which
item it currently processes. For both aspects, we defined
separate function blocks. Listing 2 shows the function block
for the operational hours. Here the assumption is that the
machine tracks it operational hours and produces events when
it reaches a maintenance window (line 19 to 21) or requires
that it gets moved (line 15 to 18) depending on the operation
time. We assume that one needs to move the demo machine to
avoid it from wearing out when operating in the same position
for too long. The operator can further set the duration of the
maintenance window and the window until the next movement,
which we model with the configuration block in lines 9 to 12.

Listing 2. Function block for operation hours
1 vortolang 1.0

3 namespace com.eclipse.arrowhead
4 version 1.0.0
5 displayname "Operation Hours"
6 description "Operating hours"

8 functionblock OpsHours {
9 configuration {

74



10 turnWindow as long
11 mandatory largeMaintanceWindows as long
12 }

14 events {
15 moveTimeReached {
16 mandatory timestamp as long
17 mandatory offset as long
18 }
19 maintenanceReached {
20 mandatory timestamp as long
21 }
22 }
23 }

Then there is also a function block for the currently processed
item depicted in Listing 3. Here the item is identified by an
id. Since one can only read but not write this value from the
item we modeled this as status.

Listing 3. Function block for the currently processed item
1 vortolang 1.0

3 namespace com.eclipse.arrowhead
4 version 1.0.0
5 displayname "Current Item"

7 functionblock CurrentItem {
8 status {
9 mandatory id as string

10 }
11 }

Another machine can move the first machine to a given
offset. The capability of this off-setter machine can be modeled
as an operation in a function block corresponding to Listing 4.
We do not show the information model for the second machine
because it has strong similarities with the information model
of the demo machine.

Listing 4. Model for offset movement
1 vortolang 1.0

3 namespace com.eclipse.arrowhead
4 version 1.0.0
5 displayname "Offset Movement"

7 functionblock Offset {
8 operations {
9 moveToOffset(offset as long)

10 }
11 }

One had to describe the already mentioned machines in
particular models. However, as shown in Figure 6 the modeled
Arrowhead local cloud shall also contain a third machine,
which measures distances e.g. between objects on a conveyor.
For this machine, it is possible to reuse the distance sensor
model obtainable from the public Vorto repository [4] and thus
integrate the distance measurement machine into the model of
the local cloud with minimal additional effort. This integration
also highlights the benefit of having a central source for more
or less generic models to foster reuse and adoption of existing
models to decrease overall engineering overhead.

IV. ECLIPSE ARROWHEAD

Eclipse Arrowhead 6 is a newly founded open-source project
in incubation at the Eclipse Foundation, which offers methods
and tools to bring concepts of service orientation to the
Industrial Internet of Things. The Arrowhead initiative has
a strong focus on fostering interoperability via service and
interface descriptions between systems and components [5].
The Arrowhead community originated from a joint European
effort of more than 80 industrial and academical partners to
bridge the interoperability gaps for applications and tools in
IoT-based automated industrial scenarios. Currently, there are
multiple projects following up on the promising results, the
two most important, large-scale consortial endeavors being
Productive 4.0 and Arrowhead Tools. Productive 4.0 explicitly
aims at putting Arrowhead concepts into industrial production
in the context of Industry 4.0 [6]. In contrast, the goal of
the Arrowhead Tools project, started in 2019, is to establish a
mature software and tooling landscape around the Arrowhead
core to foster even broader and more efficient adoption of
Arrowhead technology in the industry. It is in the context
of Arrowhead Tools that the initially proposed Arrowhead
Framework has started its journey in the Eclipse universe.

As for its principles, the whole Arrowhead ecosystem bases
on a service-oriented architecture (SOA) [7]. However, in
contrast to classical SOA, the Arrowhead Framework does
not explicitly employ an enterprise service bus (ESB) as a
central messaging point. Instead, it uses service-to-service
communication as proposed for micro-services instead. The
Arrowhead Framework introduces the concept of local clouds,
which encapsulate geographically connected processes, such
as production facilities. Delsing et al. [5] define five substantial
requirements, which local clouds have to meet: (i) Low latency
guarantee for real-time use cases; (ii) a high degree of scalabil-
ity of automation systems; (iii) multi-stakeholder integration
and operations agility; (iv) security and safety measures; and
(v) ease of application engineering. As long as the listed
criteria are met, the Arrowhead local cloud concept does not
define the underlying architecture. However, especially latency
and security requirements, depending on how important they
are for the respective use-case, might require a complete IoT
setup involving edge deployments [5]. The local clouds contain
all necessary components to operate on their own. Generally,
each local cloud consists of three kinds of entities:

1) Devices are the hardware foundation of each local cloud
and are hosts to one or multiple systems. A device is not
bound to a specific performance threshold. Hence, small
and constrained hardware can be part of the local cloud,
as well as more powerful machines.

2) Systems are the software artifacts executed on the un-
derlying devices, forming a logical unit of semantically
coherent tasks. These systems autonomously register
themselves and their provided services at a service
registry. Besides service provision, a system is also
capable of consuming services of other systems.

6https://projects.eclipse.org/projects/iot.arrowhead

75



3) Services are functional representations of systems to-
wards the outside world. They are the primary artifacts
in connecting services according to SOA principles:
provided services get consumed by other systems (which
might, e.g., depend on specific inputs for their opera-
tion). There is no technical specification concerning the
choice of protocol or payload format. Since this is part
of the interface definition of each service and beyond the
scope of the Arrowhead specification. For instance, the
system might employ web technology or broker-based
communication patterns.

In the following section, we turn ourselves to a founded ap-
proach of capturing such local cloud architectures via systems
modeling techniques.

V. MODELING A CLOUD: ARROWHEAD TOOLS AND
SYSTEMS MODELING

The notion of model-based systems engineering (MBSE)
plays an important, even crucial role in holistic engineer-
ing workflows involving large-scale, complex, dynamic sys-
tems [2]. However, MBSE and its primary modeling language,
SysML [8] are arguably recognized for capturing monolithic
systems with a more fixed (though probably complex) archi-
tecture. Recently, there has been a growing interest around the
best ways to employ systems modeling in modern, dynamic,
even cloud-based scenarios.

As for modeling Arrowhead local clouds, we rely on the
aforementioned established systems modeling language and
methodology, SysML. SysML is a dialect of the well-known
Unified Modeling Language (UML), tailored to meet the spe-
cific needs of systems engineering activities. In turn, modeling
Arrowhead local clouds requires a custom-tailored approach
with a considerable amount of flexibility to adequately capture
the diverse set of entities as introduced above. SysML is the
canonical language of choice for such endeavors. Also, SysML
excels at language extensibility (being a primary concern) and
has mature, feature-rich tooling and an active community. The
language provides several different diagram types to represent
the facets of the system to be modeled, from requirements
to static structures to communication protocols. For further
general details, there is a large variety of textbooks available
— e.g., for practical information of SysML, refer to the
comprehensive book of Friedenthal et al. [8].

Recently, there has been a proposal for a concrete,
Arrowhead-centered approach for modeling service-oriented
applications, i.e., Arrowhead Systems of Systems [9], extending
and refining the Arrowhead documentation approach proposed
earlier [10]. The solution is a standard UML/SysML mecha-
nism to enlarge and tailor the modeling language for a specific
domain. In short, a profile is an organized collection of stereo-
types, i.e., domain-oriented specializations of generic SysML
language concepts. We refer the interested reader to [9]; here,
we focus on those parts which have direct relevance to the
present integration approach:

• The so-called interface design descriptions (IDD) can be
conceived as the realization blueprints for certain services

on certain systems (cf. Sect. IV). In particular, IDDs
contain operation signatures representing service func-
tionality. A single IDD can be used as a service “type”
for modeling both provider and consumer behavior.

• A central Arrowhead notion is that of devices; thus,
there is a corresponding stereotype, serving as a mere
placeholder (better said, a canonical integration point) in
the original version of the profile. The present paper is, in
fact, an actualization of such an integration, which results
in filling that stereotype with life and details.

• A local cloud configuration is modeled via deployed en-
titites, represented as specialized SysML part properties.
This part configuration is the place where platform mod-
eling gets realized on a (conceptual) deployment level—
the next section demonstrates this through examples.

This profile and modeling approach is referred to as
SoSysML in the rest of the paper. Figure 4 shows an overview
of the SoSysML representation of our example local cloud
(cf. Sect. III); in particular, the upper row of the diagram
consists of system design descriptions (SysDDs), representing
design templates for the three system kinds involved in the
use-case. SysDDs also play a significant role as the hosts for
actual interfaces. This is materialized by their ports (the small
rectangles at the edge of the SysDD boxes). The essential
logical structure of SoSysML lies here: SysDDs are brought
together with IDDs (abstract service and interface descriptions
not explicitly depicted here) by using IDDs as types of ports on
SysDDs. Thus, a SysDD represents an object (a system) while
its ports express its behavior (via the typing IDDs). Details on
IDDs are out of scope here—for the present paper, it suffices
to conceive of them as operation collections.

The bottom row, in turn, contains the SysML representations
of those device kinds, whose instances the actual system
instances will be allocated to. These device templates come
in two fashions: in some cases like the distance sensor in our
running example, an already modeled device can be readily
used and, thus, directly imported from the Eclipse Vorto
repository, while in other cases, the design process might
necessitate the modeling of new devices. The next section
covers details of this instantiation and allocation.

Fig. 4. SoSysML Overview: The Smart Assembly Use-Case (Sect. III)

Note that the above figure is an excerpt from an actual

76



model realization as available in MagicDraw, an industrially
established and widely used systems modeling tool. Thus,
the integration presented as the essential contribution of this
paper in the following Section VI also reveals an industrial
potential w.r.t. base technologies involved here: it seems that
while IoT device/deployment models are addressed in the
Eclipse ecosystems, abstract systems modeling and platform-
independent design have a home in the NoMagic7 (Magic-
Draw, Cameo Systems Modeler, Teamwork Cloud, ...) tool
infrastructure. The prototype serving as the practical baseline
for the present contribution constitutes an important step
towards integrating these two platforms/ecosystems (having
some conceptual touching points which we can rely on) and,
thus, we find that this “mismatch” is more a benefit than
an impediment. Moreover, the underlying implementation of
our MagicDraw plugin is based on VIATRA, an established
Eclipse model transformation engine.8 We will continue to
build upon this combined ground in the future. As for the
future potential of the current approach, we also remark that
this approach is very likely to play a leading role in the future
of systems modeling as well. Currently, the upcoming new
major release of the systems modeling standard, SysML v2,
considers the Arrowhead SoS profile mentioned as a candidate
for SOA modeling standardization.

VI. VORTO, SYSML, ARROWHEAD: THE INTEGRATION
APPROACH

As a culmination and summary of the ideas introduced
above, we turn ourselves to the primary concept of this paper:
the integration of Eclipse Vorto device models with SoSysML,
i.e., our Arrowhead-specific SysML-based design approach to
device-independent SoS (local cloud) modeling.

On a conceptual level, Table I summarizes the essence
of the integration approach. As it has already been hinted
at in the previous section, the main observation behind the
integration is a direct correspondence, i.e., a mapping, between
concepts from SoSysML and VORTOLANG. In particular,
Device in SoSysML serves as a topmost container for any
device descriptions, thus corresponding to the topmost VOR-
TOLANG elements, Information Models. The IDDs correspond
to the actual functional specifications, the Function Blocks of
VORTOLANG. This concise table also indicates that below this
level, the two modeling languages become equivalent: their
Operation concept represents the same abstraction level.

TABLE I
SOSYSML TO VORTOLANG CONCEPT MAPPING

SoSysML VORTOLANG
IDD Function Block

Device Information Model
Operation Operation

The essence of our contribution, i.e., the actual integration
of SoSysML local cloud models and Vorto digital twins is

7https://www.nomagic.com/
8https://www.eclipse.org/viatra/

Fig. 5. Example Use-Case: SoSysML-Vorto Integration

illustrated through our example in Fig. 5. The upper region
above the horizontal dashed line (Deployed systems) is the
way to organize non-allocated, abstract, platform-independent
system instances into a local cloud in SoSysML: each box
represents a system instance to be deployed, where the string
before the colon is its proper name, while the string after the
colon indicates its type, which is, in turn, a SysDD (cf. Fig. 4).
This typing provides each system with an interface (port)
structure. The structure is turned into an abstract, design-
time local cloud representation by the connectors (solid lines)
attaching provided interfaces to consumed interfaces (the latter
denoted by the same type name depicted with a tilde prefix).
Notice the resemblance of this part of the figure to the intuitive
scenario depiction in Fig. 3.

The extended, integrated local cloud representation (includ-
ing the lower region of Fig. 5) now contains Vorto devices
as well. These are represented, again, by boxes with typed in-
stances (using the same label convention)—but here, the types
come from a set of Vorto device descriptions (represented as
Information Models, cf. Table I). In turn, these information
models might originate from two different sources (cf. also
the bottom line of Fig. 4), both considered by our MagicDraw
Vorto Importer module:

• they either directly come from the Vorto repository itself;
to this end, the importer browses the online catalog and
the user can automatically create a SysML representation
of such information models, if she or he thinks that
one of them would fit their design (the case of the
DistanceSensor in our example); or

• if the desired functionality is not yet represented by any
“stock” solution, the user can choose to write his or her
own Vorto specification with any preferred local workflow
conforming to VORTOLANG. For example, they can use
the Vorto IDE or the web modeler, and might even reuse
already predefined function blocks.

Based on the Vorto models users may also use one of the
various code generators and plugins to generate integration
code for different back-end systems. We implemented both of
the aforementioned model input sources in our implementation
of the MagicDraw Vorto Importer, a plugin of the established

77



systems modeling tool MagicDraw9 (or its SysML-equipped
distribution Cameo Systems Modeler, the difference being
immaterial for our purposes). The prototype features a user-
friendly manner, where the built-in Import menu is extended
by two further options one for browsing the Vorto repository
and choosing information models to import, the others to
browse locally for user-created Vorto model packages. From
this point on, the usage of the imported information models
is the same regardless of the source, as detailed above.

VII. APPLYING THE INTEGRATION APPROACH

In the previous section, we presented our integration ap-
proach. Now we demonstrate its use in an engineering work-
flow using our running example from Sect. III. As our
metaphor in the title suggests, our integration approach fills
SoSysML models of Arrowhead local clouds with device
details, i.e., relates the cloud model with the bare metal devices
(or their abstractions).

To realize the scenario described in Sect. III, the following
steps have to be carried out.

a) Model System of Systems Model: Here the initial
Model of the SoS scenario, i.e. the Arrowhead local cloud,
has to be modeled. In the example case depicted in Fig. 6,
one has to create a SysML model for the three Systems and
their relationships, as shown in Fig. 4. This step is not unique
to our mapping approach but is more a prerequisite.

b) Select Devices in Repository: With the SoSysML
model available, the modeler can turn to fill the modeled
abstract devices with life. As the Vorto repository already
contains a considerable number of different models, the first
step should be to browse it and check if an information model
of the required device already exists. In our example, this is
the case for the distance sensor modeled for machine three.

c) Model Device: If a model does not already exist in the
repository, the modeler can still use VORTOLANG to model
the device capabilities. In our example, this is done with
the devices described in Listings 1–4. Those models can be
imported into the SoSysML as well. Using VORTOLANG has
the advantage that the whole infrastructure provided by the
Eclipse Vorto project can still be applied. For example, one can
integrate existing function blocks into an information model.
It is then possible to publish the models later on in the Vorto
repository if they are stable and of broader use.

d) Import Device Models: With the device models at
hand, the modeler can now import the Information models into
the SoSysML models (upper part of Fig 6). The device models
provide the SoSysML model with the concrete capabilities of
the devices, which in turn allows for fine-grained modeling
of processes and procedures. An example is the conveyor
maintenance procedure described in Sec. III.

With that step, the actual integration of Eclipse Vorto and
SysML is complete but there are some further steps possible.

9https://www.nomagic.com/products/magicdraw

e) Generate Connectivity Code: As the device models
are available as Vorto information models also the code gener-
ators of Eclipse Vorto can be used to generate the connectivity
code (lower part of Fig 6). In our example, the machines
connect to an Eclipse Hono instance. So we need code for the
connectivity with Eclipse Hono. The Vorto generator plugin
for Hono directly generates connectivity code stubs in C
(Arduino), Java, and Python that can be integrated into the
connectivity stack of the machine or an attached gateway.

f) Perform Arrowhead Wiring: As the SoSysML model
has all the required data, the actual Arrowhead wiring, i.e.,
registration of the services at the Service Registry and con-
figuration of the Arrowhead Orchestrator can happen semi-
automatically utilizing another plugin.10

Fig. 6. Applying Vorto models in an engineering process

VIII. RELATED WORK

The integration approach pursued in the paper touches on
various industrial concepts and frameworks of high relevance;
however, due to the rising interest around such topics, it is not
typical in IIoT and Industry 4.0 to have widely established
industrial solutions. We perceive an abundance of often non-
public domain-specific architectural solutions. The EU has
started to establish an industrial reference architecture frame-
work, RAMI4.0 [11], which represents a much higher abstrac-
tion than our present contribution, and a direct comparison
is, therefore, out of scope here. We mention some related
approaches in the most relevant fields in the following.

First, service-oriented architectures already have a standard
modeling language called SoaML [12] which is also a dialect
of UML (just as SysML). The concepts which SoaML relies on
are more orthogonal to the SysML-based design pursued here.
However, our flexible setup allows an integration of various
further diagram and representation types, even SoaML. SoaML
also lacks a device modeling aspect and one therefore would
have to refactor the Vorto integration in that case too. For an
overview of other SOA standards, refer to [13].

The topic of platform modeling and the clear distinction
between a platform-independent and a platform-specific model
(PIM/PSM) is a fundamental concept in the OMG standard

10https://github.com/IncQueryLabs/arrowhead-tools

78



Model-Driven Architecture [14]. Arguably, our integration
approach embodies this concept, SoSysML models being
representing the PIM, and their Vorto mapping the PSM part
of a comprehensive platform model. Other European industrial
digitalization projects have investigated well-founded platform
modeling, such as the OpenCPS11 endeavor.

As for IoT architecture design, there is no industrially
accepted general solution, framework, or workflow yet; i.e.,
every domain builds its specific modeling solution. However,
the Eclipse IoT Working Group aims at providing generic
technologies to enable end-to-end IoT solutions [15]. As for
other European approaches, Krčo et al. [16] had a look into the
various IoT endeavors within Europe. They identified several
projects and organizations, which either define different IoT
reference architectures or provide reference implementations
for IoT core systems. Further, they describe a landscape of IoT
activities in Europe in which the Arrowhead framework fits
quite well and for which the described integration approach,
with adjustments, could be of use, too.

As for combining Vorto with SysML, Pfenning and Roth
[17] present an approach to generate Vorto Information Models
from existing SysML models. The objective is to generate
digital twin implementations from existing SysML models of
the Product Lifecycle Management (PLM) via model trans-
formation techniques. The authors make use of the existing
generator implementations of Eclipse Vorto to obtain digital
twin implementations for different IoT-Platforms. Thus, their
approach is the inverse of our method described in this paper.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel integration ap-
proach to combine System-of-Systems modeling and a device
modeling ecosystem into a comprehensive industrial IoT plat-
form design solution. In particular, building on ongoing work
in Arrowhead Tools, we extend the SysML-based modeling
approach SoSysML with a capacity to represent devices
within the models in a tightly integrated fashion, resulting
in full-fledged, compact platform models. Moreover, we have
created and presented an importer tool prototype, not only to
demonstrate feasibility, but also to emphasize the integration
potential between the NoMagic modeling ecosystem on the
one hand, and the Eclipse Vorto ecosystem on the other hand.

An immediate item for future work is to investigate tooling
extensions by reaching deeper into both main ecosystems
involved here. On the one hand, we might consider the
Eclipse-native, but little less SysML centered modeling tool
Eclipse Papyrus.12 On the other hand, the NoMagic modeling
ecosystem has built-in model repository features that resemble
the shape of the Eclipse Vorto offering; such features could
allow for building a repository system for IIoT.

ACKNOWLEDGMENT

The research has received funding from the EU ECSEL
JU under the H2020 Framework Programme, JU grant nr.

11https://www.opencps.eu/
12https://www.eclipse.org/papyrus/

826452 (Arrowhead Tools project, https://www.arrowhead.eu)
and from the partners’ national funding authorities.

Project no. 2019-2.1.3-NEMZ ECSEL-2019-00003 has
been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, fi-
nanced under the 2019-2.1.3-NEMZ ECSEL funding scheme.

Project no. 16ESE0367 has been implemented with the
support from the Federal Ministry of Education and Research
of Germany.

REFERENCES

[1] M. Jamshidi, System of systems engineering: innovations for the twenty-
first century. John Wiley & Sons Incorporated, 2009, vol. 58.

[2] P. Micouin, Model Based Systems Engineering: Fundamentals and
Methods. John Wiley & Sons, 2014.

[3] The Eclipse Vorto project, “Eclipse Vorto,” accessed: 2020-07-17.
[Online]. Available: https://www.eclipse.org/vorto/

[4] A. Edelmann, “Distance Sensor - Informationmodel,” 2019, accessed:
2020-07-17. [Online]. Available: https://vorto.eclipse.org/#/details/org.
eclipse.vorto.tutorial:DistanceSensor:1.0.0

[5] J. Delsing, P. Varga, L. Ferreira, M. Albano, P. P. Pereira, J. Eliasson,
O. Carlsson, and H. Derhamy, “The arrowhead framework architecture,”
in IoT Automation. CRC Press, 2017.

[6] D. Kozma, P. Varga, and G. Soós, “Supporting digital production,
product lifecycle and supply chain management in industry 4.0 by
the arrowhead framework–a survey,” in 2019 IEEE 17th International
Conference on Industrial Informatics (INDIN), vol. 1. IEEE, 2019, pp.
126–131.

[7] M. Bell, SOA Modeling patterns for service-oriented discovery and
analysis. John Wiley & Sons, 2009.

[8] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2014.

[9] G. Kulcsár, K. Kadosa, T. Szvetlin, B. Péceli, A. Horváth, Z. Micskei,
and P. Varga, “From models to management and back: Towards a system-
of-systems engineering toolchain,” in Proc. of IEEE NOMS Workshop
on Management for Industry 4.0, 2020.

[10] F. Blomstedt, L. L. Ferreira, M. Klisics, C. Chrysoulas, I. M. de Soria,
B. Morin, A. Zabasta, J. Eliasson, M. Johansson, and P. Varga, “The
Arrowhead approach for SOA application development and documenta-
tion,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial
Electronics Society, 2014, pp. 2631–2637.

[11] T. Bangemann, M. Riedl, M. Thron, and C. Diedrich, “Integration of
classical components into industrial cyber–physical systems,” Proceed-
ings of the IEEE, vol. 104, no. 5, pp. 947–959, 2016.

[12] B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen, and
A. Solberg, “Model-driven service engineering with soaml,” in Service
Engineering. Springer, 2011, pp. 25–54.

[13] H. Kreger and J. Estefan, “Navigating the SOA open standards landscape
around architecture,” Joint Paper, The Open Group, OASIS, and OMG,
2009.

[14] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda
framework,” in Proceedings 16th Annual International Conference on
Automated Software Engineering (ASE 2001). IEEE, 2001, pp. 273–
280.

[15] The Eclipse IoT Working Group, “The three software
stacks required for iot architectures,” Eclipse Foun-
dation, https://iot.eclipse.org/community/resources/white-
papers/pdf/EclipseTech. Rep., 2017.

[16] S. Krčo, B. Pokrić, and F. Carrez, “Designing iot architecture (s): A
european perspective,” in 2014 IEEE World Forum on Internet of Things
(WF-IoT). IEEE, 2014, pp. 79–84.

[17] M. Pfenning and A. Roth, “Systemmodellierung für das internet der
dinge – transformation von systemmodell in iot-plattform im kontext
später produktlebenszyklusphasen,” in Tag des Systems Engineering, S.-
O. Schulze and C. Muggeo, Eds., GfSE. Hanser, 2016, in German.

79


