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Abstract—Thanks to Building Energy and Comfort Man-
agements (BECM) systems, it is possible monitor and control
buildings with the aim to ease appliance management and at the
same time ensuring efficient use of them from the energetic point
of view. To develop such kind of systems, it is necessary to monitor
users’ habits, learning their preferences and predicting their
sequences of performed activities and appliance usage during the
day. To this aim, in this paper a system capable of controlling
home appliances according to user preferences and trying to
reduce energy consumption is proposed. The main objective of
the system is to learn users’ daily behaviour and to be able to
predict their future activities basing on statistical data about the
activities they usually perform. The system can then execute a
scheduling algorithm of the appliances based on the expected
energy consumption and user annoyance related with shifting
the appliance starting time from their preferred one.

Experimental results demonstrate that thanks to the schedul-
ing algorithm energy cost can be reduced of 50.43% and 49.2%
depending on different tariffs, just by shifting the use of the
appliance to time periods of non-peak hours. Scheduling based on
probability evaluation of preferred time of usage of the appliances
allows to still obtain evident energy savings even considering the
errors on predicted activities.

Index Terms—Activity Recognition; Activity Prediction; En-
ergy Management; Comfort Management; Smart Building

I. INTRODUCTION

Smart buildings are characterised by the presence of sensors,
actuators and smart devices that give the opportunity to
monitor and control, either manually or automatically, key
equipment within buildings [1]. This is the concept behind
Smart Building Energy and Comfort Management (BECM)
systems [2][3]. As a matter of fact, domestic electricity usage
accounts for about 40% of the global energy consumption
and contributes over 30% of total greenhouse gas emis-
sions [4]. Nevertheless, user comfort is crucial when policies
of Demand-Side Management (DSM) are put in place [5].
In such an intelligent scenario, one of the major goals is to
provide users with tools that support cost-effective solutions
to appliance management, which: i) demand the lowest effort
in terms of training and management, dynamically adapting to
user requirements, and ii) take into account user habits so that
appliance management decisions do not conflict with them,
causing a disaffection that may lead the user to turn off the
system [6].

Currently, most of the literature considers user comfort as
a set of hard constraints on appliance usage, which are a
priori set considering general statistics [7][8]. This approach
neglects the fact that users are likely not only to have different
subjective requirements with respect to the others, but they also
dynamically change over time.

In this paper, user preferences and habits about appliance
usage are continuously monitored, recognised and predicted,
by means of a BECM system based on sensors deployed
inside the reference building. The system merges two pre-
vious studies about activity recognition [9] and appliance
scheduling [6], by including the crucial activity prediction
functionality. Indeed, activity prediction enables appliance
scheduling by predicting which appliances are likely to be
used in the following hours and scheduling them in advance,
so that their starting time is shifted to off-peak times when
electricity tariffs are lower.

The main contributions provided by this paper can be
summarised as follows:
• an activity recognition algorithm used to model user

profiles, which was first proposed in [9] and whose
accuracy is here improved;

• an activity prediction algorithm is proposed, along with
statistics about mutual correlation of activities. Accord-
ingly, appliance usage is predicted for a specified time
window (test were run for a time window of 6 hours);

• user profile and activity prediction are incorporated into
the user-annoyance-aware energy-cost-saving appliance
scheduling algorithm proposed in [6].

To the best of the authors’ knowledge, this is the first com-
prehensive system to use sensor-based activity prediction and
occupants’ preference inference, and integrate them into a
BECM. Accordingly, based on simulations of the system on
a real dataset, this paper further analyses how the proposed
system affects energy-related costs.

The remainder of the paper is organised as follows. Section
II presents past works and the required background. In Section
III an overview of the proposed system model is provided.
Section IV describes the reference use case considered to
test the performance of the system. Finally, in Section V
a performance analysis is provided. Conclusions and final
remarks are drawn in Section VI.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
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II. RELATED WORKS

Smart technologies can be used in all kinds of different
buildings (i.e., residential, office, and retail sectors) to improve
the comfort and the safety of people in their home, concerning
various topics, from healthcare and providing living assistance,
to environmental monitoring and ensuring energy saving.
Accordingly, BECM systems have the objective of combining
power consumption minimisation while preserving user com-
fort [10][11]. This issue has been addressed by researchers
from many different perspectives. The authors in [10], present
a review of control systems for energy management and
comfort in buildings, where the quality of the comfort is con-
sidered mostly dependent on thermal comfort, indoor air qual-
ity and visual comfort, explaining current and conventional
controller solutions and their disadvantages. Also in [12][13]
two different solutions for building management considering
user preference in terms of indoor environment comfort are
presented. In [14], an algorithm for thermostatically controlled
household loads based on price and consumption forecasts of
grid energy is presented. The issue of scheduling appliances
according to user preferences was also addressed by [6], where
Quality of Experience (QoE) is measured as a function of the
interval between the preferred and proposed appliance starting
time for switching controlled loads (e.g., washing machines
and clothes dryers), and as a function of the interval between
the preferred and proposed temperature for thermostatically
controlled loads (e.g., conditioning systems and water heaters).

It is evident that user preferences and habits severely affect
results of BECM systems. For this reason, in recent years re-
searchers have started to observe users’ behaviour, in order to
infer their habits and preferences. The monitoring of activities
of people in their home can be done by analysing data that
can be gathered with different technologies. Different studies
proposed solutions based on using cameras and wearable
sensors or gathering data provided by phone accelerometer
and gyroscope [15][16]. These solutions are not very practical
in home scenarios where people are often not inclined to
accept those devices. To monitor what activities people are
performing in their house, non-intrusive sensors are often
preferred: typical devices that are installed in the environment
are motion sensors, door sensors or temperature and pressure
sensors [17]. The data collected from sensors inside resident
houses are analysed using data mining and machine learning
techniques to build activity models that are used as the basis
of behavioural activity recognition.

With reference to modelling and classification methods,
researchers have investigated the recognition of resident ac-
tivities using a variety of mechanisms, such as Naı̈ve Bayes
classifiers, Markov models, and dynamic Bayes networks. In
multiple cases, in spite of its simple design and simplified
assumptions, Naı̈ve Bayes classifiers often work much better
than expected, especially when a specific group of sensors can
easily be identified as characteristic of a certain activity [18].
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Fig. 1. Overview of the proposed BECM system

III. SYSTEM MODEL

In this paper, the considered scenario is that of a BECM
system, based on distributed smart home sensor networks.
An overview of this system is represented in Figure 1. More
specifically, sensors are used to make observations on users
and their interactions with the surrounding environment; the
combinations of these interactions, which are detected by
the Event Detection module as events, provide meaningful
information on users’ activities. As described in more details
in [9], after a training period the Activity Recognition module
can correctly recognise activities with an accuracy of more
than 80% on average. Accordingly, a correlation can be
observed between detected events and activities, which can
be used to infer users’ habits. These habits, stored in the User
Profile module, are used with information about previously
recognised activities by the Activity Prediction module, with
the aim to predict the following activities that are expected to
be carried out by the users. The information related to activity
prediction, user profile and home profile are then processed
by the Appliance Scheduling module to find a scheduling
for controllable appliances that corresponds to the best trade-
off between energy cost reduction and user comfort. Note
that the Home Profile module stores home-related information
collected by sensors and/or through user interfaces, such as
electricity tariffs, and which appliances are installed along with
their energy consumption characteristics.

In the following, more details will be provided about the
core modules of the proposed BECM system, i.e. the Activity
Recognition module, the Activity Prediction Module and the
Appliance Scheduling module.

A. The Activity Recognition Module

The activity recognition approach used in this paper was
earlier proposed in [9]. It encompasses two phases: i) training,
during which the system learns the association between activ-
ities and their instances, i.e. sequences of detected events; ii)
running, which uses the probabilistic model created during the
training phase to associate an activity to the detected events.

a) Training phase: for each k-th activity instance
Ijk of activity Aj observed during an
observation time window OA, a feature vector
F jk(Ijk) = [f1jk, f2jk, . . . , fijk, . . . ] is computed with
the rates of detected event occurrences, that is the number
of events related to one specific sensor with respect to
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the total number of events observed considering all the
sensors within OA. Then, for each activity Aj , a model
vector mj = meank(F jk) = [f1jk, f2jk, . . . , f ijk] is
defined such that the rates of event occurrences of its
sensors is the average rate for all the observed instances
associated with the same activity.

b) Running phase: it relies on the use of a sensor-based
windowing implementation [18], according to which se-
quences of detected events are divided into subsequences
using an observation window OW(t) starting at time t,
which contains a certain number of events equal to its
size W . Each subsequence z of events is then associated
with a feature vector FW

z , computed analogously to mj .
Finally, the sequences of detected events are classified
based on their probability to belong to a given activity.

For further details the reader is referred to [9].

B. The Activity Prediction Module

The main task of the the Activity Prediction module is to
provide, for the next Appliance Scheduling module, a possible
scenario in time t ahead in the future, that explains the proba-
bilities of every activity that can begin in t, calculated thanks
to information about all the activities happened and recognised
before the current time t0. Starting from the assumption that
activities are linked between one another, so that when an
activity Ai occurred at time ti it is possible to evaluate the
probability of another activity Aj to be performed by the
user in a different time tj , the module has to evaluate the
probability in t for every single activity Aj .

During the training phase, two different kind of probabilities
have been evaluated for every activity under consideration:
• p(Ai(ti)) indicate the prior probability for activity Ai of

starting at time ti;
• p((Aj |Ai)(k∆t)) indicate the conditional probability of

activity Aj of being carried out since activity Ai has
started (k∆t) before.

The period between the current time t0 and the time t in which
the prediction is needed, is split in different k time intervals
of duration (∆t).

All the activities that have been recognised before the
current time t0 are stored with their respective starting time
ti, so that it is known how many time intervals outdistance
every ti up to t, and it is possible to calculate the conditional
probability of activity Aj in t considering all the activities Ai

that occurred in ti. Then, for every (k∆t) between t0 and t,
the probability of Aj to be happening in t is calculated with
respect to the fact that Ai could be happening in (k∆t). These
two contributions are added together according to the equation
below:

p(Aj(t)) =
∑
i

p((Aj |Ai)(
t− ti
∆t

))+∑
i

∑
k

p((Aj |Ai)(k∆t)) · p(Ai(t0 + k∆t))
(1)

with k ∈
{

0, (t− t0)/∆t
}

.

Every activity coincides with one of the appliances in the
house, so that the probability for each activity in t, calculated
as explained, is then translated in the probability of one
appliance to be used at time t. Therefore, the output from
this module is going to enable the scheduling algorithm to
make the validation necessary for the scheduling of control-
lable appliances and for evaluating energy consumption. The
algorithm decides to schedule at time t only those appliances
corresponding to activities that have their value of probability
higher than a certain threshold.

C. The Appliance Scheduling Module

The appliance scheduling algorithm is based on the smart
home energy management system proposed in [6]. This system
dynamically shifts tasks of controlled appliances to times when
it is more convenient (e.g. off-peak times), after finding a trade
off between the overall energy cost and the annoyance expe-
rienced by users as a consequence of this shift. Accordingly,
appliances are subdivided into three groups:
G1: not controlled loads, i.e., small loads such as lights, and

not controlled high loads such as fridges;
G2: switching controlled high loads, such as washing ma-

chines and dishwashers;
G3: thermostatically controlled high loads, i.e. appliances that

are controlled by a thermostat, such as water heaters.
The energy consumption for an appliance i is defined as
Econs

i = P cons
i ×texeci , where P cons

i is its power consumption
and texeci is its execution time. While for switching controlled
loads the execution time corresponds to a complete working
cycle, for thermostatically controlled ones it depends on ap-
pliance characteristic parameters and temperature conditions.
As described in more details in [6], the execution time of G3
appliances to reach a temperature T exp

i is defined as

texeci (T exp
i ) = −RiCi ln

(
T out
i − T exp

i +RiP
heat
i

T out
i − T in

i +RiPheat
i

)
(2)

where T out
i (t) and T in

i (t) Pheat
i are the initial outside and

inside temperature respectively, and Pheat
i , Ri and Ci are

characteristic parameters for the appliance. More specifically,
Pheat
i is the heat rate (in Watt), Ri is the equivalent thermal

resistance (◦C/Watt) and Ci is the equivalent heat capacity
(Joule/◦C). If the appliance is off, Pheat

i = 0.
The appliance scheduling algorithm then schedules appli-

ances according to their related cost contribution value, which
includes both the energy consumption- and user annoyance-
related costs. User annoyance is computed according to the
results of a survey, completed by 427 people, as reported in [6].

For G2 appliances, the cost to start at time tST
i and end at

time tEND
i = tST

i + texeci is defined as

CG2
i (tST

i ) =
P cons
i

σ
(
∆tST

i

) · tEND
i∑

t=tST
i

Φ(t) (3)

where Φ(t) is the electricity tariff at time t, and σ
(
∆tST

i

)
is

the relative satisfaction level for a time interval ∆tST
i = tST

i −
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tPT
i , which is in inverse proportion with the user annoyance

of shifting the appliance starting time. If σ
(
∆tST

i

)
= 0, the

cost value CG2
i (tST

i )→∞.
For G3 appliances, the cost to start at time tST

i and end at
time tEND

i = tST
i + texeci (T exp

i ) is defined as

CG3
i (tST

i , tEND
i ) =

2 · P cons
i

σ
(
∆TST

i

)
+ σ (∆T exp

i )
·
tEND
i∑

t=tST
i

Φ(t)

(4)
where σ

(
∆TST

i

)
and σ (∆T exp

i ) are the relative satisfaction
values for a difference in temperature respectively of ∆TST

i =
T in
i (tST

i )−TPT
i between the temperature at the starting time

and the preferred temperature, and of ∆T exp
i = T exp

i − TPT
i

between the temperature expected at the ending time and the
preferred temperature. Also in this case, if σ (∆T exp

i ) = 0, the
cost value is CG3

i (tST
i , tEND

i )→∞.
For further details about this appliance scheduling system,

the reader is referred to [6].

IV. REFERENCE USE CASE

The algorithm for modelling the activities and then discov-
ering what the resident is doing is implemented and tested
using the Aruba real-word dataset from the CASAS smart
environment project of the Washington State University [19].
The data were collected from one smart apartment provided
with motion sensors, contact sensors in the doors or cabinets
and temperature sensors. The events decoded by these sensors
are significant for recording elementary actions that people are
performing, while the aggregation of these elementary actions
defines one activity of interest. To correctly evaluate the
correlation between the sets of events and the observed user’s
activities, without interference from other people, a dataset
with only one resident living in the home was considered.

To evaluate the proposed system, in addition to the activities
of the Aruba real-word dataset, some other activities have been
simulated as performed by the same user inside this home
scenario, using the same kind of sensors already installed in
the house. The simulated activities are the following three
activities not reported in the real dataset: using the washing
machine, using the dish washer, taking a shower, which, along
with the activity of washing dishes by hand, causes the water
heater to turn on. Taking a shower is supposed to be carried
out by the user in the bathroom, therefore involving the motion
sensors already installed close to this room and assuming that
hot water is used, thus causing the water heater to switch on.
The use of the dish washer is supposed to be performed in
the kitchen, involving the sensors in that area and simulating
the presence of a specific cabinet containing the appropriate
detergent and with a magnet sensor to understand its opening
or closing, so that the activity of loading the dish washer could
be recognised concluded only when this cabinet had been
closed. The same thing was done for the activity of using the
washing machine, by setting up another specific cabinet with
its magnetic sensor, and placing it in a room of the house
where there are not other linked activities.

TABLE I
CORRESPONDENCE BETWEEN ACTIVITIES AND HOME APPLIANCES

Activity Appliance Appliance type

1 Housekeeping (HK) Vacuum Cleaner G1

2 Meal Preparation (MP) Microwave Oven G1

3 Relax (Rel) TV G1

4 Wash Dishes (WD) Water Heater G3

5 Work Laptop/Pc G1

6 Taking Shower (TS) Water Heater G3

7 Laundry Washing Machine G2

8 Wash Dishes with
Dish Washer Dish Washer G2

9 Always on Fridge/Freezer G1

10 Always on when user
is at home/not sleeping Lighting G1

The system needs a correspondence between some of the
activities and the use of certain household appliances, in order
to predict energy consumption based on the probability of
the activities to occur. Table I shows the considered activities
along with their corresponding appliance owned by the user.

V. EXPERIMENTS AND RESULTS

A. Activity Recognition and Prediction Algorithm

With respect to only the four activities corresponding to
controllable appliances, i.e. appliances belonging either to
G2 or G3, the recognition algorithm presented in [9] has an
accuracy of 100% in recognising the activities of taking the
shower and using the washing machine, while for the activity
of using the dish washer it has an accuracy of 66.7% and
for the activity of wash dishes by hand it gives an accuracy
of 69.7%. This result is due to the fact that these two last
activities are more difficult to recognize because they involve
many of the kitchen sensors, which are also associated with
other possible activities. The overall accuracy of the activity
recognition algorithm is of 83.2%.

As for the prediction of future activities, the algorithm has
an overall accuracy of 67%. The activities more accurately
predicted are those with many samples and recurrent starting
time, like the activity “Taking a Shower”, because statistics
about them are quite significant. For other less frequent
activities, i.e “Wash Dishes”, the prediction is instead less
reliable.

B. Scheduling Algorithm

The algorithm has been compared with two different situa-
tions with respect to the case where no scheduling is involved.
There are then three possible scenarios:
• the first one is the classic situation where appliances are

normally used by the resident and the scheduling is never
programmed (Without Scheduling Algorithm-WSA);

• the second one is based on a perfect knowledge of
the time in which the user wants to use some of the
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appliances in the house (Scheduling Based on Perfect
Time-SBPT). This case coincides with the possible sce-
nario in which the user instructs the system about the
exact moment they want the appliance to start, but it
has the disadvantage of requiring continuous interactions
between users and system;

• the last one bases its scheduling evaluations on the
probability of using any of the appliance at time t,
calculated as explained in equation 1 (Scheduling Based
on Probability-SBP). This solution allows to avoid inter-
actions between users and the system, considering only
the system’s previous knowledge about user habits.

The training phase to obtain all the information about user’s
behaviours and preferences, and that allowed the system to
perform the calculations on the probabilities indicated in
subsection III-B, took into consideration two months of data
about performed activities. Due to the fact that the shortest
duration for the activities in exam is around 15 minutes, while
the longest activities can elapse for several hours, conditional
probabilities between activities was valuated choosing dura-
tion of intervals (∆t) equal to 15 minutes. The scheduling
algorithm was instead tested on one week of data. For every
interval of time t0 during the testing week, the algorithm
schedules appliances that are going to be used every k∆t time
intervals after t0, with k ∈ N, trying to improve energy savings
and user’s comfort. Simulations were done considering time
intervals of 30 minutes and predicting future activities in t
up to 9 hours forward in the future, so that every half an
hour the scheduling algorithm could re-evaluate its scheduling
based on the new information about previously user performed
activities and with new calculations of probabilities p(Aj(t)).
The obtained results were considered with respect to energy
consumption in one week, comparing the case with scheduling
in relation to the case of normal use of household appliances,
and evaluating if the scheduling could generate some kind of
annoyance for the user. The evaluation of the energy costs has
been made using two different tariffs listed in Table II, based
on some typical Italian tariffs. The annoyance rate is defined
as in [6], in relation to a possible shifting of appliance starting
time or, with reference to the water heater, to a variation
in the water temperature with respect to the user preferred
temperature of use. Value 1 of annoyance indicates that there is
not any discomfort for the user in the change of time in which
the appliance was turned on, while a value of 5 indicates the
highest level of annoyance for the user. Annoyance levels are
modelled as a normal distribution with 15% deviation.

Table III shows the results about energy saving compar-
ing the two cases with scheduling against the case without
scheduling. These results are obtained taking into account
the fact that cost savings are coming from a scheduling of
switching controlled high loads to hours where the energy has
lower prices and considering that there is a reduction in energy
consumption due to a better optimisation in the usage of the
water heater, which is switched on only at times of interest
for the user and not every time the temperature drops below

TABLE II
ENERGY PRICING

Weekends, holidays and
everyday from 19:00 to 8:00 Everyday from 8:00 to 19:00

Tariff 1
0.0534 e/kWh

Tariff 1
0.07666 e/kWh

Tariff 2
0.067990 e/kWh

Tariff 2
0.07666 e/kWh

TABLE III
ENERGY CONSUMPTION FOR DIFFERENT SCENARIOS

WSA SBPT SBP

Energy consumption
in kWh/week 65.43 42.43 35.83

Cost Saving
with Tariff 1 - 50.4% 64.7%

Cost Saving
with Tariff 2 - 49.2% 63.18%

a certain value. Depending on the different tariff considered,
energy consumption was calculated to be decreased of 50.4%
with tariff 1 and of 49.2% with tariff 2, in contrast to the
energy consumption with a classic use of appliances and
energy over the week. As expected, greatest savings are
obtained when there is a greater pricing difference between
the higher cost range and the lower cost range. In particular,
thanks to the scheduling, there is an evident better use of the
water heater, since this appliance is scheduled and turned on
only for the strictly necessary duration of time to obtain the
water to be heated enough for when the resident needs to
use it. This result can be verified in Fig.3, which represents
the energy saving over the week differentiated by three of
the appliances of the house: the water heater, the washing
machine and the dish washer. Only those three appliances
are considered because they are the only ones owned in the
house that belong to groups G2 and G3 and that can be
scheduled: the other appliances possessed by the user are
part of G1 group. From Fig. 3 it is evident how most of
the savings come from the scheduling of the water heater,
while there is a lower incidence from washing machine and
dish washer. This is explained by the fact that the preferred
times of using those two appliances are already evaluated as
the best compromise between energy consumption and user
comfort, especially because in most cases they are very distant
in time compared to the periods of non-peak hours. In fact,
in Fig.2, where the average annoyance rate is presented, it is
possible to observe how for every appliance the annoyance
rate is always close to the lowest value of 1. The knowledge
of user behaviours has therefore guaranteed the scheduling of
the appliance with the best trade-off between energy costs and
user preferences.

A slightly different discussion has to be done with reference
to the scenario in which the scheduling is evaluated based
on the probabilities of activities and, accordingly, on the
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Fig. 2. Average annoyance rate with the proposed system

Fig. 3. Energy saving comparison differentiated by appliance

probabilities of using a certain appliance. Even in this case
there is an evident reduction in energy consumption during the
week, as shown in table III. Most of the saving come again
from the wiser use of the water heater thanks to the scheduling
only at appropriate time. Looking at Fig.2 it is possible to see,
however, how the annoyance rate reaches a higher level. This
is due to the fact that the use of the water heater is linked to
two different activities, as shown in Table I. While activity
6 is always easily recognised and predicted, and therefore
scheduled, activity 4 gives some problems because it is often
confused with other activities [9]. Additionally, activity 4 is
an activity that the user does not carry out often so there is
not much statistical data on it. This last problem is common to
the other two activities in exam, and this explains why even
for this appliances there are higher level of annoyance rate
due to the fact that the prediction module has made an error
evaluating the probability of this activity to be performed. The
algorithm has otherwise proved that the prevision about future
activities can still ensure a good evaluation for the scheduling
when the statistical data are reliable.

VI. CONCLUSION AND FUTURE WORK

This paper focuses on a solution for energy and comfort
management inside buildings, with the purpose of reducing
energy waste thanks to a proper control over appliances, while
on the same time ensure the well-being of users. To this aim,
a BECM system is proposed that integrates a solution for two
different problem: the first one concerns the needs for such a
system to be able to know users behaviour and preferences and
to predict usual activities; the second is about the necessity
to manage appliances with respect of that behaviours and
preferences and with respect of energy consumption.

The system has been tested in a real scenario, evaluating
if the predictions were correct and proposing a coherent
scheduling that could guarantee energy savings. The obtaining
results show that, as expected, the scheduling of the appliances
can guaranteed energy savings, reducing consumption over
a week of at least 49.2% in comparison with classic use
of energy and appliances. The prediction module permitted
a quite accurate scheduling basing on probabilities, even if
some of the activities has given some problem due to the fact
that the statistic data about them were based of few instances.
Furthermore, it was possible to guarantee that the annoyance
rate was never too high, thus respecting user comfort.

Future works will investigate the adaptability of the pro-
posed system to different real-case scenario, trying to improve
the prediction module considering a larger training phase
and more instances of the activities and corresponding use
of appliances. Furthermore, it will be evaluated how the
presence of Renewable Energy Sources could affect appliance
scheduling and improve energy savings.
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