
DINASORE: A Dynamic Intelligent Reconfiguration
Tool for Cyber-Physical Production Systems

Eliseu Pereira, João Reis, Gil Gonçalves

SYSTEC - Research Center for Systems and Tecnologies
Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Email: {eliseu, jpcreis, gil}@fe.up.pt

Abstract—The nowadays industrial digital revolution demands
for software driven solutions where reconfiguration is one of the
key enablers to achieve smart manufacturing by easy deployment
and code reuse. Despite existing several tools and platforms that
allow for software reconfiguration at the digital twin / edge
level, it is most of the times difficult to make use of state of
the art algorithms developed in the most popular programming
languages due to software incompatibility. This paper presents
a novel framework named Dynamic INtelligent Architecture for
Software MOdular REconfiguration (DINASORE) that imple-
ments the industrial standard IEC 61499 based in Function
Blocks (FB) in Python language for Cyber-Physical Production
Systems’ implementation. It adopts the 4DIAC-IDE as graphical
user interface (GUI) to ease the design and deployment of
FBs to quickly and on-demand reconfigure target equipment.
The proposed framework provides data integration to third
party platforms through the use of OPC-UA. The test scenarios
demonstrate that the proposed framework 1) is flexible and
reliable for different applications and 2) the CPU and memory
workload linearly increases for a large amount of FBs.

Index Terms—Cyber-Physical Systems, IEC 61499, Smart
Manufacturing, Machine Learning

I. INTRODUCTION

One of the key aspects of the nowadays fourth indus-
trial revolution is the digitization of shop-floor entities like
processes, equipment and components to increase their in-
teroperability with users and information systems. In order
to achieve digitization, an increased effort of standardization
is required to create uniformed interfaces that promote a
transparent communication among a set of heterogeneous
entities. This standardization is often attained with the concept
of digital twin (DT), and is often seen as a wrapper used
to integrate any device or process into a network, where
information can be easily accessed and shared [1]. In industry
4.0 context, a Cyber-Physical Production System (CPPS) is
a distributed system of networked digital twins representing
industrial processes, controllers, components, and any sort of
information technology (IT) software. These CPPSs should
allow for dynamic reconfigurability, software reusability and
an external service orchestration [2]. On the one hand, by
improving the accessibility via DTs, users can have a better
grasp of the holistic shop-floor dynamics through the inte-
gration with information systems (vertical integration) such
as Manufacturing Execution Systems (MES) or Enterprise

Resource Planning (ERP). On the other hand, it is possible to
explore new ways of data sharing among shop-floor entities
(horizontal integration) promoting a distributed control system
for continuous monitoring and process optimization.

With a change in paradigm from closed programmable
logic controller (PLC) implementations to industrial PCs that
allow a more flexible information sharing and storage, new
opportunities taking advantage of this transparency can be
explored. From multi-agent systems to artificial intelligence
applications, democratizing data storage and sharing is key for
the new advances in manufacturing systems, where machine
learning is one of the key enablers of industry 4.0. This way,
applications like artificial vision to detect production defects,
predict when and why a certain component will fail or even
explore new energy efficiency solutions are some examples
of the well established importance of artificial intelligence in
manufacturing.

Albeit not specific for manufacturing applications, there are
several platforms developed in order to ease the development
of such intelligent systems in a modular fashion, where the
main idea is to accelerate the implementation of an end-to-
end solution without the need to know the technical details
of certain techniques. Some examples of this modular design
and execution are Rapidminer Studio [3], Microsoft Azure
Machine Learning Studio [4], Cloud AI from Google Cloud
[5]. All these platforms have a strong graphical user interface
(GUI) based in components that, through drag and drop, a
complex machine learning system is possible to be built.

However, the use of such platforms in industrial applica-
tions, mainly at the level of control systems, is not straight-
forward. On the one hand, some of these are Cloud-based solu-
tions, which is still an obstacle for specific industries nowadays
due to the industry’s policy, restricting the data access only to
local network components. On the other hand, these modular
designs do not implement any industrial standard, such as IEC
61499 adopted in 2005 and based in the function block (FB)
definition that abstracts both software and hardware modules
suitable for manufacturing requirements.

Based on this, the present paper proposes a framework
called DINASORE for the execution of digital twins in
Cyber-Physical Production Systems that is able to support
the latest advances in machine learning. DINASORE stands

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

63



for Dynamic INtelligent Architecture for Software MOdular
REconfiguration and is compliant with the 4DIAC platform
[6] that implements the standard IEC 61499 [7]. The proposed
framework is a Python environment for any system (embedded
or not) that is able to run Python 3.6, or above, for the execu-
tion of function blocks (FBs) developed in Python language.
The same way FORTE is used together with 4DIAC for the
low level interaction and execution of C/C++ applications in
industrial equipment, DINASORE is a similar implementation
but for Python FBs, which makes possible the use of important
machine learning packages such as TensorFlow, PyTorch,
Keras and Theano.

From this perspective, with DINASORE it is possible to
develop a distributed control system for industrial applications
which is machine learning-enabled. This framework allows to
overcome the difficulty to use and develop state of the art algo-
rithms due to the C/C++ (FORTE) requirement. Therefore, all
the latest developments in the Python community, from deep
learning to optimization, can be used in industrial applications
with DINASORE. It is capable of online-reconfiguration of
Python FBs, where an easy to understand Python FB template
is provided for customized developments. On top of that, and
due to industrial requirements, each DINASORE environment
has an embedded Open Platform Communications - Unified
Architecture (OPC-UA) server with a data model to facilitate
the integration with third-party platforms. The OPC-UA data
model abstracts the concepts of equipment and device for
fully industrial integration with other devices or information
systems. In sum, the main contributions and differentiation of
this work lie in:

1) A Python implementation of a digital twin that is inte-
grated with 4DIAC and compliant with IEC 61499;

2) A Python template to build FBs compliant with DINA-
SORE;

3) OPC-UA data availability using an OPC-UA server;

The remainder of the present work is organized in five more
sections. A literature review is made in Section II, and the
DINASORE implementation explained in Section III, from its
architecture to the Python template definition to develop new
FBs. The following section presents the test case scenarios
defined and the main results obtained. Finally, Section V will
discuss the results obtained and draw some conclusions and
future work for the current implementation.

II. RELATED WORK

One of the most widely used platforms for component-based
design and execution of distributed control systems is 4DIAC
[6], an Eclispe-based IDE that implements the standard IEC
61499 [7] based in function blocks (FBs). This platform has
a vast set of functionalities, from FB design, system design
based on a pipeline of FBs, to the deployment of this system
in a distributed environment. From CNC applications [8],
Distributed Time-Critical Systems (DTCSs) such as aerospace
applications [9], to Smart Grids [10], the use of 4DIAC for the
implementation of IEC 61499 is becoming well established

due to its easiness of system design and execution for dis-
tributed environments.

There is already a great motivation in using these ap-
proaches, mainly the development of CPPSs using the IEC
61499 standard, as can be seen in literature. A use case that
implements such an approach is presented in aluminum cold
rolling mill plant demonstrator where the authors design and
test an event-driven process based on IEC 61499 standard
using OPC-UA [11]. Another similar use case that used the
same philosophy is about Oil&Gas production where the
authors have implemented a CPPS to deal with the complexity
of equipment data on existing production processes, based on
IEC 61499 and OPC-UA [12].

In [13] the authors implement a CPPS based in FORTE, and
deployed the configuration system into a couple of Raspberry
Pi 3 Model B that mimics an industrial process composed of
a human-machine interface, a handling system and a conveyor
belt. Further, the authors have integrated the OPC-UA into a
more complex system [14], with the aforementioned scenario,
plus a stack station. The major difference from the proposed
framework is the use of FORTE and OPC-UA data model
through a Service Interface Function Block (SIFB). In the case
of DINASORE there is no SIFB since OPC-UA is embedded
in specific FBs and automatically provides data in a OPC-UA
server with no effort to the final user.

Regarding the technologies used to support the development
of CPPS based on the IEC 61499, there are a set of plat-
forms already available that can be used. Some examples are
the Archimedes [15], FBDK [16] and FUBER [17] in Java
language (Archimedes also supports C++); FBBeam [18] in
Erlang; FORTE and nxtIECRT in C++; ISaGRAF [19] using
IEC 61131-3 standard; Icaru-FB [20] and RTFM-RT in C [21].
Demonstrating the relevance of OPC-UA in such approaches,
there’s a work that presents an implementation of a Service
Interface Function Block (SIFB) for OPC-UA communications
in 4DIAC [22]. For a more comprehensive understanding of
these platforms, there’s also a small review about the topic
[23].

Some effort has been applied to the integration of UML
with the IEC 61499, where a case scenario composed by
a distributing and sorting process using FESTO FMS-200
FORTE platform was built resulting in a CPPS [24]. Portability
among NxtStudio, FBDK and 4DIAC platforms was also
already explored [25] to have a cross-platform implementation
of a CPPS, and increase the integration capabilities when
building a CPPS.

Regarding all the works previously presented, the DINA-
SORE framework presents an additional, but important, step
towards the implementation of the IEC 61499 standard using
Python language, and consequently, the use of state of the
art machine learning algorithms in CPPSs. Together with the
OPC-UA for vertical integration, DINASORE can be seen as
a powerful framework that can accelerate and strengthen the
next generation of smart industry.

64



III. IMPLEMENTATION

Similar to FORTE (4DIAC-RTE) portable implementation
in C++ of IEC 61499, DINASORE1 shares the same phi-
losophy but in Python language. With all the latest artificial
intelligence advances and current implementations in Python,
DINASORE can be seen as a tool that enables advanced
machine learning systems to execute as close to shop-floor
equipment as possible. The further integration with OPC-UA
for sharing a simple and intuitive data model allows for each
digital twin DINASORE implementation easy to integrate with
most information systems.

A. 4DIAC-IDE

The graphical user interface (GUI) integrated with the DI-
NASORE is the 4DIAC-IDE, which enables drawing and de-
ploying distributed configurations, based in FBs. The 4DIAC-
IDE uses the Eclipse Project as a core development framework,
providing a GUI based in a desktop application, with the
typical Eclipse IDE appearance. The process of development
of a new CPPS based in FBs has as main steps: 1) the
definition of CPPS network configuration, specifying for each
device its IP address and port used for 4DIAC communica-
tion, 2) the drawing of the FB pipeline, drag&dropping FBs
and linking them through specific connections, modeling the
required software architecture, 3) the mapping of specific FB
to devices, and 4) the deployment of the FB pipeline to the
corresponding DINASORE devices. Therefore, the 4DIAC-
IDE GUI has several views directed to the user to implement
different steps, e.g. the network configuration, the development
and the deployment views. After the development and deploy-
ment of the FB pipeline, 4DIAC-IDE enables to monitoring
(watch) the whole system for real-time visualization of the
current state of each data and event inputs and outputs in
the configuration. Additionally, the 4DIAC-IDE allows the
interaction with the actual pipeline, triggering events, stopping
the configuration, or cleaning the actual DINASORE runtime
environment resources.

The standard IEC 61499 defines several rules at the industry
level, including the composition and structure of FBs, which
is the graphical representation of a set of functionalities. Each
FB contains events and variables to communicate with other
FBs, where each event allows to trigger the execution of a
certain FB, while each variable stores the data (e.g. sensor
measurements, algorithm outputs). The 4DIAC-IDE uses FBs
as elementary components that connect among themselves,
using both events and variables forming a functional pipeline.
Considering that, there are three types of FBs defined by IEC
61499, namely:

1) Basic Function Blocks (BFBs): In simplistic terms, they
are state machines that according to specific events are
able to execute the corresponding algorithms;

2) Composite Function Blocks (CFBs): It is a composition
of BFBs making up a network of FBs to model more
complex system behaviors;

1Available Online: github.com/DIGI2-FEUP/dinasore

3) Service Interface Function Blocks (SIFBs): It allows
to specify how FBs should interface in terms of both
events and data connectors to other FBs that execute
(mainly) in different physical platforms (Machine-2-
Machine communication).

Additionally, the developer has the autonomy to implement
their own FBs and integrate them in both 4DIAC-IDE and
DINASORE runtime environment. The main type of FBs
adopted in the DINASORE is the Basic Function Block (BFB),
characterized by two files, an XML metadata file containing
the FB structural information and a Python file implementing
the code functionalities.

B. DINASORE

The main goal of DINASORE is to serve a gateway to
machine learning into distributed control systems based on
IEC 61499. As we believe the future design and deployment
of CPPSs will definitely pass through the use of block-based
technologies, such as 4DIAC-IDE and IEC 61499 as depicted
in the related work, DINASORE can be seen as a key comple-
mentary technology to enrich the area of CPPS with artificial
intelligence algorithms. Although integrated with 4DIAC-IDE,
DINASORE is not designed in its root to execute in embedded
systems, complying with real-time constraints as FORTE. The
idea behind using Python language is to enable the latest
advances in machine learning to integrate at the edge level
with existing shop-floor equipment, without the need for cloud
based processing. With the embedded implementation of OPC-
UA in the DINASORE function blocks (FBs), any external
data is automatically provided in a OPC-UA server for further
system integration.

As for DINASORE implementation, there’s the need to
classify the used execution model type framing the technology
into the IEC 61499 guidelines. One of the most well known
categorization of Execution Control Chart (ECC) execution
model was proposed by Ferrarini in [26], where 7 differ-
ent classes were defined, from A0 to A6, exploring two
dimensions, namely scan order and multitasking. The scan
order refers to execution models that can have either fixed
(predefined order), or dynamically (order calculated on-the-
fly) FB execution during the ECC, while the multitasking
dimension refers to no controlled ways of multitasking, where
FBs execute in a multi-threading fashion; done by time slice
allocation to each FB execution (preemptive scheduling) and
done by FB slice, where each FB executes at a time (non-
preemptive scheduling).

Additionally, there’s a small and brief survey of run-time
environment (RTE) platforms for IEC 61499 where 4 types of
execution models are introduced [23]: 1) Buffered Sequential
Execution Model (BSEM) [27]; 2) Cyclic Buffered Execution
Model (CBEM) [16]; [26]; 3) Non-Preemptive Multithreaded
Resource (NPMTR) [28]; 4) Preemptive Multithreaded Re-
source (PMTR) [23]. For a more formal definition of the
BSEM, CBEM and NPMTR please refer to [29]. Despite the
authors in the survey present a table that integrates RTE plat-
forms with Ferrarini model and execution models, there’s not

65



a one-to-one correspondence of Ferrarini model to execution
models. This happens because there are some categories in
the Ferrarini model without a corresponding execution model.
This way, it is important to first fill this gap in terms of formal
definition, and only then use it to frame the DINASORE.
Hence, the complete set of Ferrarini categories is presented in
the following list, with the corresponding execution models:

• A0: The execution of each FB is calculated on-the-
fly depending on the input events of each one. One
formalized execution model that meets this category is
the BSEM;

• A1: The execution of each FB as a thread-object is made
in parallel, like in a multi-threading fashion. We name
this execution model as Multithreaded Resource (MTR);

• A2: To each of the executing FBs as a thread-object
is given a small time slice of execution, where the
allocation of time slice to FB is dynamically done. The
most similar execution model is PMTR, briefly defined
in [23]. However, due a dynamic scan order, we name
this execution model as Buffered Sequential-Preemptive
Multithreaded Resource (BS-PMTR);

• A3: Each FB as a thread-object should execute one at a
time, and executed dynamically as soon as a notification
is created. One formalized execution model that meets
this category is the NPMTR. However, due a dynamic
scan order, we name this execution model as Buffered
Sequential-Non-Preemptive Multithreaded Resource (BS-
NPMTR);

• A4: The execution of each FB is predefined beforehand.
One formalized execution model that meets this category
is CBEM;

• A5: To each of the active (that requires execution due to
an event input) FBs as a thread-object is given a small
time slice of execution according to a fixed order that
follows a list or active FBs. This can be viewed as a
PMTR, however, due to fixed scan order, we name this
execution model as Cyclic Buffered-Preemptive Multi-
threaded Resource (CB-PMTR);

• A6: Each FB as a thread-object should execute one at a
time according to a fixed order that follows a list or active
FBs. This can be viewed as a special case of the NPMTR,
however, due to fixed scan order, we name this execution
model as Cyclic Buffered-Non-Preemptive Multithreaded
Resource (CB-NPMTR);

TABLE I
AGGREGATION OF FERRARINI MODEL [26] WITH EXISTING [23] AND NEW

EXECUTION MODELS FOR IEC 61499.

Multitasking Implementation
Not Used Not Controlled Time Slice FB Slice

Dynamic
Order

BSEM
(A0)

MTR
(A1)

BS-PMTR
(A2)

BS-NPMTR
(A3)

Fixed
Order

CBEM
(A4) x CB-PMTR

(A5)
CB-NPMTR

(A6)

As for the DINASORE, the closest category is A2, where we

have a thread-object per FB with all threads executing using
a time slice scheduling and the execution order for all FBs
is dynamically calculated by the received event inputs. Since
Python language is used together with threading package, once
we have multiple FBs thread-objects executing at the same
time, a time slice scheduling strategy is used. This package
uses an implementation called Global Interpreter Lock (GIL)
that manages the execution time per thread, being around 5ms.
This way, this implementation is not truly multithreaded (A1),
but A2 using a similar approach as BS-PMTR.

The DINASORE execution model implementation, Fig-
ure 1, uses a producer-consumer pattern, where each FB
performs in a different thread, which is both producer and
consumer. The data transmitted between FBs addresses both
events and variables, where the FB object stores the input
events in a queue and the variables in register attributes. Thus,
each FB object has an internal queue for the input events,
waiting until it receives an input event in the data struc-
ture, reading after the variables’ actual value, and processing
the event’s functionality. After completing the functionality
execution, the FB object pushes the corresponding output
events in the queue of the following connected FBs. The same
thing happens to the variables where the FB updates their
output variables and consequentially the input variables of the
following linked FBs. The actual value of each FB event and
variable is available through the monitoring/communication
interfaces, i.e., using the OPC-UA server or 4DIAC-IDE watch
option.

Fig. 1. DINASORE Architecture.

The FB thread-object requires two external files to execute
that compose the FB itself. The first file is XML-based and
contains the meta-information about the FB, e.g. the FB type,
the FB class and the FB structure composed by input/output
events and variables, and their details, including the data type

66



and the OPC-UA role (variable, method or none). Besides the
DINASORE usage, the metadata file enables the 4DIAC-IDE
to render the FB with their events and variables in the GUI.
The second file composing the FB is a Python script encoding
the FB functionalities, which requires the implementation of
a class, assuming the Object-Oriented (OO) paradigm. That
class requires the implementation of the schedule method,
which receives as arguments the event name and respective
value, triggering the FB execution, with the current input
variable values. Then, according to the event received, the
method selects the functionality to execute. After executing
the functionality, the schedule method returns a list of output
events and variables. Both schedule method arguments and
output variables should follow the order specified in the
metadata file.

Concerning the need for external communication between
the DINASORE and other applications, e.g. 4DIAC-IDE and
third party information systems, there are two different and
independent communication interfaces integrated in the DI-
NASORE, 1) the 4DIAC interface, which uses TCP/IP, and
2) the OPC-UA interface, which uses a data model XML
file as a reconfiguration file. These two interfaces allow the
reconfiguration of the current runtime workflows and the
monitoring of each FB. The 4DIAC interface communicates
with the 4DIAC-IDE using a TCP/IP connection, where the
DINASORE interface executes a TCP server, receiving the
commands from the 4DIAC-IDE enabling the creation, stop,
and deletion of the configuration workflow and the runtime
configuration monitorization. The interaction between 4DIAC-
IDE and DINASORE for the configuration creation starts with
several messages instantiating every FB (Create FB); each
message contains the FB type and instance name. Then the
4DIAC-IDE sends the commands to create the connections
(events and variables) between FBs (Create Connection and
Write Connection), and finally the IDE requests the start of the
FB threads (Start Configuration). After starting the workflow,
the DINASORE enables the monitoring of each FB variable
and event, through the watch option (the Create Watch mes-
sage to activate the subscription; the Read Watch message to
request the variable/event current value; and the Delete Watch
message to unsubscribe). Additionally, the DINASORE allows
from the 4DIAC-IDE to stop and reset (Stop Configuration)
the configuration workflow, terminating the respective working
threads and the remote trigger of an event (Trigger Event),
performing a FB functionality in the DINASORE.

As an alternative, the DINASORE can use the OPC-UA
Data Model as reconfiguration channel. This way, the DI-
NASORE stores the configuration locally in the Data Model
XML file, where registers all the used FBs, and their respec-
tive connections (events and variables). The FB XML meta-
information classifies each FB in different sets, grouping them
in 1) devices, 2) equipment, 3) services, 4) endpoints, and 5)
start-points:

1) The device abstraction represents sensors, like sensors
integrated using Modbus protocol;

2) The equipment representation uses a more complex

structure allowing the aggregation of sensors and ac-
tuators, using events as relational connections;

3) The service type maps to FBs as a method and when
an event is received, its execution is triggered. This is
suitable for machine learning algorithms (e.g., Random
Forest, SVM) or statistical operations (e.g., moving
average, moving standard deviation);

4) The start-point type represents protocols interfaces that
receive data, e.g. subscribing a MQTT topic or request-
ing TCP/IP data;

5) The endpoint type provides data through the defined
interface, e.g. publishing in a MQTT topic and replying
to a TCP/IP request.

Those representations make the development of new FBs
easier by providing templates and specific behaviors to max-
imize the effectiveness of the Python code written in each
FB. The (1) device, (2) equipment, and (4) start-point scripts
adopt a loop template, which enables a cyclic execution of
the FB. The (3) service and (5) endpoint types use the typical
asynchronous approach executing when triggered.

Both OPC-UA and TPC/IP (4DIAC-IDE) interfaces are
essential to DINASORE operation, enabling different features
and capabilities. The 4DIAC communication interface allows
the combination with a graphical user interface (GUI) for
the development of workflows based on FBs. The OPC-UA
Data Model, besides enabling the workflow reconfiguration,
the primary purpose is to monitor the execution of a specific
pipeline monitoring using the OPC-UA industrial protocol and
the storage of the device configuration in an XML format. The
configuration storage transforms the DINASORE in a more
reliable and fault-tolerant platform, enabling the memorization
of the current state of the workflow, being tolerant of power
cuts restarting the runtime environment in the previous state.
The Data Model XML file updates every time, when the
DINASORE receives commands from the 4DIAC-IDE, for the
creation, stop, and removal of configuration workflows.

IV. TEST CASE SCENARIOS

The DINASORE evaluation focuses on the validation of
the tool in different scenarios. Those scenarios point out the
platform advantages and disadvantages, besides establishing
the most suitable applications, like sensing, control, or data
processing. The first scenario focuses on the use of machine
learning (ML) algorithms, in particular classification methods,
for the detection of collisions in a real mini-robotic arm based
in servo motors. The second example consists of a typical
distributed control architecture composed of two components
(gripper and robotic arm) that have to synchronize between
them to perform the required operation. The third case shows
the simulation of a manufacturing production line. Based on
the simulation scenario, several experiments with increasing
amounts of FBs allow to assess the scalability of the frame-
work in terms of processing and memory usage.

67



A. Collision detection based on servo motors analysis

The main goal of the collision detection implementation is
to transform a typical robotic arm into a collaborative one.
That scenario uses a robotic arm based in servo motors that
provide load metrics able to infer about possible collisions
with obstacles. Based on this, the process 1) monitors each
servo motor, 2) detects when one servo motor is in overload,
and 3) stops the robotic arm if it collides with an obstacle. The
network architecture contains two devices, both Raspberry’s
Pi: 1) responsible for monitoring the servo motors and check
the motors overload (Figure 2 rose FBs), and 2) controlling the
robotic arm, sending instructions to perform a particular task,
and waiting to receive an overload alert to stop its execution
(Figure 2 green FB).

Fig. 2. Collaborative Robot Workflow.

The servo motors sensing component uses as hardware an
Arduino Uno board (ATMega328P microcontroller), which
collects data of the voltage and current for each motor, using
a potential divider to measure the voltage and an amplifier
to obtain the current. The Root Mean Squared (RMS) uses
the last 250 samples to calculate the voltage and current
RMS value, which allows the computation of the real and
apparent power. This data processing is performed at the
microcontroller level, transmitting the eight features (4 metrics
of 2 servo motors) through the serial port to the Raspberry
Pi, which uses a FB, implementing the device template, to
read and parse the data. After parsing the data and calculating
the respective lag features (moving average and standard
deviation) for the last 10 samples, the overall features (total of
24 variables) feed a classification method. The model predicts
if the robotic arm is performing with regular efforts (output at
zero) or in overload/collision situations (output at one). The
classification model training uses an offline dataset, collected
from the serial port, containing the robotic arm performing
different operations with and without collisions. Several classi-
fication algorithms, including Support Vector Machine (SVM),
Random Forrest (RF), and Artificial Neural Networks (ANN),
were validated using the precision, the recall, and the f1-score
as performance metrics. The more accurate model was the
RF, exported to perform online on the second pipeline FB, that
implements the service template. The model output predictions
generate a stop event sent, through multicast sockets, to the
second Raspberry Pi, which controls the robotic arm. The
communication between the two Raspberry Pis, due to the
usage of UDP multicast sockets, adopts a paradigm producer-
subscriber, where the collision detection component produces

stop events when in overload, sent to the robotic arm control
component. The robotic arm control component (green FB,
using the device template), in a different Raspberry Pi, reads
from a text file, the sequence of motor positions to perform,
and sends them sequentially through the serial port to the
embedded controller. The robotic arm performs, in a cycle,
the list of instructions until it receives a stop event from the
monitoring component; then, it freezes, waiting to receive a
continue event from the user, using the 4DIAC-IDE, to restart
the operation.

B. UR5 Collaborative Robotic Arm and Gripper Control

The synchronized control between a Universal Robots 5
(UR5) robotic arm and a 3D printed gripper requires the
usage of a CPPS composed of two Raspberry Pi, similar
to the previous scenario. Considering that architecture, one
component controls the servo motor that opens and closes the
gripper (Figure 3 blue FBs), and the other sends commands
to the UR5 robotic arm (Figure 3 purple FBs). The operation
performed by both devices consists in 1) catch one object at
position A, 2) go with the piece to position B, 3) go back to
position A, 4) leave the object in position A, 5) go without
the item to position B, 6) go without the object to position A,
and restarts the cycle.

Fig. 3. UR5 Robotic Arm and Gripper Workflow.

The UR5 robotic arm uses an API to send commands
through a TCP/IP communication channel with the physical
controller, which enables the continuous flow of instructions
(X, Y, Z positions and Rx, Ry, Rz rotations) to the UR5 robotic
arm. The FB, using the service template, wraps the API func-
tion to move the robotic arm to a specific location (X, Y, and
Z) with the rotation of the joints (Rx, Ry, and Rz). The gripper
developed to pick up objects contains three different parts 1)
a Raspberry Pi, 2) a servo motor that opens and closes the
gripper, and 3) a 3D printed Polylactic Acid (PLA) casing. The
movement of the servo motor opens and closes the 3D printed
fingers, according to the instruction sent from the Raspberry
Pi interface using the General Purpose Input/Output (GPIO).
Thus, a FB, adopting the service template, encapsulates the
control of GPIO pins using an input variable to establish the
operation to perform (open or close). The communication in

68



the CPPS uses multicast sockets to send events between FBs
that are in different devices (different colors), as used in the
previous scenario.

C. Manufacturing Applications

The simulation of a manufacturing production line addresses
several challenges, like the material tracking on the shop-
floor or equipment sensorization. Regarding the flow of ma-
terials along the production line, the developed simulation
includes each station of the process, with its attributes, like the
current manufactured material and the respective transporter,
the sensors associated, and the operation time. The simulated
representation mainly serves as an advantage for the process
industries, which have a sequential set of productive steps, be-
ing able to simulate different layouts to optimize productivity.

Fig. 4. Manufacturing Scenario.

Figure 4 presents partially the FB pipeline of the simulation
implementation, where each simulated station uses three FBs
to model its behavior. The main FB, that adopts the equip-
ment template, represents a station and implements a state
machine with the following states: 1) unscheduled, waiting
for new material to produce; 2) standby, arrives a material
and transporter associated and waits to start the operation; 3)
productive, working in the operation of the station; and 4)
error, a stochastic state to simulate an extra time producing
the material. The additional two FBs, implemented using the
service template, allow to simulate the production time and
error time (if any). All the series of three FBs represent
the entire production line with its characteristic sequential U
shape and bifurcations. Additionally, this approach enables
the integration of real components with in this simulation
environment, turning the pipeline more accurate.

D. Performance Evaluation

The manufacturing line simulation scenario serves as a basis
for performance and workload evaluation for the DINASORE
framework. By using a series of three FBs that represent a
station it is possible to assess the CPU and memory usage
with a varying number of FBs. The htop monitoring tool
(linux) was used enabling the profiling of each process in the
operating system. Typically, the memory usage has a constant
value for the same input parameters; however, the CPU usage
has high variability, which requires more samples to obtain an
accurate estimation. The higher number of collected samples
for the same scenario, generates a more substantial variability,
computed in the form of standard deviation. Figure 5 considers
both metrics, representing the collected samples for the mem-
ory and the average and standard deviation for the processing
usage.

Fig. 5. DINASORE Performance Results.

The main property to evaluate on the DINASORE is how
an increasing number of FBs influences the framework usage
of computational resources. This kind of test requires a large
number of FBs (up to 200) focusing on the DINASORE
management of the runtime environment. The hardware spec-
ifications of the host machine are 16GB of RAM and an
Intel Core i7 processor, with 12 cores and a frequency of
2.20GHz. The analysis of the results indicates a growing trend
in both metrics with an increasing number of FBs. That trend
follows the natural behavior of computational systems: more
complexity causes more resources consumed, with the CPU
curve following a rate of approximately 18 FBs per 1% of CPU
usage. Those values prove the reliability and scalability of the
developed solutions, considering the target hardware, which
varies from low computational power devices (e.g., Raspberry

69



Pi) to high performance machines (e.g., servers). Such experi-
ments’ main intention is solely to validate the performance of
DINASORE, not considering CPU and memory usage in terms
of FB functionality (e.g., training a deep neural network).

V. CONCLUSION

Looking in perspective, the DINASORE framework enables
the deployment of powerful Python algorithms for CPPSs,
following industrial standards globally adopted, like the IEC
61499 and OPC-UA protocol. The proposed framework in-
creases the flexibility of the traditionally closed and hard to
re-configure industrial systems, being a step forward the high-
mix low-volume paradigm. The validation scenarios prove
the flexibility and reliability of the DINASORE, giving the
necessary freedom to developers for a multitude of different
application implementations, like sensor integration, equip-
ment control, data processing, or communication protocols.
The performance evaluation demonstrates the scalability in a
DINASORE runtime environment with an increasing amount
of FBs. Nevertheless, the DINASORE transforms a heavy-
weight local application into a distributed solution performing
in a clusters of devices. Considering that, the platform provides
capabilities to scale up the solutions for a larger amount of de-
vices, isolating the applications into FBs, and communication
through popular IoT protocols, like MQTT or OPC-UA.

As for the future work, and assuming that DINASORE
enables the use of computation-intensive machine learning
solutions, the exploration of speculative computation con-
cept, as implemented in [30] for FB-based systems, will be
explored. The central idea is to implement this concept as
a background process in DINASORE so the execution can
be accelerated transparently. An additional objective is the
continuous implementation of new methods using the FB
structure to easily experiment with them in different industrial
applications due to the FB portability between systems.

ACKNOWLEDGMENT

INDTECH 4.0 - New technologies for intelligent manufac-
turing. Support on behalf of IS for Technological Research
and Development (SI à Investigação e Desenvolvimento Tec-
nológico). POCI-01-0247-FEDER-026653

REFERENCES

[1] G. Gonçalves, J. Reis, R. Pinto, M. Alves, and J. Correia, “A step
forward on intelligent factories: A smart sensor-oriented approach,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA). IEEE, 2014, pp. 1–8.

[2] S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing smart factory of
industrie 4.0: an outlook,” International Journal of Distributed Sensor
Networks, vol. 12, no. 1, p. 3159805, 2016.

[3] O. Rittho, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske, “Yale:
Yet another learning environment,” in LLWA 01-Tagungsband der GI-
Workshop-Woche Lernen-Lehren-Wissen-Adaptivität, no. 763. Citeseer,
2001, pp. 84–92.

[4] M. Corporation. (2018) Microsoft azure machine learning studio.
[Online]. Available: https://azure.microsoft.com/pt-pt/services/machine-
learning-studio/

[5] G. AI. (2017) Google cloud ai. [Online]. Available:
https://cloud.google.com/products/ai/

[6] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A. Valentini,
and A. Martel, “Framework for distributed industrial automation and
control (4diac),” in 2008 6th IEEE International Conference on Indus-
trial Informatics, July 2008, pp. 283–288.

[7] G. Cengic, O. Ljungkrantz, and K. Akesson, “Formal modeling of
function block applications running in iec 61499 execution runtime,”
in 2006 IEEE Conference on Emerging Technologies and Factory
Automation, Sep. 2006, pp. 1269–1276.

[8] M. Minhat, V. Vyatkin, X. Xu, S. Wong, and Z. Al-Bayaa, “A novel open
cnc architecture based on step-nc data model and iec 61499 function
blocks,” Robotics and Computer-Integrated Manufacturing, vol. 25,
no. 3, pp. 560–569, 2009.

[9] C. C. Insaurralde, “Modeling standard for distributed control systems:
Iec 61499 from industrial automation to aerospace,” in 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). IEEE, 2016, pp.
1–8.

[10] F. Andrén, T. Strasser, and W. Kastner, “Model-driven engineering
applied to smart grid automation using iec 61850 and iec 61499,” in
2014 Power Systems Computation Conference. IEEE, 2014, pp. 1–7.

[11] T. Terzimehic, M. Wenger, A. Zoitl, A. Bayha, K. Becker, T. Müller,
and H. Schauerte, “Towards an industry 4.0 compliant control software
architecture using iec 61499 & opc ua,” in 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2017, pp. 1–4.

[12] M. V. Garcı́a, E. Irisarri, F. Pérez, M. Marcos, and E. Estévez, “En-
gineering tool to develop cpps based on iec-61499 and opc ua for
oil&gas process,” in 2017 IEEE 13th International Workshop on Factory
Communication Systems (WFCS). IEEE, 2017, pp. 1–9.

[13] M. V. Garcı́a, F. Pérez, I. Calvo, and G. Morán, “Building industrial
cps with the iec 61499 standard on low-cost hardware platforms,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA). IEEE, 2014, pp. 1–4.

[14] M. V. Garcı́a, F. Pérez, I. Calvo, and G. Moran, “Developing cpps within
iec-61499 based on low cost devices,” in 2015 IEEE World Conference
on Factory Communication Systems (WFCS). IEEE, 2015, pp. 1–4.

[15] K. Thramboulidis and A. Zoupas, “Real-time java in control and automa-
tion: a model driven development approach,” in 2005 IEEE Conference
on Emerging Technologies and Factory Automation, vol. 1. IEEE, 2005,
pp. 8–pp.

[16] V. Vyatkin and J. Chouinard, “On comparisons of the isagraf implemen-
tation of iec 61499 with fbdk and other implementations,” in 2008 6th
IEEE International Conference on Industrial Informatics. IEEE, 2008,
pp. 289–294.

[17] G. Cengic, O. Ljungkrantz, and K. Akesson, “Formal modeling of
function block applications running in iec 61499 execution runtime,”
in 2006 IEEE Conference on Emerging Technologies and Factory
Automation. IEEE, 2006, pp. 1269–1276.

[18] L. Prenzel and J. Provost, “Fbbeam: An erlang-based iec˜ 61499 imple-
mentation,” in IEEE International Conference on Industrial Informatics
(INDIN’19), 2019.

[19] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, A. Zoitl,
J. Chouinard, H. Mayer, and A. Kopitar, “The iec 61499 function block
standard: Software tools and runtime platforms,” ISA Automation Week,
vol. 2012, 2012.

[20] L. I. Pinto, C. D. Vasconcellos, R. S. U. Rosso, and G. H. Negri, “Icaru-
fb: An iec 61499 compliant multiplatform software infrastructure,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1074–1083,
2016.

[21] P. Lindgren, M. Lindner, A. Lindner, D. Pereira, and L. M. Pinho, “Rtfm-
core: Language and implementation,” in 2015 IEEE 10th Conference on
Industrial Electronics and Applications (ICIEA). IEEE, 2015, pp. 990–
995.

[22] S. Kožár and P. Kadera, “Integration of iec 61499 with opc ua,” in
2016 IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2016, pp. 1–7.

[23] L. Prenzel, A. Zoitl, and J. Provost, “Iec 61499 runtime environments:
A state of the art comparison,” in 17th International Conference on
Computer Aided Systems Theory (EUROCAST 2019), 2019.

[24] E. X. Castellanos, C. A. Garcia, C. Rosero, C. Sanchez, and M. V.
Garcia, “Enabling an automation architecture of cpps based on uml
combined with iec-61499,” in 2017 17th International Conference on
Control, Automation and Systems (ICCAS). IEEE, 2017, pp. 471–476.

[25] A. Hopsu, U. D. Atmojo, and V. Vyatkin, “On portability of iec 61499
compliant structures and systems,” in 2019 IEEE 28th International

70



Symposium on Industrial Electronics (ISIE). IEEE, 2019, pp. 1306–
1311.

[26] L. Ferrarini and C. Veber, “Implementation approaches for the execution
model of iec 61499 applications,” in 2nd IEEE International Conference
on Industrial Informatics, 2004. INDIN’04. 2004. IEEE, 2004, pp. 612–
617.

[27] G. Cengic and K. Akesson, “Definition of the execution model used
in the fuber iec 61499 runtime environment.[in:] industrial informatics,
2008. indin 2008,” in 6th IEEE International Conference on, 2008, p.
301.

[28] C. Sunder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan,
A. Valentini, L. Ferrarini, T. Strasser, J. L. Martinez-Lastra, and
F. Auinger, “Usability and interoperability of iec 61499 based distributed
automation systems,” in 2006 4th IEEE International Conference on
Industrial Informatics. IEEE, 2006, pp. 31–37.

[29] G. Cengic and K. Akesson, “On formal analysis of iec 61499 appli-
cations, part b: Execution semantics,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 2, pp. 145–154, 2010.

[30] D. Drozdov, V. Dubinin, and V. Vyatkin, “Speculative computation in
iec 61499 function blocks execution—modeling and simulation,” in 2016
IEEE 14th International Conference on Industrial Informatics (INDIN).
IEEE, 2016, pp. 748–755.

71


