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Abstract

Interval-valued computation is an unconventional commuparadigm. It is
an idealization of classical 16-, 32-, 64- etc. bit basedmatations. It represents
data as specific subsets of the unit interval — in this senis@anadigm is classified
into the continuous space machine paradigm near to optcapating. In this pa-
per we show the visual reasoning power of interval-valuedmatations, namely,
we demonstrate that the decision process of quantified pitigaal formulae is
fully representable in a natural visual form. Further, weegh temporal-logical
interpretation of interval-valued computations.

Keywords: new computing paradigms, visual reasoning, interval tarpogic

1 Introduction

In the last fifteen years a new direction of computing has gettwhich develops ideas
for computing devices motivated by nature. It includes DN#nputing, quantum
computing and relativistic computers, among others.

In [11] another new computing paradigm was introduced, tealed interval-
valued computation system. In this paradigm, data is repttesl by specific subsets of
the unit interval, namely, by finite unions of disjoint sutgirvals. This data representa-
tion corresponds to the notion of generalized intervalk ([2). In these papers some
logics of temporal relations between such generalizedvate (that we calinterval-
valuesin this paper) are analyzed. In [11] some other operators weyposed to con-
struct an interval-valued computing system and also the gAblem was solved by a
linear interval-valued computation. In [12] and [13] it wa®ved that a restricted class
of interval-valued computations is adequate for PSPACH., i) the class of languages
decidable by this class of interval-valued computatioris@des with PSPACE.
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Reasoning by diagrams and intervals is an important areesoéMrepresentations
of mathematical and logical reasoning. For example, Vena- Buler-diagrams are
well known, such as graphical versions of interval temptogic ([4], [8]). An old
method for visualizing Boolean algebraic calculationfisiethod of Venn diagrams.
Itis suitable to formulae built from two or three propositadmariables. There are good
ideas to generalize Venn diagrams to a higher number ofblasq[1], [3], [5], [6],
[10], and [14]). Venn-diagrams are suitable to visuallyressgnt propositional logical
laws. Of course, our interval-values are also able to remtgsropositional reasoning
in a nice and natural visual form, because the intervalasform a Boolean algebra
in which every finite Boolean algebra is visually represbtga Moreover this visual
representation is also suitable to help visually to follbw tlecision process of the va-
lidity of quantified propositional formulae. This problesmPSPACE-complete. This
complexity class includes such typical problems that sohudf two-player games like
chess or go. In this paper we demonstrate the visual expiggsf the decision pro-
cess of validity of quantified propositional formulae. Weclormalize an interval tem-
poral logic equipped by some modalities concerning theaipes on interval-values.
A decidability and a complexity result will also be given.

2 The idea of interval-valued computations

In [11] Nagy proposed a new discrete tigheontinuous space computational model,
the so-called interval-valued computing. A precise desicm of the model can be
found in [13], that we will recall and use. It involves anatlgpe of idealization than
Turing machines — the density of the memory can be raiseditelily instead of its
length. It is a natural model that can formulate computatimicomputers with higher
and higher bit number in a byte in a unified framework.

As long as the paradigm keeps using only finite unions of viatisy the system fits
within the bounds of classical Neumann-Church-Turing tgpmputations.

The computation works on specific subsets of the intgfudl), more specifically,
on finite unions of [)-type subintervals. In a nutshell, imtd-valued computations
start with [0, %) and continue with a finite sequence of operator applicatitingorks
sequentially in a deterministic manner.

The allowed operations are motivated by the operationsenfrimitional comput-
ers on bit sequences: Boolean operations, shift operatiodsan extra operator, the
product. The role of the introduced product is connectirtgriral-values on different
‘resolution levels’. Essentially, it has the same functiée magnification operators
in optical computing ([15]) which is another continuous apa&omputing paradigm
where data is represented by 2-dimensional complex-vatages.

In the interval-valued computing system, an importantiesin is eliminated, i.e.
there is no permanent limit on the number of bits in a data(byie); we have to sup-
pose only that the number is always finite. Of course, in tlse cha given computation
an upper bound (the bit height of the computation sequemeaya exists, and it gives
the maximum number of bits the system needs for that compuotptocess. Hence
our model still fits into the framework of the Church-Turingradigm, but it faces dif-
ferent complexity bounds than the classical Turing modédthadugh the computation
in this model is sequential, the inner parallelism is exeshdOne can consider the
system without restriction on the size of the informatioded in an information unit
(interval-value). It allows to increase the size of the alpét unlimitedly in a computa-
tion. In this article we employ this inner parallelism toextl the visual expressiveness
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of calculations with interval-values. Complex manipwat on the interval-bytes can
be shown, acting uniformly to the whole stored data — theniadevalue. This makes
possible, for instance, the visual representation of thesi® process of quantified
propositional formulae.

3 Interval-values and operators

As we mentioned, interval-values are finite unions of digj¢éft-closed, right-open
subintervals of the unit intervéd, 1).
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Figure 1: Examples of visual presentations of intervalseal

Formally these values are defined in the following way.

Definition 1 The setV of interval-valuesoincides with the set of finite unions [of
type subintervals df), 1). The setV, of specific interval-valuesoincides with

k
{U [, L) :meN,kgzm,Ogll<...<lk<2m}.

i=1

We note that the set of finite unions includes the empty/set 0), that is,( is also
an allowed interval-value.

Similarly to traditional computers working on bytes, weoall bitwise Boolean
operations. If we consider interval-values as subsets ,4j fben the corresponding
operations coincide with the set-theoretical operatidreomplementationAl), union
(AU B) and intersection{ N B). V forms an infinite Boolean set algebra with these
operations.V is an infinite subalgebra of the last algebra. Instead ofte=iretical
operators we also can use the appropriate Boolean logieahtgys (negation, disjunc-
tion, conjunction). We note that other usual Boolean opesatas xor 4 & B) or
implication (A — B) are definable in the usual way.

Assisting formulation of the remaining operations, a fimctlength : V — R is
going to be defined. Intuitively, it determines the lengthha first (starting) “compo-
nent” of the input interval-value, that is, the first (fronftjenaximal subinterval of the
unitinterval included in the given interval-value.

Definition 2 Let A be an interval-value. Let the functioflength : V. — R be

defined as follows. If there existb € [0, 1] satisfying[a, b) C A4, [0,a) N A = () and
[a,b) € Aforall v/ € (b, 1], thenFlength(A) = b — a, otherwiseFlength(A) = 0.
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Flength helps us to define the binary shift operators\anTheleft-shiftoperator
will shift the first interval-value to the left by the firstdgth of the second operand and
remove the part which is shifted out of the inter{fall). As opposed to this, theght-
shift operator is defined in a circular way, i.e. the parts shifteove 1 will appear at
the lower end of0, 1). In this definition we write interval-values in their “chataristic
function” notation instead of subset notation.

Definition 3 The binary operatord shi ft and Rshift onV are defined in the follow-
ing way. Ifz € [0,1] and A, B € V then
Lohi ft(A, B)(z) — A(I + Flength(B)), if0<ax+ Flength(B) <1,
0 in other cases
Rshi ft(A, B)(z) = gll(ff;af(f — Flength(B))), ifz <1,
Here the function frac gives the fractional part of a real rham i.e., fragz) =
x — | x|, where|z] is the greatest integer which is not greater than

Figure 4: Examples of shift operators with interval-values

In Figure 4 some examples can be seen for both operafiensft and Lshi ft.
The second operands are shown in grey but they are not thpasdalof the resulting
interval-values. Notice that using both shift operatota @combined way one can delete
any desired parts/components of an interval-value.

Now we define the so-callddactalian producton interval-values.

Definition 4 Let A and B be interval-values and < [0, 1). Then the fractalian prod-

1
uctA x Bincludesr if and only if B(z) = 1 and A (giﬁg ) = 1, whereB,, denotes
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the lower end-point of thés-component including and B, denotes the upper end-
point of this component, that i§3,,, B.) is the maximal subinterval d8 containing
xZ.

Figure 5: Examples for product of interval-values

We can explain this in a more descriptive mannerd ifontains exactly: interval
components with ends; 1,a;2 (1 < i < k) and B contains exactly components
with endsb; 1, b; 2 (1 < i <), then we determine the value 6f= A « B as follows:
we set the number of components@fto bek - I. For this process we can use double
indices for the components 6f. The starting- and end points of thgth component
area;1 + bjl((ll'g — (11'1) andail + ij ((11'2 — ail), reSpectively.

The idea and the role of this operation is similar to that ofraited shrinking
of 2-dimensional images in optical computations ([15]).witl be used to connect
interval-values of different resolution. As we can observé-igure 5, as well, the
fractalian product of two interval-values is the result bfisking the first operand to
each component of the second one.

4 A representation ofn independent truth values

In this section we give a natural interval-valued compotai representation of all
variations ofn independent truth values which is only a visual rephraséefwtell-
known truth tables and will be useful not only in checking Wie a given propo-
sitional formula is a logical law or not but also in the intelFvalued computations
deciding whether a given quantified propositional formsl&ile or not.
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For lack of space, we do not define formally therval-valued computationson-
sult [12] or [13] for the formal details. Our focus is on thewal expressivity of the
model. For the aims of the present paper it is enough to knawitlis a sequence of
interval-values where each new member of the sequences&suh an operator appli-
cation of one or two precedents in the same sequence and islsitrting With[O, %) .
In this mannerdeciding a languagé. by an interval-valued computationeans con-
structing an algorithm that for any input problem instaregponds an interval-valued
computation sequence with the following property: the ltestithe interval-valued
computation sequence created by the algorithm to an inprd was equal to the unit
interval[0, 1) if and only if w is in L.

We give a computation which constructs a quite natural uatlevalued represen-
tation of n independent truth values. Léf; be [0, %) For all non-negative inte-
gersk, we defineKsi1o = Ki * K3gy1, Kz = RShift(K3k+2,K3k+1) and
K3pqiq = K32 U K3p13.

Fact 1 By an induction ork one can establish that

S R
Kgn = | [27,2—k)
=0

By the previous fact this computation sequence productsideiinterval-values since
it satisfies the following.

Fact2 Forany(z,...,x,) € {0,1}" there exists € [0, 1) satisfying that
(1,...,2n)=(r€e K1,r € Ky,...,7r € K3p41).

All of our interval-valued computations (at least the onesiding validity of quan-
tified propositional formulae) will start with the consttion of K1, . .., K3,,41, if nis
the number of propositional variables of the input formdfTae first 4 interval-values
in Figure 6 and 8 ard<,, K4, K7, K11, they represent 4 independent truth values of
x1, %2, 23, x4. This method is an alternative of Venn/Euler diagrams teetedlpossi-
ble combinations of the truth values of the Boolean varigibig¢he same diagram. The
novel idea is that we assign 1 dimensional objects (interahles) for the variables
without requiring their connectivity.

Of course, using these interval-values representing asipte variations of the
truth/falsity of the propositional variables, ..., z,, one can easily decide the va-
lidity of propositional formulae, by executing the Booleaperations on the interval-
values on the desired order. In this way any propositionahidap(z1, ..., z,) gets
its interval-truth-value by an appropriate interval-vedicomputatior’ (). Not spec-
ifying C'(¢) more formally, we can observe that for any propositionatfola ¢ built
from propositional variablesy, ..., z, and for anyr € [0, 1) the following holds:

r € Cp) & ¢ is satisfied by the truth valuatiofx; : (r € Kiy),z2 : (r €
Ky),...,x, : (r € Ksny1)). The fifth lines of Figure 6 and 8 represefity) for
the two given formulae, respectively.

5 Visual solution of a PSPACE-complete problem
We employ the visual reasoning power of interval-valued gotations for a more

complex task. We show that the sequence of interval-valveduced by the com-
putation represents visually the full information neededinderstand the solution of
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the given case of the PSPACE-complete problem QSAT, i.epithielem whether any
given quantified propositional formula is true. This prables decidable by a linear
interval-valued computation.

We specify visually the needed computation. The computatiarts with the deter-
mination of the interval-values of the independent vagalflines 1-4 on Figures 6 and
8). We concentrate on that how these interval-values Jisealcode the information
needed to follow the decision process for validity of quiedi propositional formulae.

A quantified propositional formula —without loss of genéyat is of form
Vt13ts . .. Qe WhereQ); isV for oddi and3 for even:. Itis called true or valid if and
onlyif vVt; € {0,1}3t5 € {0,1}...Qntn € {0,1}p(x1 : t1,..., 2, : t,) holds.

By using only Boolean operators the interval-value of thargifier-free formulap
can be computed (the result can be seen on line 5 in Figured 8)aThen by using
shift and logical operations in an appropriate way, one aaricue the computation
in a way such that the interval-valued decision algorithmstaicts interval-values
Colp)(=C(v)), Ci(p),...,Cn(p) with the following properties.

e Ci(p)={rel0,1):
Qn7i+1tnfi+1 cee Qntn
o@r:(re€ K1), @ni: (1€ K3n_iy=1), Tn—it1 : tnit1, -+ Tn  tn)},

e C;11(p) can be constructed frofi; (¢) and the interval-value corresponding to
Tpal—is that is, fromK3(n+1_i)_1.

Figure 7 shows the way of computation at existential quantiBy disjunction and
shift operators the corresponding neighbor parts of thepmorants are also filled. The
corresponding neighbor parts of the interval-values aeefdfiowing interval pairs:
[2F,2L8) and [2LEL, 2L42) wherek is the index of the quantified variable we are
dealing with in the actual step. They are not separated biycaklines on Figures
6, 7 and 8. A part and its corresponding neighbor differ (exactly one of them
is contained by the interval-value) if and only if the valdelee formula depends on
the value of the actual variable using the fixed values of therovariables that are

represented by the actual part of the interval-value.

The steps to determin@; 1 () needs alternating- and3-transformations. A/-step
means checking the interval AND its corresponding neighba?; (), while an3-
step amounts to checking the interval OR its correspondaigjror. vV-step visually
means simply a check if the appropriate neighbor of the emadsubinterval is also in
C;(¢) while an3-step checks if the appropriate neighbor of the examinethgrval
OR the subinterval itself is i6; (¢). An example ofi-transformation is presented on
Figure 7, thev-transformations are going in a similar manner. Since tepsstompute
the parts of the interval-value of the various correspoggarts in a parallel way, an
J-step and &-step needs a constant number of operation applicatiortervai-values
(see Figure 7, where the computation obtaining line 6 of feduis shown using line
5 and the value of the variablg). Since the number of these steps exactly the same
as the number of the variables, the computation can be peefbin a linear number
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of operation, i.e. a linear size of algorithm on the lengthhaf computation sequence
(number of computed interval-values).

In Figure 6 and 8 one can follow two interval-valued compota deciding whether
a given quantified propositional formula is true. The lined $how the 4 independent
truth values, the 5th line shows the result of the evaluaifahe Boolean operators and
lines 6-9 include the result of adding one quantifier per fmthe formulae. Finally,
the QSAT formula is true if and only if the resulted intervallue (line 9) is [0,1). (If
it is not true, the empty interval is obtained.)

6 Interval-valued computations and interval temporal
logic

Temporal logic also has strong connection to visual commgutin [4], a visual spec-
ification language of propositional temporal conditiongiigen which constitutes a
subset of propositional temporal logic, more specificatiyerval temporal logic. In
[8], an interval temporal logic for repeating temporal egeis introduced. Thinking
[0,1) as a time flow we can investigate its temporal logic. & eonsider only classical
temporal operators, then its temporal logic trivially addes with the temporal logic
of (RT9, <) whereR*? is the set of nonnegative reals. However, it is an intergstin
guestion, what happens if we add the non-logical operatbisterval-values to the
temporal logic over [0,1) as binary modal operators.

Definition 5 The members of the following set of formulae are intervédied modal-
temporal formulae. It is the minimal set of strings satisfyihe following:

e a,b,...are (atomic) formulae,

e [irstHalf is a formulae,

o if , 0 are formulae, therip A 0), (¢ V ) and—¢ are formulae, too,
o if p, 0 are formulae3— ¢ and <Oy are formulae, too,

o if p, 0 are formulae therR(p, 0), L(p, #) and P(p, §) are formulae, too. R, L
and P are binary operators, they coincide with the shift and thedurct opera-
tors.)

Definition 6 An interval-valuatiorv is a function assigning to each memberaf b,
...} an interval-value. Then for any interval-valued modal-pemal formula||¢||,, is
an interval-value of the interval-valued modal-tempor@hfiula p. The definition of
this notion is the expected one. We just write three claustsdefinition.

e ||FirstHalf|,=[0,1),

o [B=ollvis{te[0,1) : (t,1) S [ellu},

o [[P(e, 0o = llello * [10]]o-

The shift operators have intuitive meaning in this templogic: an event can start
only earlier/later by the starting component of the valua sécond event. The product
operator can be explained as a modal operator in the follpway. P(p, FirstHal f)
expresses thap holds at the first half of the actual evaluating interval, enerally,
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P(¢, 0) expresses that holds at that parts of the actual evaluation interval whirig
to the down-scaled “copy” ot .

A modal-temporal formula is said to be modal-temporal laglaw if with every
valuationw its interval-value is [0,1).

Problem 1 How to axiomatize this kind of modal-temporal logic? Is itdiable? If
yes, what is its complexity?

We have a partial answer to this question.

Claim 1 The problem if a modal-temporal formula built up only frdfirst Hal f but
without other propositional variables is decidable by empntial time. If the usage of
the product operator is restricted such that it always takgsoduct withF'irst Hal f,
then the arising problem is solvable in polynomial spaceréduer there is a PSPACE-
complete problem is among them (as it was presented).

7 Conclusion

We have demonstrated the visual reasoning power of a renennuentional comput-
ing system. Its expressiveness depends on data représeivainterval-values which
makes it possible by its topological properties.

Itis worth thinking over what further problems can be nallynepresented by gen-
eralized intervals. Possible candidates are problemgalgourring events in temporal
logic with a notion of compositionality. The product openatvould provide transfer
between different compositional levels; embeddabilitynafcro- and micro scales can
be conceptualized. In this way, also visual analysis andalisepresentation of re-
occurring, periodic hierarchical events — e.g. in biostats and health insurance —
would be available.

Further generalization is possible to regions in higheratisional spaces, mainly
to R2. In this way one should work out the connections of intemallsed computing
to so-called optical computing where objects of computirggzdimensional images
([25]) through their visual applications.
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