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Abstract

Interval-valued computation is an unconventional computing paradigm. It is
an idealization of classical 16-, 32-, 64- etc. bit based computations. It represents
data as specific subsets of the unit interval – in this sense this paradigm is classified
into the continuous space machine paradigm near to optical computing. In this pa-
per we show the visual reasoning power of interval-valued computations, namely,
we demonstrate that the decision process of quantified propositional formulae is
fully representable in a natural visual form. Further, we give a temporal-logical
interpretation of interval-valued computations.
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1 Introduction

In the last fifteen years a new direction of computing has emerged which develops ideas
for computing devices motivated by nature. It includes DNA computing, quantum
computing and relativistic computers, among others.

In [11] another new computing paradigm was introduced, the so-called interval-
valued computation system. In this paradigm, data is represented by specific subsets of
the unit interval, namely, by finite unions of disjoint subintervals. This data representa-
tion corresponds to the notion of generalized intervals ([2], [7]). In these papers some
logics of temporal relations between such generalized intervals (that we callinterval-
valuesin this paper) are analyzed. In [11] some other operators were proposed to con-
struct an interval-valued computing system and also the SATproblem was solved by a
linear interval-valued computation. In [12] and [13] it wasproved that a restricted class
of interval-valued computations is adequate for PSPACE, that is, the class of languages
decidable by this class of interval-valued computations coincides with PSPACE.
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Reasoning by diagrams and intervals is an important area of visual representations
of mathematical and logical reasoning. For example, Venn- and Euler-diagrams are
well known, such as graphical versions of interval temporallogic ([4], [8]). An old
method for visualizing Boolean algebraic calculations is the method of Venn diagrams.
It is suitable to formulæ built from two or three propositional variables. There are good
ideas to generalize Venn diagrams to a higher number of variables ([1], [3], [5], [6],
[10], and [14]). Venn-diagrams are suitable to visually represent propositional logical
laws. Of course, our interval-values are also able to represent propositional reasoning
in a nice and natural visual form, because the interval-values form a Boolean algebra
in which every finite Boolean algebra is visually representable. Moreover this visual
representation is also suitable to help visually to follow the decision process of the va-
lidity of quantified propositional formulae. This problem is PSPACE-complete. This
complexity class includes such typical problems that solution of two-player games like
chess or go. In this paper we demonstrate the visual expressibility of the decision pro-
cess of validity of quantified propositional formulae. We also formalize an interval tem-
poral logic equipped by some modalities concerning the operators on interval-values.
A decidability and a complexity result will also be given.

2 The idea of interval-valued computations

In [11] Nagy proposed a new discrete time/ continuous space computational model,
the so-called interval-valued computing. A precise description of the model can be
found in [13], that we will recall and use. It involves another type of idealization than
Turing machines – the density of the memory can be raised unlimitedly instead of its
length. It is a natural model that can formulate computations of computers with higher
and higher bit number in a byte in a unified framework.

As long as the paradigm keeps using only finite unions of intervals, the system fits
within the bounds of classical Neumann-Church-Turing typecomputations.

The computation works on specific subsets of the interval[0, 1), more specifically,
on finite unions of [)-type subintervals. In a nutshell, interval-valued computations
start with

[

0, 1
2

)

and continue with a finite sequence of operator applications. It works
sequentially in a deterministic manner.

The allowed operations are motivated by the operations of the traditional comput-
ers on bit sequences: Boolean operations, shift operationsand an extra operator, the
product. The role of the introduced product is connecting interval-values on different
’resolution levels’. Essentially, it has the same functionlike magnification operators
in optical computing ([15]) which is another continuous space computing paradigm
where data is represented by 2-dimensional complex-valuedimages.

In the interval-valued computing system, an important restriction is eliminated, i.e.
there is no permanent limit on the number of bits in a data unit(byte); we have to sup-
pose only that the number is always finite. Of course, in the case of a given computation
an upper bound (the bit height of the computation sequence) always exists, and it gives
the maximum number of bits the system needs for that computation process. Hence
our model still fits into the framework of the Church-Turing paradigm, but it faces dif-
ferent complexity bounds than the classical Turing model. Although the computation
in this model is sequential, the inner parallelism is extended. One can consider the
system without restriction on the size of the information coded in an information unit
(interval-value). It allows to increase the size of the alphabet unlimitedly in a computa-
tion. In this article we employ this inner parallelism to extend the visual expressiveness
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of calculations with interval-values. Complex manipulations on the interval-bytes can
be shown, acting uniformly to the whole stored data – the interval-value. This makes
possible, for instance, the visual representation of the decision process of quantified
propositional formulae.

3 Interval-values and operators

As we mentioned, interval-values are finite unions of disjoint left-closed, right-open
subintervals of the unit interval[0, 1).

Figure 1: Examples of visual presentations of interval-values

Formally these values are defined in the following way.

Definition 1 The setV of interval-valuescoincides with the set of finite unions of[)-
type subintervals of[0, 1). The setV0 of specific interval-valuescoincides with
{

k
⋃

i=1

[

li
2m , 1+li

2m

)

: m ∈ N, k ≤ 2m, 0 ≤ l1 < . . . < lk < 2m

}

.

We note that the set of finite unions includes the empty set(k = 0), that is,∅ is also
an allowed interval-value.

Similarly to traditional computers working on bytes, we allow bitwise Boolean
operations. If we consider interval-values as subsets of [0,1) then the corresponding
operations coincide with the set-theoretical operations of complementation (A), union
(A ∪B ) and intersection (A ∩B). V forms an infinite Boolean set algebra with these
operations.V0 is an infinite subalgebra of the last algebra. Instead of set theoretical
operators we also can use the appropriate Boolean logical operators (negation, disjunc-
tion, conjunction). We note that other usual Boolean operators, as xor (A ⊕ B) or
implication (A→ B) are definable in the usual way.

Assisting formulation of the remaining operations, a function Flength : V→ R is
going to be defined. Intuitively, it determines the length ofthe first (starting) “compo-
nent” of the input interval-value, that is, the first (from left) maximal subinterval of the
unit interval included in the given interval-value.

Definition 2 Let A be an interval-value. Let the functionFlength : V → R be
defined as follows. If there exista, b ∈ [0, 1] satisfying[a, b) ⊆ A, [0, a) ∩A = ∅ and
[a, b′) 6⊆ A for all b′ ∈ (b, 1], thenFlength(A) = b− a, otherwiseFlength(A) = 0.
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Figure 2: Examples for∩ and∪

Figure 3: Example for complement
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Flength helps us to define the binary shift operators onV. The left-shiftoperator
will shift the first interval-value to the left by the first-length of the second operand and
remove the part which is shifted out of the interval[0, 1). As opposed to this, theright-
shift operator is defined in a circular way, i.e. the parts shifted above 1 will appear at
the lower end of[0, 1). In this definition we write interval-values in their “characteristic
function” notation instead of subset notation.

Definition 3 The binary operatorsLshift andRshift onV are defined in the follow-
ing way. Ifx ∈ [0, 1] andA, B ∈ V then

Lshift(A, B)(x) =

{

A(x + Flength(B)), if 0 ≤ x + Flength(B) ≤ 1,
0 in other cases.

Rshift(A, B)(x) =

{

A(frac(x− Flength(B))), if x < 1,
0 if x = 1.

Here the function frac gives the fractional part of a real number, i.e., frac(x) =
x− ⌊x⌋, where⌊x⌋ is the greatest integer which is not greater thanx.

Figure 4: Examples of shift operators with interval-values

In Figure 4 some examples can be seen for both operationsRshift andLshift.
The second operands are shown in grey but they are not the realparts of the resulting
interval-values. Notice that using both shift operators ina combined way one can delete
any desired parts/components of an interval-value.
Now we define the so-calledfractalian producton interval-values.

Definition 4 LetA andB be interval-values andx ∈ [0, 1). Then the fractalian prod-

uctA ∗B includesx if and only ifB(x) = 1 andA
(

x−B
x

Bx−B
x

)

= 1, whereBx denotes
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the lower end-point of theB-component includingx andBx denotes the upper end-
point of this component, that is,[Bx, Bx) is the maximal subinterval ofB containing
x.

Figure 5: Examples for product of interval-values

We can explain this in a more descriptive manner. IfA contains exactlyk interval
components with endsai,1, ai,2 (1 ≤ i ≤ k) andB contains exactlyl components
with endsbi,1, bi,2 (1 ≤ i ≤ l), then we determine the value ofC = A ∗B as follows:
we set the number of components ofC to bek · l. For this process we can use double
indices for the components ofC. The starting- and end points of theij-th component
areai1 + bj1(ai2 − ai1) andai1 + bj2(ai2 − ai1), respectively.

The idea and the role of this operation is similar to that of unlimited shrinking
of 2-dimensional images in optical computations ([15]). Itwill be used to connect
interval-values of different resolution. As we can observein Figure 5, as well, the
fractalian product of two interval-values is the result of shrinking the first operand to
each component of the second one.

4 A representation ofn independent truth values

In this section we give a natural interval-valued computational representation of all
variations ofn independent truth values which is only a visual rephrase of the well-
known truth tables and will be useful not only in checking whether a given propo-
sitional formula is a logical law or not but also in the interval-valued computations
deciding whether a given quantified propositional formula is true or not.
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For lack of space, we do not define formally theinterval-valued computations, con-
sult [12] or [13] for the formal details. Our focus is on the visual expressivity of the
model. For the aims of the present paper it is enough to know that it is a sequence of
interval-values where each new member of the sequence results from an operator appli-
cation of one or two precedents in the same sequence and whichis starting with

[

0, 1
2

)

.
In this manner,deciding a languageL by an interval-valued computationmeans con-
structing an algorithm that for any input problem instance responds an interval-valued
computation sequence with the following property: the result of the interval-valued
computation sequence created by the algorithm to an input word w is equal to the unit
interval[0, 1) if and only if w is in L.

We give a computation which constructs a quite natural interval-valued represen-
tation of n independent truth values. LetK1 be

[

0, 1
2

)

. For all non-negative inte-
gersk, we defineK3k+2 = K1 ∗ K3k+1, K3k+3 = RShift(K3k+2, K3k+1) and
K3k+4 = K3k+2 ∪K3k+3.

Fact 1 By an induction onk one can establish that

K3k+1 =

2k−1
−1

⋃

l=0

[

2l

2k
,
2l + 1

2k

)

.

By the previous fact this computation sequence produces suitable interval-values since
it satisfies the following.

Fact 2 For any(x1, . . . , xn) ∈ {0, 1}n there existsr ∈ [0, 1) satisfying that
(x1, . . . , xn) = (r ∈ K1, r ∈ K4, . . . , r ∈ K3n+1).

All of our interval-valued computations (at least the ones deciding validity of quan-
tified propositional formulae) will start with the construction of K1, . . . , K3n+1, if n is
the number of propositional variables of the input formula.The first 4 interval-values
in Figure 6 and 8 areK1, K4, K7, K11, they represent 4 independent truth values of
x1, x2, x3, x4. This method is an alternative of Venn/Euler diagrams to have all possi-
ble combinations of the truth values of the Boolean variables in the same diagram. The
novel idea is that we assign 1 dimensional objects (interval-values) for the variables
without requiring their connectivity.

Of course, using these interval-values representing all possible variations of the
truth/falsity of the propositional variablesx1, . . . , xn, one can easily decide the va-
lidity of propositional formulae, by executing the Booleanoperations on the interval-
values on the desired order. In this way any propositional formulaϕ(x1, . . . , xn) gets
its interval-truth-value by an appropriate interval-valued computationC(ϕ). Not spec-
ifying C(ϕ) more formally, we can observe that for any propositional formulaφ built
from propositional variablesx1, . . . , xn and for anyr ∈ [0, 1) the following holds:
r ∈ C(ϕ) ⇔ ϕ is satisfied by the truth valuation(x1 : (r ∈ K1), x2 : (r ∈
K4), . . . , xn : (r ∈ K3n+1)). The fifth lines of Figure 6 and 8 representC(ϕ) for
the two given formulae, respectively.

5 Visual solution of a PSPACE-complete problem

We employ the visual reasoning power of interval-valued computations for a more
complex task. We show that the sequence of interval-values produced by the com-
putation represents visually the full information needed to understand the solution of
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the given case of the PSPACE-complete problem QSAT, i.e. theproblem whether any
given quantified propositional formula is true. This problem is decidable by a linear
interval-valued computation.

We specify visually the needed computation. The computation starts with the deter-
mination of the interval-values of the independent variables (lines 1–4 on Figures 6 and
8). We concentrate on that how these interval-values visually encode the information
needed to follow the decision process for validity of quantified propositional formulae.

A quantified propositional formula –without loss of generality – is of form
∀t1∃t2 . . .Qnϕ whereQi is ∀ for oddi and∃ for eveni. It is called true or valid if and
only if ∀t1 ∈ {0, 1}∃t2 ∈ {0, 1} . . .Qntn ∈ {0, 1}ϕ(x1 : t1, . . . , xn : tn) holds.

By using only Boolean operators the interval-value of the quantifier-free formulaϕ
can be computed (the result can be seen on line 5 in Figures 6 and 8). Then by using
shift and logical operations in an appropriate way, one can continue the computation
in a way such that the interval-valued decision algorithm constructs interval-values
C0(ϕ)(= C(ϕ)), C1(ϕ), . . . , Cn(ϕ) with the following properties.

• Ci(ϕ) = {r ∈ [0, 1) :
Qn−i+1tn−i+1 . . . Qntn
ϕ(x1 : (r ∈ K1), . . . , xn−i : (r ∈ K3(n−i)−1), xn−i+1 : tn−i+1, . . . , xn : tn)},

• Ci+1(ϕ) can be constructed fromCi(ϕ) and the interval-value corresponding to
xn+1−i, that is, fromK3(n+1−i)−1.

Figure 7 shows the way of computation at existential quantifier. By disjunction and
shift operators the corresponding neighbor parts of the components are also filled. The
corresponding neighbor parts of the interval-values are the following interval pairs:
[

2l
2k , 2l+1

2k

)

and
[

2l+1
2k , 2l+2

2k

)

wherek is the index of the quantified variable we are
dealing with in the actual step. They are not separated by vertical lines on Figures
6, 7 and 8. A part and its corresponding neighbor differ (i.e.exactly one of them
is contained by the interval-value) if and only if the value of the formula depends on
the value of the actual variable using the fixed values of the other variables that are
represented by the actual part of the interval-value.

The steps to determineCi+1(ϕ) needs alternating∀- and∃-transformations. A∀-step
means checking the interval AND its corresponding neighborin Ci(ϕ), while an∃-
step amounts to checking the interval OR its corresponding neighbor.∀-step visually
means simply a check if the appropriate neighbor of the examined subinterval is also in
Ci(ϕ) while an∃-step checks if the appropriate neighbor of the examined subinterval
OR the subinterval itself is inCi(ϕ). An example of∃-transformation is presented on
Figure 7, the∀-transformations are going in a similar manner. Since the steps compute
the parts of the interval-value of the various corresponding parts in a parallel way, an
∃-step and a∀-step needs a constant number of operation application on interval-values
(see Figure 7, where the computation obtaining line 6 of Figure 6 is shown using line
5 and the value of the variablex4). Since the number of these steps exactly the same
as the number of the variables, the computation can be performed in a linear number
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Figure 6: This quantified formula is true
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Figure 7: Visual computation at existential quantifier
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Figure 8: This quantified formula is not true
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of operation, i.e. a linear size of algorithm on the length ofthe computation sequence
(number of computed interval-values).

In Figure 6 and 8 one can follow two interval-valued computations deciding whether
a given quantified propositional formula is true. The lines 1–4 show the 4 independent
truth values, the 5th line shows the result of the evaluationof the Boolean operators and
lines 6–9 include the result of adding one quantifier per lineto the formulae. Finally,
the QSAT formula is true if and only if the resulted interval-value (line 9) is [0,1). (If
it is not true, the empty interval is obtained.)

6 Interval-valued computations and interval temporal
logic

Temporal logic also has strong connection to visual computing. In [4], a visual spec-
ification language of propositional temporal conditions isgiven which constitutes a
subset of propositional temporal logic, more specifically,interval temporal logic. In
[8], an interval temporal logic for repeating temporal events is introduced. Thinking
[0,1) as a time flow we can investigate its temporal logic. If we consider only classical
temporal operators, then its temporal logic trivially coincides with the temporal logic
of (R+0, <) whereR

+0 is the set of nonnegative reals. However, it is an interesting
question, what happens if we add the non-logical operators of interval-values to the
temporal logic over [0,1) as binary modal operators.

Definition 5 The members of the following set of formulae are interval-valued modal-
temporal formulae. It is the minimal set of strings satisfying the following:

• a, b, . . . are (atomic) formulae,

• FirstHalf is a formulae,

• if ϕ, θ are formulae, then(ϕ ∧ θ), (ϕ ∨ θ) and¬ϕ are formulae, too,

• if ϕ, θ are formulae,2→ ϕ and←2ϕ are formulae, too,

• if ϕ, θ are formulae thenR(ϕ, θ), L(ϕ, θ) andP (ϕ, θ) are formulae, too. (R, L
andP are binary operators, they coincide with the shift and the product opera-
tors.)

Definition 6 An interval-valuationv is a function assigning to each member of{a, b,
. . .} an interval-value. Then for any interval-valued modal-temporal formula‖ϕ‖v is
an interval-value of the interval-valued modal-temporal formulaϕ. The definition of
this notion is the expected one. We just write three clauses of this definition.

• ‖FirstHalf‖v =
[

0, 1
2

)

,

• ‖2→ ϕ‖v is {t ∈ [0, 1) : (t, 1) ⊆ ‖ϕ‖v},

• ‖P (ϕ, θ)‖v = ‖ϕ‖v ∗ ‖θ‖v.

The shift operators have intuitive meaning in this temporallogic: an event can start
only earlier/later by the starting component of the value ofa second event. The product
operator can be explained as a modal operator in the following way.P (ϕ, F irstHalf)
expresses thatϕ holds at the first half of the actual evaluating interval, or generally,
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P (ϕ, θ) expresses thatϕ holds at that parts of the actual evaluation interval what belong
to the down-scaled “copy” of‖θ‖v.

A modal-temporal formula is said to be modal-temporal logical law if with every
valuationv its interval-value is [0,1).

Problem 1 How to axiomatize this kind of modal-temporal logic? Is it decidable? If
yes, what is its complexity?

We have a partial answer to this question.

Claim 1 The problem if a modal-temporal formula built up only fromFirstHalf but
without other propositional variables is decidable by exponential time. If the usage of
the product operator is restricted such that it always takesa product withFirstHalf ,
then the arising problem is solvable in polynomial space. Moreover there is a PSPACE-
complete problem is among them (as it was presented).

7 Conclusion

We have demonstrated the visual reasoning power of a recent unconventional comput-
ing system. Its expressiveness depends on data representation by interval-values which
makes it possible by its topological properties.

It is worth thinking over what further problems can be naturally represented by gen-
eralized intervals. Possible candidates are problems about occurring events in temporal
logic with a notion of compositionality. The product operator would provide transfer
between different compositional levels; embeddability ofmacro- and micro scales can
be conceptualized. In this way, also visual analysis and visual representation of re-
occurring, periodic hierarchical events – e.g. in biostatistics and health insurance –
would be available.

Further generalization is possible to regions in higher dimensional spaces, mainly
to R

2. In this way one should work out the connections of interval-valued computing
to so-called optical computing where objects of computing are 2-dimensional images
([15]) through their visual applications.
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