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Abstract

This paper describes an algorithm (Fast Zone DiscriminatieZD) for
analysing Concrete Euler diagrams and listing all presenéeg.

One application area of Euler/Spider diagrams, is modgfailure modes in
electronic circuits. For this a procedure is required tocgh®pider diagrams for
logical consistency by ensuring that all present zones in@atrhave been consid-
ered. Unused zones could be viewed as un-handled failuditzors. In order to
know which zones have not been used, a complete list of presass is required
for each concrete diagram drawn.

To determine if zones are present, a concrete diagram mestameined using
programmatic area operations. These area operations sthg abcomputer time
and it is desirable to eliminate all that are unnecessary.

The algorithm initially builds two sets of relationshipsifin a concrete diagram
and then uses these to target searches for zones that magseatpiUsing the two
sets of relationships eliminates checking for a large nurobmissing zones; thus
processing diagrams quickly and efficiently.

Keywords: Euler, Fast Zone Discrimination, present, available neggva area, algo-
rithm.

1 Introduction

Definition 1.1 An Euler diagram is a finite set of of simple closed curves éiane.

In earlier work[1] spider diagrams [2] have been used toaspnt the failure modes
of components and modules within safety critical elect@yistems. By using logical
reduction and hierarchies of abstraction, mathematicalefiog of complete safety
critical systems is possible.

Spider diagrams are based on Euler diagrams. This papes kmdcifically at
determining which zones are present in an Euler diagram.

A zone is defined as a region in the plane formed by the intBogseof curves in
the setl (the ‘included’, or inside set) and a set of curygsrepresenting the curves
excluded from the set. For instance in figurel(a) there isree ztescribed by =
{B,C,D} with E = {A}.

One way of looking for present zones would be to look for eymrgsible combina-
tion and then to use the excluded zones to check for obsoordihecking all possible
combinations is henceforth referred to as the ‘Brute fore¢hod'.
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Figure 1: Simple Euler Diagram

The brute force method is simple, and would be practicalfmalsnumbers of con-
tours. However as constraint/spider diagrams become ngg@ctice larger numbers
of contours and very large diagrams will become common. TriuéeHorce method for
finding present zones is of the complexity ordé€.2V¢ (where NC is the number
of contours in the Euler diagram). Because of this, a moreieffi algorithm has been
sought.

In order to obtain information from the concrete diagramawalclass called an
Area[3] is used. This provides Area operations suckxasusive orandsubtract To
measure the effectiveness of a zone searching algoritemuimber of Area operations
is considered an appropriate metric.

Section 2 defines determining ‘present’ zones, and pro\Eadsr diagram exam-
ples showing checking for the existence and obscuratiompnég. Section 3 defines
relations between contours in an Euler diagram, and intesluhe terms ‘pure in-
tersection’, ‘pure intersection chain’ and ‘enclosurehelmathematical properties of
these relationships are then discussed and defined. Sdctsbows how these rela-
tionships can be used to draw graphs representing Euleratiesy and discusses a
practical algorithm implemented from spanning these gsafection 5 compares the
performance of the algorithm with the ‘brute force’ method.

2 Determining Missing and Present Zones

A ‘present’ zone is simply one on which one can place an olfggctpider ‘foot’). For
instance there may be an area of intersection on a diagranstbascured by other
contours. That intersection is impossible to use and thezefot considered ‘present’
in the diagram.

Actually determining whether a zone is present or not in gpféndiagram is easy
by inspection. An example follows describing two zones aod lthey are proved
‘present’ or otherwise, using ‘Area’[3] operations.
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2.1 Zone Present Example

Let us examine an intersection and determine whether ot rotgresent’ in the dia-
gram. In figure 1(a) the intersectiohn B can be observed. To define this intersection
we can say that it has a set of included contalyrs= {A, B} and a set of excluded
ContoursE,, = {C, D} (where n is the nth zone under investigation).

By looking at the area formed (figure 1(b))we can see thatrite¥section exists.
The area of all other contours in the diagram must now be actgirl from the intersec-
tion to check for obscuration (see figure 1(c)). After suttican of the areas formed by
C U D there is an area remaining of the intersectibn B.

The ZoneA N B is therefore present in this diagram.

Definition 2.1 (Obscuration) A zoneZ formed from the intersection of contouss. .c;
is said to be obscured by a collection of contouy's.o;, when

ﬂielu.jfntemor(ci) C UielmkIntemor(oi)

2.2 Zone Missing Example

Consider the potential zor@ N B. This would have an included sé&; = {B,C}
and an excluded séfy = { A, D}. It can be seen that subtracting the interior formed
by AU D from the interor formed by N C as an area operation; leaves nothing. The
zoneB N C' is therefore considered missing in this diagram.

2.3 The General Case : Proving a Zone is Present

The total number of contours in the diagram, will be refetieds N C.

For some diagram elements the contours will not interacttaacefore searching
for zones can be applied within subsets of contours. Thelssessiare defined later
in the paper. The variable, Interacting contours colit(,, represents the number
of contours within these subsets. It will always be less thiaaqual to the number of
contours in the diagram.

1CC, < NC 1)

A zone can be defined by two disjoint contour sets, inclubgdnd excludedv,,,
wheren is the zone under investigation.

First of all we determine the concrete area formed by thegetgion set/,,. This
involves taking the intersections of all the interiors of #ets in/,,, as area operations.

Arealntersection,, = m o Interior(x) 2
wel,

The result of these intersection area operations could bdla_Nrea, indicating
that there is no intersection. If the intersection doestewésthen need to ensure that it
is not covered up by any of the contour interiors formed bysiig~,, .

In order to check for obscuration,we must find the area forbyeall other sets that
could cover it. This is done by taking the union of all the exigd contours, as an area
operation.

AreaFExclusion, = U . Interior(zx) 3)

43



The Arealntersection, may now have thelrea Exclusion,, subtracted from it,
as an area operation. This is an area subtraction and aredyisubtracted where it
overlaps. If the result has non zero area, then the zone @demed present.

RemainingIntersection,, = 4)
Arealntersection,, — AreaExclusion,,

Finally the setd,, andE,, must contain all contours for the the Euler diagram under
investigation.
InteractingContours = I,, U E,, (5)

For reference a table of all possible zones, showing whietpagsent in the four
contour diagram (figure 1(a)), is shown below.

Inside outside
Included setl Excludedset E/ Present
DCBAJ Y
AT DCBY} M
B} DCAJ Y
BAY DCJ Y
C} DBA J N
CAY DB} N
CB} DA} N
CBA} D} N
D} CBAY} M
DA J CBJ N
DB} CAJ Y
DBAJ C} N
DCJ BA J Y
DCAJ B} N
DCB} AT Y
DCBAJ Y N

3 Relationships that can be obtained from an Euler Di-
agram

Intersection areas in the concrete diagram can be formedanways. By enclos-
ing another contour, or by overlapping a part of another@ontThese two types of
intersection are clearly mutually exclusive.

The intersections that do not involve enclosure have bemne ‘pure intersec-
tions’.

The algorithm developed in this paper applies two initiarsbes to the diagram.

The first looks for enclosure relationships and the seconpdoe intersections. These
searches are applied to the cross products of all contoting idiagram.

Definition 3.1 (Enclosure) we say that contour A encloses contour B if
Interior(A) D Interior(B)

Enclosure for a given pair of contours is expressed in thédamoequation 6.
enc(a,b) = (Interior(a) D Interior(b)) (6)

Definition 3.2 (Pure Intersection) we say that there is a pure intersection @fb,
where there is an intersectiann b buta does not enclosk andb does not enclose.

Pure intersection for a given pair of contours is expresséod boolean equation 7
using the definition of enclosure above.

pi(a,b) = ((Interior(a) N Interior(b) # 0)) A—enc(a, b) A—enc(b,a) Na # b (7)

Because the definition of pure intersection expressly ftarknclosure, we have
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(a) Euler Diagram (b) Graph of diagram

Figure 2: Pure Intersection Chain with Enclosure

Lemma 3.1 (Mutually exclusive) Pure intersection and Enclosure are mutually ex-
clusive.

3.1 Relationship Properties

By applying the equations 6 and 7 to the cross product of altaurs in the concrete
diagram, we have two lists of relationships, the pure ietions and the enclosures.
From the diagram in figure 2(a), we obtain the following rielaships.

3.1.1 Pure intersections relations

Pure Intersection relationships for the diagram in figues a¢e :-

AP BB ABYcctBD oo DEY oo E

3

3.1.2 Enclosure Relations

Relationships for the diagram in figure 2(a) include one @nale within a pure inter-
section chain.

EZSD

Examining these relations, we can classify them.

3.2 Transitive

For pure intersection relationships, it does not followt fd@oking at figure 2(a)) be-
cause A purely intersects with B, and B with C that A purelgisects with C.

AP BAB L 04 A
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Figure 3: Enclosure within Enclosure : A transitive relasbip

Pure Intersection is therefore not a transitive relatigmsh

Figure 3 demonstrates the transitive nature of enclosladarships. For the con-
tours in the diagranjz, y, z} it can be seen that because x encloses y, and y encloses
z, x encloses z. Enclosure is based on a relationship of peyiisets of areas, and is
therefore a transitive relationship.

x%y/\y%zéxﬂz (8)

3.3 Reflexive

A reflexive relationship is one where an element can be mdlatétself [4]. Clearly
enclosure and pure intersection are anti-reflexive (i.gaure intersection or enclosure
can be reflexive) because they require interactions beta@sours.

3.4 Symmetric

A symmetric relation is one such that— b = b — a [4]. Clearly enclosure cannot
be symmetric. Because pure intersection is defined by gharinintersection (see
eqgn 7, i.e.without enclosure), pure intersection relaiare always symmetric. The
relationships defined for the pure intersections above B.tan now be expressed
thus. . ) . .

A B BECDECCEE

3.5 Pure Intersection Relationship Properties
Pure intersection relationships are
¢ Not Reflexive

e Symmetric

Note that by following pure intersection relationshipsssaf contours connected
by pure intersections can be determined. These are refesred ‘pure intersec-
tion chains’.

Contours in the pure intersection chain may obscure othenbmees in the same
chain (see figure 2(a)). Formally a ‘pure intersection chiaidefined thus
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Definition 3.3 (Pure Intersection Chain) Let d be an Euler diagram : a pure inter-
section chain is a maximal set of contodrdn d such that for any pair of contours in
C there exists a sequence of contours such that

pi .
¢ —cp fori=1,...,n—1

3.6 Enclosure Relationship Properties
Enclosure relationships are

¢ Not Reflexive

e Not Symmetric

e Transitive

4 Methods for finding Present Zones

Firstly we can consider the diagram in terms of pure intdiseaelationships. The
effects of enclosure and obscuration are dealt with later.

Lemma 4.1 (pure intersection cases)Vhen analysing an Euler diagram from pure
intersection relations, there are only three possible sdbat can be presented. Lone con-
tours, lone purely intersected contours and pure inteiseathains.

4.1 3 cases for zone identification

The three cases are described in greater detail below.

4.1.1 Lone Contours

Definition 4.1 (Lone Contour) A Lone Contour is a countour not intersected by any
other.

A lone contour will always represent one present zone, wimiali include enclos-
ing contours (if any). The contours in figure 3, are all lonatoars, and analysing
these determines the following present zones.

Lemma 4.2 (Lone Contour Single Zone)A lone contour will always produce one
present zone in an Euler diagram.

lone contour Included Set Excluded Set
under investigation In En

B zyz} {7}

Y wz} {y}

@ @} {y=}

4.1.2 Lone Pure Intersection Pairs

Definition 4.2 (Lone Pure Intersection Pair) A Lone Pure Intersection is a pair of
intersecting contours, not belonging to a pure intersattbain.
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The pure intersections in figure 6(a) are all lone pure iefgisns.

Lone pure intersections may be enclosed by other contoees€gn 8). Three
present zones will always be found upon analysing a loneiptgesection. Enclosing
contours (if any) are added to the intersection $gts

Lemma 4.3 (Lone Pure Intersection 3 zonesA lone pure intersection will always
produce three present zones in an Euler diagram.

4.1.3 Pure Intersection Chains

Pure intersections can contain zones formed by multipkrsections, they can have
contours within the chain that obscure zones, and they matatoenclosure within
the chain.

In describing the process for finding the present zones mvthpure intersection
chain it helps to graph them, with the contours becomingaeest enclosures forming
directed edges and pure intersections forming undirectgds

Circuits of undirected edges indicate the possibility oftipile intersections within
the chain. The graphs and their meanings are dealt with ingkesection.

Pure intersection chains within a diagram can be viewed@arate groups within
the Euler diagram. That is to say, they may be analysed iatisol with the enclosure
rules being applied afterward. This means that a diagranbeabroken down into
smaller more manageable chunks and this significantly esitiee number of area
operations to perform (see eqn 1). The reasons for this aited in the section 4.4.
(i.e. area operations need only be performed within puersetction chains). Thus the
number of contours in the diagraMC, comprises of smaller sets of contours (of size
1CC,,) that can be analysed separately. See eqn 1.

Contours may enclose pure intersection chains. Wheresthtigicase all enclosing
contours (see egn 8) are added to the intersectiond s@tsall zones discovered within
the pure intersection chain.

4.2  Graphing Pure Intersection and Enclosure Relationship

By representing contours as vertices, enclosure reldtipasas directed edges (be-
cause they are transitive) and pure intersections as uteitedges (because they are
symmetric), the diagram in figure 2(a) can be representetdygtaph in figure 2(b).

4.3 Graphs with Circuits

(a) Triple zone (b) No Triple Zone (c) Graph

Figure 4: Graph with Circuit
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Ignoring enclosure for the time being, consider the Eulagchms in figures 4(a)
and 4(b) .

These both produce the same graph representation see fighure 4

Note that the existence of a circuit of undirected edges (pere intersections)
indicates the possibility of a multiple intersection. Ietarea operations in equations
2, 3, 4 and 5 are satisfied the multiple area is 'present’.

Note the corollary of thisif no circuit exists then no multiple intersection carhe
principle strength of the algorithm hinges on this. By tdingthe searching to only
zones that ‘may’ be present, all those that cannot are byeglas

Note that the circuits within the pure intersection chain b& investigated, and
then the enclosures can be added afterward. This is becpuseihtersection’ and
‘enclosure’ are mutually exclusive. Also the transitiviatnship established for en-
closure, means that we simply have to add enclosure inteeedo the included set
In (see eqgn 8).

Lemma 4.4 (Venn N circuit) For a Venn N zone to exist there must be a circuit in the
corresponding graph of pure intersections with N vertioghere each vertex corre-
sponds to a contour in the Venn N intersection.

Lemma 4.5 (Venn N pure intersection chain)For a circuit of pure intersections to
exist, they must be all members of the same pure intersetain.

4.4  Non connected graphs

Consider the Euler diagram in figure 5(a).

(a) Separate Pure Intersection Chain (b) Graph of Separate pure int.chains

Figure 5: Non-Connected Graphs
There are three separate pure intersection chains in #igsatn. They ar¢A, B, C},

{D,E,F} and{G, H,I}. Note that present zones found from the pure intersection
chains{A, B,C} and{D, E, F'} all include an intersection with contoG.
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By finding present zones within the pure intersection chaansl adding any en-
closing contours (see eqn 8) to the intersectiod gethe present zones germane to the
pure intersection chain are discovered.

A more complicated scenario is when enclosure occurs wétpare intersection
chain, see figure 2(a). In analysing the Intersection D it will not be recognised as
an present zone, because the enclosure relatiodshis> D will be applied and the
intersection become&S N D N E : after passing obscuration testing (area subtraction
of AU B), the zone withiy = {C, D, E} andEy = {A, B} will be registered as a
‘present’

4.5 Algorithm Design

The aim of this algorithm is to avoid the burdenso2?&" complexity order of check-
ing for all possible zones in an Euler diagram wi¥iC' contours.

By breaking the diagram into a number of smaller sets of amstavhich can be
checked in isolation, the number of checks is significaretjuced.

The smallest possible sets that can be analysed in isolatethe ‘lone contour’,
the ‘lone pure intersection’ and the ‘pure intersectionichaA ‘lone contour’ will
always produce one present zone (see lemma 4.2). A ‘loneipteesection’ will
always produce 3 (see lemma 4.3).

A ‘pure intersection chain’ can potentially produz& “~ present zones (where
1CC,, is the number of contours in the chain).

One could check for al!““~ possible zones within the ‘pure intersection chain’.
However, the ‘pure intersection chain’ is handled morecéfietly than this by only
applying checks to circuits of pure intersections withia thain (see lemma 4.4).

By applying the enclosure relations to the present zonesdised in each of the
three cases, all present zones in the diagram are discovered

The correctness of the algorithm rests on the lemmas 3.144£214.3 and 4.4.

4.6 Algorithm Pseudo Code
In high level pseudo code, the algorithm works thus:

BEG N

Determ ne all Encl osure rel ationshi ps.

Determ ne all Pure intersections

Search through pure intersection relationships and obtain pure
i ntersection chains.

For all contours in the diagramwhere contour is not a nenber
of a pure intersection chain; add all enclosing contours;
regi ster as an present zone;

For all pure intersections in the diagramwhere pure
intersection is not a nenber of a pure intersection chain;
add all enclosing contours to intersections register as an
present zone;

For all pure intersection chains
for each pair intersection within chain add any encl osing
contours and deternine if the intersection is present using
area operations; if present then; register as a present zone;
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obtain all circuits within the pure intersection chain;
for all circuits within the pure intersection chain;
add any encl osi ng contours and check obscuration using
area operations;
if the zone indicated is present; then register as an
present zone;
END

4.7 Checking for all Possible zones - Brute force/Binary Caut

The number of potential zones in an Euler diagram containiggcontours i2V ¢,

In a diagram withVC' contours, each zone under investigation will comprise of
the setl,, and the sef’,,. The number of area operations to get the intersection area,
and the number to get the obscuration check area, will aladgisip toN C, using the
‘brute force’ method.

For instance were a diagram to contain 32 contours, to bartefcheck for the
existence of all contours would take all possible comboregiof 32 objects. This
corresponds to a binary count and tH#8 possible zones to check for. A diagram
with 32 contours would contain a potential of over 4 billioonzs. Multiply that by
the 32 area operations (with varying proportions of intetisa (7,,) and obscuration
(Ey) tests - but always adding up to 32) required and we reachteonasnical number
(32.232).

In general then the brute force zone search, with intexseetiea operations, and
obscuration testing (on averaé’fz£ + %), takes

NC.2N¢ (9)

4.8 Number of Area Operations using Pure intersection and En
closure Relationships

The number of area operations applied by this algorithm deépepon the complexity
of the diagram, and the sizes of the pure intersection chalfese the worst case to
apply, i.eVenn ¢ this algorithm is less efficient 3. NC? i.e. for a Venn N diagram,
the number of area compares for the FZD algorithm is

2.NC? + NC.2N¢ (10)

Most diagrams written by human beings will be far less coogiéd thari/ ennN.
In the domain of safety critical circuit/system analysie tiagrams will be comprised
typically of a number of separate pure intersection chaingd, the searches need only
be applied within them. ThéCC'y value for interacting contours will be equal to
the number of contours in each pure intersection chain. Béstause the graphs are
traversedmost contour combinations will be determined impossibléabyact that no
circuit exists in the undirected edges

5 Case Studies

To compare the algorithms performance against the ‘brutefanethod, | have taken
two diagrams of a typical complexity level that is drawn frahe failure mode[1]
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Figure 6: Performance Comparison

applications.

The number of area operations necessary to find all zonesdmesdnalysed and
a numerical formula based a¥iC, has been derived using techniques from [5]. This
formula can now be plotted to compare the performance of itparithm for the two
test patterns. The examples shown in figures 6(a) and 6@®Jg asntours per diagram.
Using the Brute force method these would requi€’.2V¢ or 2048 area compares
to determine all visible zones. By duplicating the struetivalues can be calculated
for generalNC number contour diagrams of the same family. The algorithnsgms
the relations built in the first two passes to eliminate umessary searches. These
relationships are held in Java data structures in RAM andterefore considered
to have minimal impact on processing time. For this reasoity the java Area[3]
operations are considered in comparing the performandeeoélgorithm against the
‘brute force’ method.

5.1 Simple pairs of contours

The simple diagram, shown in figure 6(a), consists of fourlapping pairs of con-
tours. To determine the enclosure and pure intersectiatioak, two cross products
of contour area searches are required. ThuéC?, i.e. 128 searches. Zones derived
from lone contours and lone pure intersections do not nebd thecked for existence
or obscuration. The total number of area compares/opesaisdherefor@.64 = 128.
Were one to add more lone pure intersections to this diagitaengiagram would be-
come larger, but would have the same pattern. Five lone pteesections would take
2.128 = 256 area operations to find all present zones.

As a general case, for extrapolating larger diagrams ofahgespattern, wherd/
is the number of contours

AreaOperationsRequired = 2.NC? (12)

5.2 Two Venn 3 totally Enclosed Once : a more Complex Diagram

The second diagram, see figure 6(b), contains two Venn 3 aoafigns each enclosed
by a contour. Breaking this down, we have two single zones{fthe contours G and
H). Examining the two Venn3 structures, these require astemce check for the triple
intersection (3 area operations). As the number of contimuchieck for obscuration
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Figure 7: Performance Comparison

against it is 0, they do not require obscuration testing hivieach Venn3 each of the
double intersection zones must be checked for obscurafitius 2 area operations
to construct the shape of the zone, and 1 area operationttibtesbscuration, thus
3 per pair. The three single zones in the pure intersectiquire 1 area operation to
construct the shape of the contour, and two to test for olasiour. Thus 3 per pair.
This diagram therefore requiré88 + 2.(9 + 9) = 146 area compares. As a general
equation for the number of the number of area operationsnestjaan be calculated,
thus:

N
AreaOperationsRequired = 2.NC? + TO.(18) (12)

5.3 Extrapolating for N Contour Diagrams

Duplicating the structures in the diagrams in figures 6(l)&(@), and using the general
case equations (11 and 12), a plot of area searches reqgaetsediagram complexity
can be drawn.

These graphs were produced in Gnuplot[6] (which uses adfofif] like syntax
for formulas), with the following equations:

GnuplotSyntax LineColour Arithmetic
@2 % xw Green Nc.2NC
2k mox k2 + /4 % 18 Blue 2.N02+NTC.18
2% @ %2 Red 2.NC?

These graphs clearly shows that the FZD method efficiencgases with the num-
ber of contours in a diagram.

6 Conclusion

6.1 Practical Implementation

An algorithm has been implemented in Java, which finds ptezeres in an efficient
and quick way, in a spider diagram editor application. It haen checked against a
‘brute force’ algorithm, by inspection, with Venn4, VennBdaa variety of test dia-
grams.
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6.2 Future Enhancements

Because Surface Areas are calculated as a side effect chthf8] area class, some
well formed-ness[8] criteria can be checked for.

Further efficiency may be possible by analysing the strectirthe graphs pro-
duced from the pure intersection chains, and determinitesro further reduce the
number of Java area operations to prove a zone present.
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