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Abstract

This paper describes an algorithm (Fast Zone Discrimination - FZD) for
analysing Concrete Euler diagrams and listing all present zones.

One application area of Euler/Spider diagrams, is modelling failure modes in
electronic circuits. For this a procedure is required to check Spider diagrams for
logical consistency by ensuring that all present zones in a model have been consid-
ered. Unused zones could be viewed as un-handled failure conditions. In order to
know which zones have not been used, a complete list of present zones is required
for each concrete diagram drawn.

To determine if zones are present, a concrete diagram must beexamined using
programmatic area operations. These area operations are costly of computer time
and it is desirable to eliminate all that are unnecessary.

The algorithm initially builds two sets of relationships from a concrete diagram
and then uses these to target searches for zones that may be present. Using the two
sets of relationships eliminates checking for a large number of missing zones; thus
processing diagrams quickly and efficiently.

Keywords: Euler, Fast Zone Discrimination, present, available region, java area, algo-
rithm.

1 Introduction

Definition 1.1 An Euler diagram is a finite set of of simple closed curves in the plane.

In earlier work[1] spider diagrams [2] have been used to represent the failure modes
of components and modules within safety critical electronic systems. By using logical
reduction and hierarchies of abstraction, mathematical modelling of complete safety
critical systems is possible.

Spider diagrams are based on Euler diagrams. This paper looks specifically at
determining which zones are present in an Euler diagram.

A zone is defined as a region in the plane formed by the intersection of curves in
the setI (the ‘included’, or inside set) and a set of curvesE, representing the curves
excluded from the set. For instance in figure1(a) there is a zone described byI =
{B, C, D} with E = {A}.

One way of looking for present zones would be to look for everypossible combina-
tion and then to use the excluded zones to check for obscuration. Checking all possible
combinations is henceforth referred to as the ‘Brute force method’.
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(a) Euler Diagram (b) Intersection A B

(c) area to subtract

Figure 1: Simple Euler Diagram

The brute force method is simple, and would be practical for small numbers of con-
tours. However as constraint/spider diagrams become used in practice larger numbers
of contours and very large diagrams will become common. The Brute force method for
finding present zones is of the complexity orderNC.2NC (whereNC is the number
of contours in the Euler diagram). Because of this, a more efficient algorithm has been
sought.

In order to obtain information from the concrete diagram, a Java class called an
Area[3] is used. This provides Area operations such asexclusive orandsubtract. To
measure the effectiveness of a zone searching algorithm, the number of Area operations
is considered an appropriate metric.

Section 2 defines determining ‘present’ zones, and providesEuler diagram exam-
ples showing checking for the existence and obscuration of zones. Section 3 defines
relations between contours in an Euler diagram, and introduces the terms ‘pure in-
tersection’, ‘pure intersection chain’ and ‘enclosure’. The mathematical properties of
these relationships are then discussed and defined. Section4 shows how these rela-
tionships can be used to draw graphs representing Euler diagrams, and discusses a
practical algorithm implemented from spanning these graphs. Section 5 compares the
performance of the algorithm with the ‘brute force’ method.

2 Determining Missing and Present Zones

A ‘present’ zone is simply one on which one can place an object(or spider ‘foot’). For
instance there may be an area of intersection on a diagram that is obscured by other
contours. That intersection is impossible to use and therefore not considered ‘present’
in the diagram.

Actually determining whether a zone is present or not in a simple diagram is easy
by inspection. An example follows describing two zones and how they are proved
‘present’ or otherwise, using ‘Area’[3] operations.
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2.1 Zone Present Example

Let us examine an intersection and determine whether or not it is ’present’ in the dia-
gram. In figure 1(a) the intersectionA∩B can be observed. To define this intersection
we can say that it has a set of included contoursIn = {A, B} and a set of excluded
ContoursEn = {C, D} (where n is the nth zone under investigation).

By looking at the area formed (figure 1(b))we can see that the intersection exists.
The area of all other contours in the diagram must now be subtracted from the intersec-
tion to check for obscuration (see figure 1(c)). After subtraction of the areas formed by
C ∪ D there is an area remaining of the intersectionA ∩ B.

The ZoneA ∩ B is therefore present in this diagram.

Definition 2.1 (Obscuration) A zoneZ formed from the intersection of contoursc1...cj

is said to be obscured by a collection of contourso1...ok when

⋂
i∈1...j

Interior(ci) ⊂
⋃

i∈1...k
Interior(oi)

2.2 Zone Missing Example

Consider the potential zoneC ∩ B. This would have an included setIN = {B, C}
and an excluded setEN = {A, D}. It can be seen that subtracting the interior formed
by A ∪ D from the interor formed byB ∩ C as an area operation; leaves nothing. The
zoneB ∩ C is therefore considered missing in this diagram.

2.3 The General Case : Proving a Zone is Present

The total number of contours in the diagram, will be referredto asNC.
For some diagram elements the contours will not interact andtherefore searching

for zones can be applied within subsets of contours. These subsets are defined later
in the paper. The variable, Interacting contours count,ICCn represents the number
of contours within these subsets. It will always be less thanor equal to the number of
contours in the diagram.

ICCn ≤ NC (1)

A zone can be defined by two disjoint contour sets, includedIn and excludedEn,
wheren is the zone under investigation.

First of all we determine the concrete area formed by the intersection setIn. This
involves taking the intersections of all the interiors of the sets inIn, as area operations.

AreaIntersectionn =
⋂

x∈In

Interior(x) (2)

The result of these intersection area operations could be a NULL area, indicating
that there is no intersection. If the intersection does exist we then need to ensure that it
is not covered up by any of the contour interiors formed by thesetEn.

In order to check for obscuration,we must find the area formedby all other sets that
could cover it. This is done by taking the union of all the excluded contours, as an area
operation.

AreaExclusionn =
⋃

x∈En

Interior(x) (3)
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TheAreaIntersectionn may now have theAreaExclusionn subtracted from it,
as an area operation. This is an area subtraction and area is only subtracted where it
overlaps. If the result has non zero area, then the zone is considered present.

RemainingIntersectionn =
AreaIntersectionn − AreaExclusionn

(4)

Finally the setsIn andEn must contain all contours for the the Euler diagram under
investigation.

InteractingContours = In ∪ En (5)

For reference a table of all possible zones, showing which are present in the four
contour diagram (figure 1(a)), is shown below.

Inside outside
Included setI ExcludedsetE Present
{ } { D C B A } Y
{ A } { D C B} Y
{ B } { D C A } Y
{ B A} { D C} Y
{ C} { D B A } N
{ C A } { D B } N
{ C B} { D A } N
{ C B A } { D } N
{ D } { C B A } Y
{ D A } { C B} N
{ D B } { C A } Y
{ D B A} { C} N
{ D C} { B A } Y
{ D C A } { B } N
{ D C B} { A } Y
{ D C B A } { } N

3 Relationships that can be obtained from an Euler Di-
agram

Intersection areas in the concrete diagram can be formed in two ways. By enclos-
ing another contour, or by overlapping a part of another contour. These two types of
intersection are clearly mutually exclusive.

The intersections that do not involve enclosure have been termed ‘pure intersec-
tions’.

The algorithm developed in this paper applies two initial searches to the diagram.
The first looks for enclosure relationships and the second for pure intersections. These
searches are applied to the cross products of all contours inthe diagram.

Definition 3.1 (Enclosure) we say that contour A encloses contour B if
Interior(A) ⊃ Interior(B)

Enclosure for a given pair of contours is expressed in the boolean equation 6.

enc(a, b) = (Interior(a) ⊃ Interior(b)) (6)

Definition 3.2 (Pure Intersection) we say that there is a pure intersection ofa, b,
where there is an intersectiona ∩ b buta does not encloseb, andb does not enclosea.

Pure intersection for a given pair of contours is expressed in the boolean equation 7
using the definition of enclosure above.

pi(a, b) = ((Interior(a)∩Interior(b) 6= ∅))∧¬enc(a, b)∧¬enc(b, a)∧a 6= b (7)

Because the definition of pure intersection expressly forbids enclosure, we have
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(a) Euler Diagram (b) Graph of diagram

Figure 2: Pure Intersection Chain with Enclosure

Lemma 3.1 (Mutually exclusive) Pure intersection and Enclosure are mutually ex-
clusive.

3.1 Relationship Properties

By applying the equations 6 and 7 to the cross product of all contours in the concrete
diagram, we have two lists of relationships, the pure intersections and the enclosures.

From the diagram in figure 2(a), we obtain the following relationships.

3.1.1 Pure intersections relations

Pure Intersection relationships for the diagram in figure 2(a) are :-

A
pi
−→ B, B

pi
−→ A, B

pi
−→ C, C

pi
−→ B, D

pi
−→ C, C

pi
−→ D, E

pi
−→ C, C

pi
−→ E

3.1.2 Enclosure Relations

Relationships for the diagram in figure 2(a) include one enclosure within a pure inter-
section chain.

E
enc
−→ D

Examining these relations, we can classify them.

3.2 Transitive

For pure intersection relationships, it does not follow that (looking at figure 2(a)) be-
cause A purely intersects with B, and B with C that A purely intersects with C.

A
pi
−→ B ∧ B

pi
−→ C 6⇒ A

pi
−→ C

.
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Figure 3: Enclosure within Enclosure : A transitive relationship

Pure Intersection is therefore not a transitive relationship.
Figure 3 demonstrates the transitive nature of enclosure relationships. For the con-

tours in the diagram{x, y, z} it can be seen that because x encloses y, and y encloses
z, x encloses z. Enclosure is based on a relationship of proper subsets of areas, and is
therefore a transitive relationship.

x
enc
−→ y ∧ y

enc
−→ z ⇒ x

enc
−→ z (8)

3.3 Reflexive

A reflexive relationship is one where an element can be related to itself [4]. Clearly
enclosure and pure intersection are anti-reflexive (i.e. nopure intersection or enclosure
can be reflexive) because they require interactions betweencontours.

3.4 Symmetric

A symmetric relation is one such thata → b ⇒ b → a [4]. Clearly enclosure cannot
be symmetric. Because pure intersection is defined by sharing an intersection (see
eqn 7, i.e.without enclosure), pure intersection relations are always symmetric. The
relationships defined for the pure intersections above (3.1.1), can now be expressed
thus.

A
pi
↔ B, B

pi
↔ C, D

pi
↔ C, C

pi
↔ E

3.5 Pure Intersection Relationship Properties

Pure intersection relationships are

• Not Reflexive

• Symmetric

Note that by following pure intersection relationships, sets of contours connected
by pure intersections can be determined. These are referredto as ‘pure intersec-
tion chains’.

Contours in the pure intersection chain may obscure other members in the same
chain (see figure 2(a)). Formally a ‘pure intersection chain’ is defined thus
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Definition 3.3 (Pure Intersection Chain) Let d be an Euler diagram : a pure inter-
section chain is a maximal set of contoursC in d such that for any pair of contours in
C there exists a sequence of contours such that

ci
pi
−→ cn for i = 1, ..., n − 1

3.6 Enclosure Relationship Properties

Enclosure relationships are

• Not Reflexive

• Not Symmetric

• Transitive

4 Methods for finding Present Zones

Firstly we can consider the diagram in terms of pure intersection relationships. The
effects of enclosure and obscuration are dealt with later.

Lemma 4.1 (pure intersection cases)When analysing an Euler diagram from pure
intersection relations, there are only three possible cases that can be presented. Lone con-
tours, lone purely intersected contours and pure intersection chains.

4.1 3 cases for zone identification

The three cases are described in greater detail below.

4.1.1 Lone Contours

Definition 4.1 (Lone Contour) A Lone Contour is a countour not intersected by any
other.

A lone contour will always represent one present zone, whichmay include enclos-
ing contours (if any). The contours in figure 3, are all lone contours, and analysing
these determines the following present zones.

Lemma 4.2 (Lone Contour Single Zone)A lone contour will always produce one
present zone in an Euler diagram.

lone contour Included Set Excluded Set
under investigation In En
{z} {xyz} { }

{y} {xz} {y}

{x} {x} {yz}

4.1.2 Lone Pure Intersection Pairs

Definition 4.2 (Lone Pure Intersection Pair) A Lone Pure Intersection is a pair of
intersecting contours, not belonging to a pure intersection chain.
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The pure intersections in figure 6(a) are all lone pure intersections.
Lone pure intersections may be enclosed by other contours (see eqn 8). Three

present zones will always be found upon analysing a lone pureintersection. Enclosing
contours (if any) are added to the intersection setsIn.

Lemma 4.3 (Lone Pure Intersection 3 zones)A lone pure intersection will always
produce three present zones in an Euler diagram.

4.1.3 Pure Intersection Chains

Pure intersections can contain zones formed by multiple intersections, they can have
contours within the chain that obscure zones, and they may contain enclosure within
the chain.

In describing the process for finding the present zones within a pure intersection
chain it helps to graph them, with the contours becoming vertices, enclosures forming
directed edges and pure intersections forming undirected edges.

Circuits of undirected edges indicate the possibility of multiple intersections within
the chain. The graphs and their meanings are dealt with in thenext section.

Pure intersection chains within a diagram can be viewed as separate groups within
the Euler diagram. That is to say, they may be analysed in isolation with the enclosure
rules being applied afterward. This means that a diagram canbe broken down into
smaller more manageable chunks and this significantly reduces the number of area
operations to perform (see eqn 1). The reasons for this are described in the section 4.4.
(i.e. area operations need only be performed within pure intersection chains). Thus the
number of contours in the diagramNC, comprises of smaller sets of contours (of size
ICCn) that can be analysed separately. See eqn 1.

Contours may enclose pure intersection chains. Where this is the case all enclosing
contours (see eqn 8) are added to the intersection setsIn of all zones discovered within
the pure intersection chain.

4.2 Graphing Pure Intersection and Enclosure Relationships

By representing contours as vertices, enclosure relationships as directed edges (be-
cause they are transitive) and pure intersections as undirected edges (because they are
symmetric), the diagram in figure 2(a) can be represented by the graph in figure 2(b).

4.3 Graphs with Circuits

(a) Triple zone (b) No Triple Zone (c) Graph

Figure 4: Graph with Circuit
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Ignoring enclosure for the time being, consider the Euler diagrams in figures 4(a)
and 4(b) .

These both produce the same graph representation see figure 4(c).
Note that the existence of a circuit of undirected edges (i.e. pure intersections)

indicates the possibility of a multiple intersection. If the area operations in equations
2, 3, 4 and 5 are satisfied the multiple area is ’present’.

Note the corollary of this,if no circuit exists then no multiple intersection can. The
principle strength of the algorithm hinges on this. By targeting the searching to only
zones that ‘may’ be present, all those that cannot are by-passed.

Note that the circuits within the pure intersection chain can be investigated, and
then the enclosures can be added afterward. This is because ‘pure intersection’ and
‘enclosure’ are mutually exclusive. Also the transitive relationship established for en-
closure, means that we simply have to add enclosure intersections to the included set
IN (see eqn 8).

Lemma 4.4 (Venn N circuit) For a Venn N zone to exist there must be a circuit in the
corresponding graph of pure intersections with N vertices,where each vertex corre-
sponds to a contour in the Venn N intersection.

Lemma 4.5 (Venn N pure intersection chain)For a circuit of pure intersections to
exist, they must be all members of the same pure intersectionchain.

4.4 Non connected graphs

Consider the Euler diagram in figure 5(a).

(a) Separate Pure Intersection Chain (b) Graph of Separate pure int.chains

Figure 5: Non-Connected Graphs

There are three separate pure intersection chains in this diagram. They are{A, B, C},
{D, E, F} and{G, H, I}. Note that present zones found from the pure intersection
chains{A, B, C} and{D, E, F} all include an intersection with contourG.
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By finding present zones within the pure intersection chains, and adding any en-
closing contours (see eqn 8) to the intersection setIN the present zones germane to the
pure intersection chain are discovered.

A more complicated scenario is when enclosure occurs withina pure intersection
chain, see figure 2(a). In analysing the IntersectionC ∩ D it will not be recognised as
an present zone, because the enclosure relationshipE

enc
−→ D will be applied and the

intersection becomesC ∩ D ∩ E : after passing obscuration testing (area subtraction
of A ∪ B), the zone withIN = {C, D, E} andEN = {A, B} will be registered as a
’present’

4.5 Algorithm Design

The aim of this algorithm is to avoid the burdensome2NC complexity order of check-
ing for all possible zones in an Euler diagram withNC contours.

By breaking the diagram into a number of smaller sets of contours, which can be
checked in isolation, the number of checks is significantly reduced.

The smallest possible sets that can be analysed in isolationare the ‘lone contour’,
the ‘lone pure intersection’ and the ‘pure intersection chain’. A ‘lone contour’ will
always produce one present zone (see lemma 4.2). A ‘lone pureintersection’ will
always produce 3 (see lemma 4.3).

A ‘pure intersection chain’ can potentially produce2ICCn present zones (where
ICCn is the number of contours in the chain).

One could check for all2ICCn possible zones within the ‘pure intersection chain’.
However, the ‘pure intersection chain’ is handled more effeciently than this by only
applying checks to circuits of pure intersections within the chain (see lemma 4.4).

By applying the enclosure relations to the present zones discovered in each of the
three cases, all present zones in the diagram are discovered.

The correctness of the algorithm rests on the lemmas 3.1, 4.1, 4.2, 4.3 and 4.4.

4.6 Algorithm Pseudo Code

In high level pseudo code, the algorithm works thus:

BEGIN
Determine all Enclosure relationships.
Determine all Pure intersections
Search through pure intersection relationships and obtain pure
intersection chains.

For all contours in the diagram where contour is not a member
of a pure intersection chain; add all enclosing contours;
register as an present zone;

For all pure intersections in the diagram where pure
intersection is not a member of a pure intersection chain;
add all enclosing contours to intersections register as an
present zone;

For all pure intersection chains
for each pair intersection within chain add any enclosing
contours and determine if the intersection is present using
area operations; if present then; register as a present zone;
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obtain all circuits within the pure intersection chain;
for all circuits within the pure intersection chain;

add any enclosing contours and check obscuration using
area operations;
if the zone indicated is present; then register as an
present zone;

END

4.7 Checking for all Possible zones - Brute force/Binary Count

The number of potential zones in an Euler diagram containingNC contours is2NC .
In a diagram withNC contours, each zone under investigation will comprise of

the setIn and the setEn. The number of area operations to get the intersection area,
and the number to get the obscuration check area, will alwaysadd up toNC, using the
‘brute force’ method.

For instance were a diagram to contain 32 contours, to brute force check for the
existence of all contours would take all possible combinations of 32 objects. This
corresponds to a binary count and thus232 possible zones to check for. A diagram
with 32 contours would contain a potential of over 4 billion zones. Multiply that by
the 32 area operations (with varying proportions of intersection (In) and obscuration
(En) tests - but always adding up to 32) required and we reach an astronomical number
(32.232).

In general then the brute force zone search, with intersection area operations, and
obscuration testing (on averageNC

2
+ NC

2
), takes

NC.2NC (9)

4.8 Number of Area Operations using Pure intersection and En-
closure Relationships

The number of area operations applied by this algorithm depends upon the complexity
of the diagram, and the sizes of the pure intersection chains. Were the worst case to
apply, i.e.V ennNC this algorithm is less efficient by2.NC2 i.e. for a Venn N diagram,
the number of area compares for the FZD algorithm is

2.NC2 + NC.2NC (10)

Most diagrams written by human beings will be far less complicated thanV ennN .
In the domain of safety critical circuit/system analysis, the diagrams will be comprised
typically of a number of separate pure intersection chains,and the searches need only
be applied within them. TheICCN value for interacting contours will be equal to
the number of contours in each pure intersection chain. Alsobecause the graphs are
traversed,most contour combinations will be determined impossible bythe fact that no
circuit exists in the undirected edges.

5 Case Studies

To compare the algorithms performance against the ‘brute force’ method, I have taken
two diagrams of a typical complexity level that is drawn fromthe failure mode[1]
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(a) Simple Pure Intersection Pairs (b) Two Enclosed Venn 3

Figure 6: Performance Comparison

applications.
The number of area operations necessary to find all zones has been analysed and

a numerical formula based onNC, has been derived using techniques from [5]. This
formula can now be plotted to compare the performance of the algorithm for the two
test patterns. The examples shown in figures 6(a) and 6(b), use 8 contours per diagram.
Using the Brute force method these would requireNC.2NC or 2048 area compares
to determine all visible zones. By duplicating the structures, values can be calculated
for generalNC number contour diagrams of the same family. The algorithm parses
the relations built in the first two passes to eliminate unnecessary searches. These
relationships are held in Java data structures in RAM and aretherefore considered
to have minimal impact on processing time. For this reason, only the java Area[3]
operations are considered in comparing the performance of the algorithm against the
‘brute force’ method.

5.1 Simple pairs of contours

The simple diagram, shown in figure 6(a), consists of four overlapping pairs of con-
tours. To determine the enclosure and pure intersection relations, two cross products
of contour area searches are required. Thus2 NC2, i.e. 128 searches. Zones derived
from lone contours and lone pure intersections do not need tobe checked for existence
or obscuration. The total number of area compares/operations is therefore2.64 = 128.
Were one to add more lone pure intersections to this diagram,the diagram would be-
come larger, but would have the same pattern. Five lone pure intersections would take
2.128 = 256 area operations to find all present zones.

As a general case, for extrapolating larger diagrams of the same pattern, whereN
is the number of contours

AreaOperationsRequired = 2.NC2 (11)

5.2 Two Venn 3 totally Enclosed Once : a more Complex Diagram

The second diagram, see figure 6(b), contains two Venn 3 configurations each enclosed
by a contour. Breaking this down, we have two single zones (from the contours G and
H). Examining the two Venn3 structures, these require an existence check for the triple
intersection (3 area operations). As the number of contoursto check for obscuration
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(a) 0 to 8 contours (b) 8 to 64 contours

Figure 7: Performance Comparison

against it is 0, they do not require obscuration testing. Within each Venn3 each of the
double intersection zones must be checked for obscuration.Thus 2 area operations
to construct the shape of the zone, and 1 area operation to test for obscuration, thus
3 per pair. The three single zones in the pure intersection require 1 area operation to
construct the shape of the contour, and two to test for obscuration. Thus 3 per pair.
This diagram therefore requires128 + 2.(9 + 9) = 146 area compares. As a general
equation for the number of the number of area operations required can be calculated,
thus:

AreaOperationsRequired = 2.NC2 +
NC

4
.(18) (12)

5.3 Extrapolating for N Contour Diagrams

Duplicating the structures in the diagrams in figures 6(b) and 6(a), and using the general
case equations (11 and 12), a plot of area searches required against diagram complexity
can be drawn.

These graphs were produced in Gnuplot[6] (which uses a Fortran [7] like syntax
for formulas), with the following equations:

GnuplotSyntax LineColour Arithmetic

x ∗ 2 ∗ ∗x Green NC.2NC

2 ∗ x ∗ ∗2 + x/4 ∗ 18 Blue 2.NC2 + NC
4

.18

2 ∗ x ∗ ∗2 Red 2.NC2

These graphs clearly shows that the FZD method efficiency increases with the num-
ber of contours in a diagram.

6 Conclusion

6.1 Practical Implementation

An algorithm has been implemented in Java, which finds present zones in an efficient
and quick way, in a spider diagram editor application. It hasbeen checked against a
‘brute force’ algorithm, by inspection, with Venn4, Venn5 and a variety of test dia-
grams.
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6.2 Future Enhancements

Because Surface Areas are calculated as a side effect of the Java[3] area class, some
well formed-ness[8] criteria can be checked for.

Further efficiency may be possible by analysing the structure of the graphs pro-
duced from the pure intersection chains, and determining rules to further reduce the
number of Java area operations to prove a zone present.
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