
Information Technology for Configuration of System-on-

Chip in Cloud Environment

Yaroslav Krainyk
1[0000-0002-7924-3878]

, Oleksii Denysov
2
 and Yevhen Darnapuk

1[0000-0002-

7099-5344]

1 Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
2 EnvisionTEC, Kyiv, Ukraine

yaroslav.krainyk@chmnu.edu.ua, maildenisov@gmail.com,

yevhen.darnapuk@chmnu.edu.ua

Abstract. The presented paper conducts the research on the topic of System-on-

Chip (SoC) configuration in cloud environment. The main focus is devoted to

the configuration of the SoC that includes Field-Programmable Gate Array as a

composing part of the chip. The proposed approach is based on the assumption

that each part of the system should support remote configuration by matching

software artifact. We consider each component for SoC individually and pro-

vide a complex solution for its configuration when all of them are running as a

system. Moreover, the settings of running machine can be changed dynamically

according to the devised information technology. Peculiar attention is paid to

the configuration of programmable logic within the framework. As cloud pro-

viders also establish services that involve configuration of FPGA and its further

usage of an accelerator for specific tasks, the information technology can be

used as a basis for software manager responsible for configuration of the SoC.

Keywords: Configuration, System-on-Chip, Field-Programmable Gate Array.

1 Introduction

Modern cloud infrastructure provides plethora of services [1-4] that can be applied in

general situations as well as for solutions of specific problems. In fact, it has devel-

oped to such a degree where complete ready-to-use solutions can be found in market-

place and immediately deployed on the level of infrastructure, platform or software.

Cloud environment exposes almost unlimited computation and storage resources and

offers them to customers on the terms of pay-as-you-use license agreement.

While the major part of computations in the cloud infrastructure are executed by

the means of general purpose Central Processing Units (CPU) or Graphical Pro-

cessing Units (GPU), System-on-Chip (SoC) architecture is gaining momentum in the

market segment of end-user devices Despite the fact that combination of CPU and

GPU is predominant for SoC design, Field-Programmable Gate Array (FPGA) part in

junction with CPU is one of the possible alternatives. Hence, the main point of inter-

est of this paper is the development of the information technology that allows config-

uring SoC composed of CPU and FPGA parts in the cloud environment.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:yaroslav.krainyk@chmnu.edu.ua
mailto:maildenisov@gmail.com

The rest parts of the paper are organized as follows. The second section provides a

review on the state-of-the-art developments in the cloud technologies that involve

SoC and FPGA. The third section contributes the devised information technology for

SoC configuration in the cloud infrastructure. The fourth section demonstrates practi-

cal usage of the technology on the testbed hardware.

2 Related work review and background

The main advantage of the SoC [5] is that the developer can exploit one of the availa-

ble computational units that is more suitable for the specific task. To advance this

paradigm even further, FPGA part of the SoC is configurable and may be pro-

grammed with different configurations in runtime mode. For instance, programmable

logic is suitable for data processing in stream mode [6], image and sensor processing

[7, 8], etc. At the same time, due to the more efficient architecture, FPGA also outper-

forms other computational modules in energy efficiency.

The paper [9] establishes an extensive review of FPGA usage in the cloud envi-

ronment. It considered solution for different scenarios involved FPGA from the low

level of development (e.g., Intellectual Property cores design and selection) to the

level of the system integration. However, it concentrated on the FPGA part only while

SoC architecture was not discussed in the work. In opposite, this paper is oriented to

provide the solution for SoC with FPGA part specifically.

The authors of papers [10, 11] investigated deployment of FPGA and its availabil-

ity as a service. The devised architecture allows the user to access services run on

FPGA. The solution is based on usage of PCIe interface to communicate with pro-

grammable logic part. However, it does not support configuration of a processor part

of the SoC and, therefore, requires improvement.

One of the biggest cloud providers, Amazon, offers F1 instances that employ

FPGA as a computational element [12]. Such instances are configured via Amazon

console Graphical User Interface (GUI). Each FPGA instance is associated with an

FPGA image. The image is an output from the development environment established

by Amazon. Henceforth, this whole infrastructure can be considered as a complete

solution for deployment of FPGA-based solutions in the cloud.

In case when SoC is used as a computational unit in the cloud, the developer have

to deal with software part alongside with hardware part. In contrary to the situation

with single FPGA accelerator that can be simply programmed, SoC also hosts user-

space software for communication with accelerator.

Linux operating system (OS) [13] is a prevalent choice for cloud providers. Thus,

information technology under development should be tailored to the presence of

Linux as a software environment [14]. While for processor part Linux is an essential

OS and multiple solutions are ready-to-use, presence of the FPGA part imposes the

problem of communication between processor and FPGA on the level or running

Linux OS.

The main contribution of the presented paper is in the developed information tech-

nology that allows performing configuration of SoC with programmable logic part at

the boot stage and on the running instance. As a matter of fact, it supports configura-

tion of the most elemental components and, as a result, the whole system. The particu-

lar role in the investigation is prescribed for FPGA that can be configured at the initial

stage as well as during the runtime.

3 Information technology for SoC configuration

Let us assume that the system under investigation comprises a SoC with processor

and FPGA parts. Contemporary SoCs support not only configuration during the boot

process but also dynamic configuration with all components launched. Therefore,

there are two options to consider from the point of view of FPGA. As FPGA is pri-

marily employed as an accelerator for operations that support high degree of parallel-

ism, option of dynamic configuration provides a clear advantage.

The work of hardware components depends on the software artifacts and software

organization. In this work, we investigate the system that runs under control of the

Linux operating system with minimum set of software components. The set includes:

1. First-stage bootloader (FSBL).

2. Second-stage bootloader (SSBL).

3. Boot script.

4. Device-tree file.

5. Kernel image.

6. File system to work with when the system is running.

In addition, the list can be completed with FPGA bitstream configuration file for pro-

grammable logic part programming. Regarding the possibility of remote configuration

that is obligatory in the cloud environment, most of the mentioned components should

support substitution with the newer version of its counterparts.

Typically, the enlisted components are stored in the Flash-memory device (e.g.

SD-card) that is mounted on the SoC board. When the boot process is initiated, neces-

sary parts are invoked in a sequential manner to further run FPGA accelerator. In

cloud infrastructure, devices should be configured remotely without direct physical

access to them.

3.1 System configuration at the boot stage

First-stage bootloader executes preliminary initialization of the low-level devices and

invokes second-stage bootloader. Being important part of the whole process, first-

stage bootloader cannot access more complex elements due to bootloader’s con-

straints. As a matter of fact, this bootloader is to be written into the specific memory

region and cannot be configured according to the proposed workflow. On the other

side, the SSBL is a key component from the point of view of configuration during the

boot stage.

To automate booting process, SSBL relies on the boot script that displays typical

scenario to perform initialization of the whole system. It is important to mention that

when SSBL receives control over the system, network interfaces are initialized and

can communicate with internal network elements of the cloud via basic protocols.

This also implies that data from the cloud network is accessible and can be written

into the memory of the device.

This way the content and functions of the SoC can be changed completely at the

next reboot. On the basic level, to conduct this process SSBL needs to retrieve system

files and to write them into dedicated memory regions.

As soon as SoC finishes launch sequence for all components, it is required to in-

voke the application software part. While it is still possible that FPGA part works

independently, the most probable scenario in the cloud is that processor part receives

data from the internal network and sends it to the FPGA accelerator. Thus, both parts

are connected with each other in terms of data interchange.

To make dependency between hardware platform and software even looser, the

partition with file system for Linux libraries and executables may be established as a

Network File System (NFS).

The complete sequence of actions required by the devised information technology

is shown in Fig. 1 as a sequence diagram.

Fig. 1. Sequence diagram of the communication between participating hardware components.

The major disadvantage of the solution that relies only on boot process is that

change of configuration demands reboot operation. It increases latency of the system

when new functions are available for the use. Therefore, dynamic configuration of the

system without rebooting.

3.2 Dynamic configuration of the system

As dynamic configuration supposes that current running software components are

stopped and further substituted with new ones, this mechanism should be formalized

for all the involved components.

In the kernel version 3.xx of Linux OS, configuration port of FPGA is accessed via

specific device (/dev/fpga). However, newer version of the OS assumes different

mechanisms for the FPGA programming. The list of possible options includes:

1. Configuration via a dedicated programming interface using software that just

writes data from bitstream file into specified address.

2. Configuration using overlays for device tree and configfs file system.

In general, the first option is similar to the previous approach and demands a user-

space application with appropriate privileges that executes necessary actions. In con-

trary, the second option relies on the functions available in the Linux kernel, however,

it is not as obvious as the mentioned one.

From the point of view of the Linux kernel, FPGA is assigned to the specific ad-

dress space. It is controlled by fpga-manager instance accessible from the sysfs file

system. To apply necessary changes to the system and load new configuration into

programmable logic part, overlay mechanism may be applied.

To activate the overlay, it should be compiled into binary form and then inserted

into existing structure using configfs. Overlay is a part of device tree, so, initially, it

has a form of device tree include file. The sample file that describes overlay with

FPGA firmware is shown in the listing below.

/fpga_config/;

/ {

fragment@0 {

target-path = “/soc/base-fpga-region”;

#address-cells = <1>;

#size-cells = <1>;

overlay {

firmware-name = “reconfig.rbf”;

#address-cells = <1>;

#size-cells = <1>;};};};

The parameter “target-path” indicates the part of the original device tree for substitu-

tion. Configuration of the file for FPGA programming is assigned using “firmware-

name” parameter. The file should be visible from the current work directory.

For single FPGA configuration, it can be achieved with the following sequence of

commands:

mount -t configfs configfs /root/config

rmdir /config/device-tree/overlays/fpga

mkdir /config/device-tree/overlays/fpga

echo fpga_config.dtbo > /config/device-tree/overlays/fpga/path

As a result of this action, FPGA section is programmed with a new rbf-file. To extend

the proposed concept even further, on the level of OS, the developer can allocate spe-

cific directory for rbf-files (they can be previously retrieved from the server). Each

configuration file is matched by specific overlay file that is enabled according to the

requests from the customer. The general presentation of the proposed solution is

shown in Fig. 2.

Fig. 2. The general diagram of overlay-based FPGA-configuration.

Therefore, the customer can select necessary functionality from the prepared con-

figurations and change it at the runtime stage without the need for reboot. This way

the accelerator is enabled almost immediately after programming.

4 Results and Discussions

To demonstrate the correctness of the workflow according to the information technol-

ogy, we employed DE0-Nano SoC Kit developed by Terasic. The board facilitates

Cyclone V SoC with FPGA part and two Cortex A9 cores. The testbed was integrated

into a local network and assigned a static IP-address. The board was configured con-

nect to the main server machine with running TFTP-server and open SSH-port.

The u-boot script was prepared with following parameters and commands (only

significant settings in context of the boot process are shown):

mmcroot=/dev/mmcblk0p2

fdtimage=socfpga.dtb

bridge_enable_handoff=mw $fpgaintf ${fpgaintf_handoff}; go $fpga2sdram_apply; mw

$fpga2sdram ${fpga2sdram_handoff}; mw $axibridge ${axibridge_handoff}; mw

$l3remap ${l3remap_handoff}

xfpga=tftpboot 0x2000000 soc_system.rbf;fpga load 0 0x2000000 0x700000; run

bridge_enable_handoff;tftpboot 0x00000100 soc_system.dtb

xload=run xfpga;tftpboot 0x8000 zImage;setenv bootargs console=ttyS0,115200

root=${mmcroot} rw rootwait;bootz 0x8000 - 0x00000100

Actually, the script just executes single command (run xload) to configure the system.

By the end of the command execution, we can observe the situation when the FPGA

is programmed with bitstream file while device tree is loaded and operating system is

launched. The final step is to run corresponding software. As soon as the kernel is

launched, copy command is executed from the startup script and, then, copied soft-

ware starts.

In Fig. 3, the output received using terminal program putty is shown.

Fig. 3. An example of terminal text output during the components load stage.

Previously mentioned actions regarding installation of user-space applications and

programming via overlays were executed in manual mode. However, it can be easily

automated using bash scripts toolset and remote automatized SSH-sessions.

All the artifacts used during the experiments campaign for Terasic development

board are available at the GitHub repository [15].

5 Conclusions

The developed information technology declares how SoC with programmable logic

part can be configured in the cloud environment. The main advantage of the technol-

ogy is that it supports configuration of the most important components. The technolo-

gy supposes configuration during the boot process as well as configuration of a run-

ning instance. From the point of view of cloud technologies, that means that it can be

sufficiently integrated into cloud infrastructure and automatize configuration of SoC

and FPGA as its hardware part. The test performed on the testbed proved that config-

uration at the boot stage and configuration without reboot work correctly and all men-

tioned components are configured successfully.

References

1. Khethavath, P., Thomas, J.P. & Chan-tin, E.: Towards an efficient distributed cloud com-

puting architecture. Peer-to-Peer Networking and Applications 10, 1152–1168 (2017).

2. Cornetta, G., Mateos, J., Touhafi, A., Muntean, G.M.: Design, simulation and testing of a

cloud platform for sharing digital fabrication resources for education. Journal of Cloud

Computing 8:12 (2019). doi: https://doi.org/10.1186/s13677-019-0135-x.

3. Talia, D.: A view of programming scalable data analysis: from clouds to exascale. Journal

of Cloud Computing 8:4 (2019). doi: https://doi.org/10.1186/s13677-019-0127-x.

4. Banerjee, S., Adhikari, M., Biswas, U.: Design and analysis of an efficient QoS improve-

ment policy in cloud computing. Serv. Oriented Comput. Appl. (2017). doi:

https://doi.org/10.1007/s11761-016-0196-3.

5. Pullini, A., Conti, F., Rossi, D., Loi, I., Gautschi, M., Benini, L.: A heterogeneous multi-

core system on chip for energy efficient brain inspired computing. IEEE Trans. Circuits

Syst. II Express Briefs. (2018). doi: https://doi.org/10.1109/TCSII.2017.2652982.

6. Musiyenko, M., Krainyk, Y., Denysov, O.: Reconfigurable decoder for irregular random

low density parity check matrix based on FPGA. In: 2015 IEEE 35th International Confer-

ence on Electronics and Nanotechnology, ELNANO 2015 - Conference Proceedings. pp.

498–503 (2015). doi: https://doi.org/10.1109/ELNANO.2015.7146937.

7. Krainyk, Y., Darnapuk, Y.: Configurable Description of FPGA-based Control System for

Sensor Processing. In: 2019 11th International Scientific and Practical Conference on

Electronics and Information Technologies, ELIT 2019 - Proceedings. pp. 210–213 (2019).

doi: https://doi.org/10.1109/ELIT.2019.8892313.

8. Krainyk, Y., Darnapuk, Y., Stelmakh, S.: Dataflow and system organization for image

sensor data processing. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Comput-

er Engineering, UKRCON 2019 - Proceedings. pp. 689–694 (2019). doi:

https://doi.org/10.1109/UKRCON.2019.8879934.

9. Skhiri, R., Fresse, V., Jamont, J.P., Suffran, B., Malek, J.: From FPGA to support cloud to

cloud of FPGA: State of the art. International Journal of Reconfigurable Computing 2019

(2019). doi: https://doi.org/10.1155/2019/8085461.

10. Kolesnyk, I., Perepelitsyn, A., Kulanov, V.: Providing of FPGA Resources as a Service:

Technologies, Deployment and Case-Study. In: CEUR Workshop Proceedings. pp. 63–68

(2017).

11. Kolesnyk, I., Kulanov, V., Perepelitsyn, A.: Markov model of FPGA resources as a service

considering hardware failures. In: CEUR Workshop Proceedings. pp. 56–62 (2018).

12. Amazon EC2 F1 Instances, https://aws.amazon.com/en/ec2/instance-types/f1, last accessed

2020/02/20/.

13. Linux kernel source tree, https://github.com/torvalds/linux, last accessed 2020/02/20.

14. Tian, D., Choi, J.I., Hernandez, G., Traynor, P., Butler, K.R.B.: A practical intel SGX set-

ting for linux containers in the cloud. In: CODASPY 2019 - Proceedings of the 9th ACM

Conference on Data and Application Security and Privacy (2019). doi:

https://doi.org/10.1145/3292006.3300030.

15. Configuration of FPGA part in SoC, https://github.com/codebreaker7/SoCFPGAConfig,

last accessed 2020/02/24.

https://doi.org/10.1186/s13677-019-0135-x
https://doi.org/10.1186/s13677-019-0127-x
https://doi.org/10.1007/s11761-016-0196-3
https://doi.org/10.1109/TCSII.2017.2652982
https://doi.org/10.1109/ELNANO.2015.7146937
https://doi.org/10.1109/ELIT.2019.8892313
https://doi.org/10.1155/2019/8085461
https://aws.amazon.com/en/ec2/instance-types/f1
https://github.com/torvalds/linux
https://github.com/codebreaker7/SoCFPGAConfig

