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The interest in Explainable Artificial Intelligence (XAI) research is dramatically
grown during the last few years. The main reason is the need of having systems that
beyond being effective are also able to describe how a certain output has been obtained
and to present such a description in a comprehensive manner with respect to the tar-
get users. A promising research direction making black boxes more transparent is the
exploitation of semantic information. Such information can be exploited from different
perspectives in order to provide a more comprehensive and interpretable representation
of AI models. In this paper, we present the first version of SeXAI, a semantic-based
explainable framework aiming to exploit semantic information for making black boxes
more transparent. After a theoretical discussion, we show how this research direction
is suitable and worthy of investigation by showing its application to a real-world use
case.

1 Introduction

1 Explainable Artificial Intelligence (XAI) aims at explaining the algorithmic decisions
of AI solutions with non-technical terms in order to make these decisions trusted and
easily comprehensible by humans [1]. If these AI solutions are based on learning al-
gorithms and perceived as black boxes due to their complexity, XAI makes them more
transparent and interpretable too. This is of great interest for both logical reasoning in
rule engines and Machine Learning (ML) methods. The explanation of a reasoning pro-
cess can be very difficult, especially when a system is based on a set of complex logical
axioms whose logical inferences are performed with, for example, tableau algorithms
[4]. Indeed, inconsistencies in logical axioms may be not well understood by users if
the system limits to just report the violated axioms. Indeed, users are generally skilled
to understand neither formal languages nor the behavior of a whole system. This is cru-
cial for some applications, such as a power plant system where a warning message to
the user must be clear and concise to avoid catastrophic consequences. On the other
hand, ML methods are based on statistical models of the data where some explanatory
variables (i.e., the features) of the data are leveraged in order to predict a dependent
variable (i.e., a class or a numeric value). Many statistical methods (e.g., the principal
component analysis) are able to detect what are the main involved features in a ML
task. These involved features can be used to explain to user the reason of a particular
decision. These features are usually handcrafted by human experts and consequently

1 Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).



present a shared semantics. Modern Deep Neural Network (DNN) are able to learn
these features with no need of human effort. However, the semantics of these learnt
features is nor explicit or shareable with humans. Therefore, a human-comprehensible
explanation about how and why an AI system took a decision is necessary.

A shared and agreed definition on explainability has not been reached in the AI
community so far. Here we follow the definition of Adadi and Berrada [1] that argue for
a distinction between interpretability and explainability. The former regards the study
of a mathematical mapping between the inputs and the outputs of a black-box system.
The latter regards a human comprehension of the logic and/or semantics of such a sys-
tem. Doran et al. [13] refine the notion of explainability stating that an explainable (or
comprehensible) system should provide a reason or justification about its output in-
stead of focusing solely on the mathematical mapping. Moreover, they argue that truly
explainable systems have to adopt reasoning engines that run on knowledge bases con-
taining an explicit semantics in order to generate a human comprehensible explanation.
In addition, the explainability power depends also on the background knowledge of the
users.

To this extent, the logical reasoning associated to semantics is fundamental as it
represents a bridge between the output machine and human concepts. This differs from
other XAI works that try to analyze the activations of the hidden neurons (i.e., the learnt
features) with respect to a given output without attaching a shared semantics. However,
logical reasoning on the back-box output is not sufficient as it performs a post-hoc
explanation of the black-box guided only by the axioms of a knowledge base. Indeed,
no explicit link from the black-box learned features and the concepts in the knowledge
base is used. The contribution of the paper addresses this issue.

We propose a novel semantic-based XAI (SeXAI) framework that generates expla-
nations for a black-box output. Differently from Doran et al., such explanations are
First-Order logic formulas whose predicates are semantic features connected to the
classes of the black box output. Logic formulas are then easy to translate in natural lan-
guage for a better human comprehension. Moreover, the semantic features are aligned
with the neurons of the black box thus creating a neural-symbolic model. This allows
reasoning between the output and the features and the improvement of both the knowl-
edge base and the black box output. In addition, the semantics in the knowledge base
is aligned with the annotation in the dataset. This is fundamental both for the neural-
symbolic alignment and for the black box performance. The latter were tested with
experiments on image classification showing that a semantic aligned with the training
set outperforms a model whose semantics is deduced from the output with only logical
reasoning. The rest of the paper follows with Section 2 that provides a state-of-the-art
of techniques for generating explanations from logical formulas. Section 3 describes
the main concepts of the SeXAI framework whereas Section 4 shows a first application
and results of the framework in an image classification task. Section 5 concludes the
paper.



2 Related Work

The research on XAI has been widely explored in the last years [17], but most of the
contributions focused only on the analysis of how learning models (a.k.a. black boxes)
work. This is a limited view of the topic since there is a school of thought arguing that
an effective explainability of learning models cannot be achieved without the use of
domain knowledge since data analysis alone is not enough for achieving a full-fledged
explainable system [8]. This statement has been further discussed recently by assert-
ing that the key for designing a completely explainable AI system is the integration of
Semantic Web technologies [19,20,29]. Semantic Web technologies enabling the the
design of strategies for providing explanations in natural language [2,26] where ex-
planations are provided through textual rule-like notation. NLG strategies have been
designed also for generating natural language text from triples [34] and for translat-
ing SPARQL queries into a natural language form understandable by non-experts [15].
Here, we focused on the integration of semantic information as enabler for improving
the comprehensiveness of XAI systems. Our aim is to generate natural language ex-
planations as result of the synergies between neural models and logic inferences for
supporting end-users in understanding the output provided by the systems.

The explanation of the logical reasoning in an ontology is implemented with two
two orthogonal approaches: justifications and proofs. The former computes the minimal
subset of the ontology axioms that logically entails an axiom. The latter computes also
all the inference steps [25].

One of the first user studies dealing with explanations for entailments of OWL
ontologies was performed by [24]. The study investigated the effectiveness of differ-
ent types of explanation for explaining unsatisfiable classes in OWL ontologies. The
authors found that the subjects receiving full debugging support performed best (i.e.,
fastest) on the task, and that users approved of the debugging facilities. Similarly, [28]
performed a user study to evaluate an explanation tool, but did not carry out any de-
tailed analysis of the difficulty users had with understanding these explanations. While,
[5] presents a user study evaluating a model-exploration based approach to explanation
in OWL ontologies. The study revealed that the majority of participants could solve
specific tasks with the help of the developed model-exploration tool, however, there
was no detailed analysis of which aspects of the ontology the subjects struggled with
and how they used the tool. The work [23] presents several algorithms for computing all
the justifications of an entailment in a OWL-DL knowledge base. However, nor study
or user evaluation is performed to assess the capability of the computed justifications of
the logical entailments. The work in [18] focuses on the explanation, through justifica-
tions, of the disclosure of personal data to users (patients and staff) of hospitals. This is
performed by translating SWRL rules inconsistencies into natural language utterances.
Moreover, the SWRL rules translation is performed axiom by axiom, thus generating a
quite long sentence. This could require too much time for reading and understanding.
Whereas, our method returns only a single utterance summarizing the whole justifica-
tion.

Formal proofs are the other form of explanation for logical reasoning. In [31] the
authors present an approach to provide proof-based explanations for entailments of the
CLASSIC system. The system omits intermediate steps and provides further filtering



strategies in order to generate short and simple explanations. The work proposed in [7]
first introduced a proof-based explanation system for knowledge bases in the Descrip-
tion Logic ALC [4]. The system generates sequent calculus style proofs using an exten-
sion of a tableaux reasoning algorithm, which are then enriched to create natural lan-
guage explanations. However, there exists no user studies to explore the effectiveness of
these proofs. In [27] the authors proposed several (tree, graphical, logical and hybrid)
visualizations of defeasible logic proofs and present a user study in order to evaluate
the impact of the different approaches. These representations are hard to understand for
non-expert users. Indeed, the study is based on participants from a postgraduate course
(who have attended a Semantic Web course) and from the research staff. In general,
proof algorithms for Description Logic are based on Tableau techniques [4] whereas
proof algorithms for other logics are studied in the field of Automated Reasoning [32].

This wide range of approaches to explanation of logical entailments is more focused
on the development of efficient algorithms than on effective algorithms for common
users. Indeed, all the computed explanations are sets of logical axioms understandable
only by expert users. The aim of our work is to provide and effective representation
to explanation for all users. This representation is based on the verbalization of the
explanation in natural language. This verbalization can be performed by using methods
that translate axioms of an OWL ontology in Attempto Controlled English [22,21] or in
standard English [3] with the use of templates. This last work also presents some users’
studies on the quality of the generated sentences. However, these works do not handle
with the reasoning results (justifications or proofs), indeed, no strategy for selecting and
rendering an explanation is studied.

3 The Framework

In the fields of Machine Learning and Pattern Recognition, a feature is a characteris-
tic or a measurable property of an object/phenomenon under observation [6]. Features
can be numeric or structured and they are crucial in tasks such as pattern detection,
classification or regression as they serve as explanatory variables. Indeed, informative
and discriminating features are combined in a simple or complex manner by the main
ML algorithms. This also holds in our everyday experience, a dish composed by pasta,
bacon, eggs, pepper and aged cheese (features) is recognized as pasta with Carbonara
sauce (the class). Diseases are recognized according to the symptoms (features), the
price of the houses is computed according to the features of, e.g., location, square
meters and years of the real estate. However, with the rise of Deep Neural Networks
(DNN), features are learnt by the system from the raw data without the necessity of
handcrafting from domain experts. This has improved the performance of such systems
with the drawback of loosing comprehensibility from users. Indeed, DNNs embed the
data in a vector space in the most discriminating way without any link to a formal se-
mantics. The aim of SeXAI is to link a DNN with a formal semantics in order to provide
a comprehensible explanation of the DNN output to everyday users.

Following the definitions of Doran et al.[13], we ground the notion of explainable
system into the concept of a comprehensible system, that is a system that computes its
output along with symbols that allow users to understand what are the main semantic



features in the data that triggered that particular output. Here, we refine the work of
Doran et al. by introducing the concept of semantic feature. These are features that can
be expressed through predicates of a First-Order Logic (FOL) language and represent
the common and shared attributes of an object/phenomenon that allow its recognition.
Examples can be ContainsBacon(x) or ContainsEggs(x) indicating the ingredients
of a dish in a picture. Semantic features in principle can be further explained by more
fine-grained semantic features. For example, the ChoppedBacon(x) feature can be
explained by the HasCubicShape(x) and HasPinkColor(x) features. However, in a
nutritional domain, these latter features do not add further comprehension to users and
can represent an overload of information. Therefore, the knowledge engineering and/or
domain expert have to select the right granularity of the semantic features to present
to users and therefire ensuring a sort of atomic property of these features. Semantic
features are different from the learnt numeric (and not comprehensible) features of a
DNN. The aim of a comprehensible system is to find an alignment between the learnt
and the semantic features.

The connection between a DNN output and its semantic features is formalized
through the definition of comprehension axiom.

Definition 1 (Comprehension axiom). Given a FOL language with P = {O}n1 ∪
{A}m1 the set of its predicate symbols, a comprehension axiom is a formula of the form

k∧
i=1

Oi(x)↔
l∧

i=1

Ai(x)

with {O}n1 the set of output symbols of a DNN and {A}m1 the corresponding semantic
features (or attributes).

A comprehension axiom formalizes the main tasks of a DNN:

Multiclass Classification: the predicate Oi(x) represents a class (e.g., pasta with Car-
bonara sauce or sushi) for x and k = 1 as a softmax is applied in the last layer of
the DNN. The semantic features represent, for example, ingredients contained in
the recognized dish.

Multilabel Classification: Oi(x) is part of a list of predicates being computed by the
DNN (e.g., dinner and party) for x and k > 1 as a sigmoid is applied in the last
layer of the DNN. The semantic features represent, for example, objects in the
scene, such as, pizza, table, bottles, person and balloons.

Regression: Oi(x) can be part of a list of predicates being computed by the DNN
(e.g., the asked price and the real values of house) for x. Here k ≥ 1 with a sigmoid
applied in the last layer of the DNN. The semantic features are properties of interest
for buying a house.

We present the SeXAI framework for comprehensible systems in Figure 3. The
knowledge base KB contains both the predicate symbols in P for annotating the data
and the comprehension axioms. These latter are passed to the symbolic system that is in
charge of i) analyzing the output of the DNN and the associated semantic features; ii)
reasoning about them according to the comprehension axioms; iii) returning a, possibly



Fig. 1. In the SeXAI framework data are annotated with symbols of a knowledge base. A sym-
bolic system is aligned with a DNN in order to provide an output and a set of semantic features
consistent with the comprehension axioms in the knowledge base.

refined, output along with the related semantic features. This architecture extends the
ones in [13], where a reasoner computes the explanation of the output, with a semantic
module that enables several tasks that improve the comprehension and the transparency
(i.e., the interpretation) of the DNN:

Output and semantic features refinement: The DNN is trained to return both the
output and the semantic features in a multitasking learning setting. Then, with the
use of fuzzy reasoning or neural-symbolic systems [11,12,9,30], both outputs can
be refined according to the comprehension axioms and to the evidence coming from
the scores of the DNN.

Feature Alignment: Once a DNN is trained in a multitasking learning setting, it is
possible to analyze which are the most activated neurons of the last hidden layer
[16] for each semantic feature. In this manner, we can align the high-level features
of the DNN with the semantic features in KB.

Knowledge base improvement: Once the features alignment is performed, the system
can turn off the neurons corresponding to a given semantic feature and check the
performance degradation with respect to the output. No degradation of the perfor-
mance means that the particular semantic feature has just a correlation with the
output and, therefore, it can be removed from the corresponding comprehension
axiom or stated as a simple correlation. On the other hand, a degradation of the per-
formance indicates a causality of the semantic features with respect to the output.



The more the performance degrades the higher the causality degree for that feature
is. Therefore, we can enrich KB with some priors in the comprehension axioms
about the importance of the semantic features.

Model improvement: Analyzing the semantic features returned by wrong output pre-
dictions allows the system to detect the presence of some common semantic fea-
tures that alter some predictions. Therefore, the model can assign a lower weight to
the neurons aligned with that semantic features.

The symbolic system in SeXAI extends the framework of Doran et al. [13] by comput-
ing the alignment of semantic and DNN features that enables the improvement of both
KB and of the model. Differently, in [13] the reasoner module is able to only generate
the output and the semantic features.

4 SeXAI in Action

Section 3 provided the general description of the SeXAI framework that we proposed
for increasing the overall comprehensiveness of AI models. In this Section, we show
how the SeXAI framework can be instantiated within a real-world scenario. In partic-
ular, we applied the SeXAI framework to image classification with the aim of demon-
strating how the integration of semantics into an AI-based classification systems trig-
gers both the generation of explanations and, at the same time, an improvement of the
overall effectiveness of the classification model.

As described in Section 3, the SeXAI framework is composed by different modules
that, depending on the scenario in which the framework is deployed, can be instantiated
or not. Let us consider a scenario where the goal is to classify food images with respect
to the food categories contained by the represented recipe instead of the recipe itself.
Information about food categories are particularly useful in scenario where physicians
are supported by information systems concerning the diet monitoring of people affected
by nutritional diseases (e.g., diabetes, hypertension, obesity, etc.). By starting from the
SeXAI architecture shown in Figure 3, we instantiated the modules as follows.

– The “Data” module contains our dataset of recipe images we used for training the
classification model. A more detailed description of the dataset is provided in Sec-
tion 4.1.

– The “Knowledge Base” contains, beyond a taxonomy of recipes and food cate-
gories, the composition of each recipe in terms of its food categories. Recipes
compositions are described by object properties within the knowledge base. More
specifically, in our scenario we adopted the HeLiS ontology [14] where we have
the food category-based composition of more than 8,000 recipes2.

– As “Black-box model”, we implemented a DNN trained with recipe/food images
annotated with the list of related food categories. Given a recipe image x, the recipe
label represents the O(x) output neuron, while the food categories represent the

2 In the remaining of the paper, we will refer to some concepts defined within the HeLiS on-
tology. We leave to the reader the task of checking the meaning of each concept within the
reference paper.



semantic features A(x) output neurons. In our scenario we decided to not include
the O(x) output neurons and to classify each image by its semantic features A(x).
Hence, each neuron of the DNN output layer indicates if one of the food categories
contained in the dataset has been detected within the images or not.

– Finally, in our scenario the “Symbolic System” links together the “Knowledge
Base” and the output of the DNN for generating natural language explanations of
the classification results.

The evaluation of explanations quality is still an open topic within the AI research
area [19]. Moreover, in our scenario, explanations aim to provide a comprehensive de-
scription of the output rather than being a vehicle for improving the model. Hence, the
evaluation of their language content is not of interest. Instead, the SeXAI framework
evaluation provided in this work focuses on the effectiveness of exploiting semantic
features for both training and classification purposes. As baseline, we used a post-hoc
semantic-based strategy where images used for training the DNN were annotated only
with the corresponding recipe label. Here, the list of food categories has been extracted
after the classification of each images by exploiting the predicted recipe label. Figure 4
shows the building blocks of the baseline. For readability, hereafter we will refer to the
instantiation of the SeXAI framework as “multi-label classifier”, while the baseline will
be labeled as “single-label classifier”.

Fig. 2. The architecture of the baseline system we used for comparing the effectiveness of the
SeXAI framework concerning the recipe images classification task.



4.1 Quantitative Evaluation

In the considered scenario, a good performance on recognizing food categories is im-
portant as the misclassification of images could trigger wrong behaviors of the systems
in which the classifier is integrated. For example, if the framework would be integrated
into a recommendation system, a misclassification of a recipe image would lead to the
generation of wrong messages or even no message to the target user.

The Food and Food Categories (FFoCat) Dataset 3 We leverage the food and food
category concepts in HeLiS for the multi-label classification. However, current food
image datasets are not built with these concepts as labels, so it was necessary to build
a new dataset (named FFoCat) with these concepts. We start by sampling some of the
most common recipes in Recipe and use them as food labels. The food categories are
then automatically retrieved from BasicFood with a SPARQL query. Examples of food
labels are Pasta with Carbonara Sauce and Baked Sea Bream. Their associated food
categories are Pasta, AgedCheese, VegetalOils, Eggs, ColdCuts and FreshFish, Vege-
talOils, respectively. We collect 156 labels for foods (Recipe concept) and 51 for food
categories (BasicFood concept). We scrape the Web, using Google Images as search
engine, to automatically download all the images related to the food labels. Then, we
manually clean the dataset by checking if the images are compliant with the related
labels. This results in 58,962 images with 47,108 images for the training set and 11,854
images for the test set (80-20 ratio of splitting). Then, by leveraging HeLiS properties,
we enrich the image annotations with the corresponding food category labels to perform
multi-label classification. The dataset is affected by some natural imbalance, indeed the
food categories present a long-tail distribution: only few food categories labels have
the majority of the examples. On the contrary, many food categories labels have few
examples. This makes the food classification challenging.

Experimental Settings and Metrics For both multi and single-label classification we
separately train the Inception-V3 network [33] from scratch on the FFoCat training set
to find the best set of weights. The fine tuning using pre-trained ImageNet [10] weights
did not perform sufficiently. This is probably due to the fact that the learnt low-level
features of the first layers of the network belong to a general domain and do not match
properly with the specific food domain. For the multi-label classification, we use a sig-
moid as activation function of the last fully-connected layer of the Inception-V3 and
binary cross entropy as loss function. This is a standard setting for multi-label clas-
sification. Regarding the single-label classification, the activation function of the last
fully-connected layer is a softmax and the loss function is a categorical cross entropy.
We run 100 epochs of training with a batch size of 16 and a learning rate of 10−6. At
each epoch images are resized to 299x299 pixels and are augmented by using rotations,
width and height shifts, shearing, zooming and horizontal flipping. This results in a
training set 100 times bigger than the initial one. We used early stopping to prevent
overfitting. The training has been performed with the Keras framework (TensorFlow as
backend) on a PC equipped with a NVIDIA GeForce GTX 1080.

3 The dataset, its comparison and the code are available at https://bit.ly/2Y7zSWZ.
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As performance metric we use the mean average precision (MAP) that summarizes
the classifier precision-recall curve: MAP =

∑n
i=1(Rn−Rn−1)Pn, i.e., the weighted

mean of precision Pn achieved at each threshold level n. The weight is the increase of
the recall in the previous threshold: Rn−Rn−1. The macro AP is the average of the AP
over the classes, the micro instead considers each entry of the predictions as a label. We
preferred MAP instead of accuracy as the latter for sparse vectors can give misleading
results: high results for output vectors with all zeros.

Results Given an (set of) input image(s) x, the computing of the precision-recall curve
requires the predicted vector(s) y of food category labels and a score associated to each
label in y. In the multi-label method this score is directly returned by the Inception-
V3 network (the final logits). In the single-label and inference method this score needs
to be computed. We test two strategies: (i) we perform exact inference of the food
categories from HeLiS and assign the value 1 to the scores of each yi ∈ y; (ii) the
food categories labels inherit the uncertainty returned the DNN: the score of each yi
is the logit value si returned by DNN(x). Results are in Table 1. The direct multi-

Method Micro-AP (%) Macro-AP (%)
Multi-label (SeXAI framework) 76.24 50.12
Single-class without uncertainty (baseline) 50.53 31.79
Single-class with uncertainty (baseline) 60.21 42.51

Table 1. The multi-label classification of food categories outperforms in average precision (AP)
the methods based on single-label classification and logical inference.

label has very good performance (both in micro and macro AP) in comparison with the
single-label models. The micro-AP is always better than the macro-AP as it is sensible
to the mentioned imbalance of the data. This means that errors in the single recipe
classification propagate to the majority of the food categories the recipe contains. That
is, the inferred food categories will be wrong because the recipe classification is wrong.
On the other hand, errors in the direct multi-label classification will affect only few food
categories. We inspected in more detail some of the errors committed by the classifiers
in order to have a better understanding of their behaviors. In some cases, the single-label
method misclassified an image with Backed Potatoes as Backed Pumpkin thus missing
the category of FreshStarchyVegetables. Another image contains a Vegetable Pie but
the single-label method infers the wrong category of PizzaBread. In another image, this
method mistakes Pasta with Garlic, Oil and Chili Peppers with Pasta with Carbonara
Sauce, thus inferring wrong Eggs and ColdCuts. Here the multi-label method classifies
all the categories correctly. Therefore, the multi-label method allows a more fine grained
classification of the food categories w.r.t. the single-label method. The latter has better
results if the score returned by the DNN is propagated to the food categories labels w.r.t.
the exact inference.



4.2 Discussion

The experience of designing the SeXAI framework and the analysis of results obtained
from a preliminary validation within a real-world use case highlighted two important
directions towards the long-term goal of achieving a fully-explainable AI system.

First, the integration of semantic features with black-box models enabled the gen-
eration of comprehensive explanations. SeXAI can be considered a neuro-symbolic
framework conjugating the effectiveness of black-box models (e.g., DNN) with the
transparency of semantic knowledge that, where possible, can support the generation
of explanations describing the behavior of AI systems. This aspect opens to a very
interesting and innovative research direction centered on the content of the generated
explanations. Indeed, the integration of semantic features for generating explanations
can be exploited for refining the statistical model itself (as described in Section 3). For
instance by analyzing correlations between the presence of specific semantic features
within explanations and the performance of the black-box model. Future work will fo-
cus on strengthening this liaison within the SeXAI framework in order to validate if an
inference process could improve the classification capability and, at the same time, to
observe how inference results could be exploited for refining the black-box model.

Second, the integration of semantic features can lead to better classification per-
formance. Results presented in Table 1 show that through the integration of semantic
features, it is possible to improve the overall effectiveness of the black-box model. This
is a very interesting finding since it confirms the importance of a by-design integration
of semantic features. Future activities will further investigate this hypothesis within
other scenarios with the aim of understanding which are the boundaries and if there
exist some constraints in the application of this strategy. For instance, the granularity
of semantic features with respect to the entities that have to be classified could play
an important role. Hence, a trade-off has to be found in order to maintain the explain-
able capability of the system and, at the same time, an acceptable effectiveness of the
classification model.

5 Conclusions

The aim of Explainable Artificial Intelligence is to provide black-box algorithms with
strategies to produce a reason or justification for their outputs. This is fundamental to
make these algorithms trusted and easily comprehensible by humans. A formal seman-
tics, provided by knowledge bases, encoded in a logical language allows the connection
between the numeric features of a black box and the human concepts. Indeed, a justifica-
tion in a logical language format can be easily translated in natural language sentences
in an automatic way.

In this paper, we presented the first version of SeXAI, a semantic-based explainable
framework aiming at exploiting semantic information for making black boxes more
comprehensible. SeXAI is a neural-symbolic system that analyses the output of a black
box and creates a connection between the learnt features and the semantic concepts of
a knowledge base in order to generate an explanation in a logical language. This allows
reasoning on the black box and its explanation, the improvement of the knowledge base



and of the black box output. The semantics in the knowledge base is aligned with the
annotations in the dataset. This improves the performance of SeXAI on a task of multi-
label image classification with respect to a system that performs solely logical reasoning
on the black box output.

As future work, we will perform some experiments on the quality of the alignment
between the learnt and the semantic features. In particular, we will evaluate the degree
of causality of the semantic features with respect to the output and how the attention of
a black box can be moved towards the semantic features in order to improve the model
performance.
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