
Argumentation and Logic Programming
for Explainable and Ethical AI? ??

Roberta Calegari1[0000−0003−3794−2942], Andrea Omicini2[0000−0002−6655−3869],
and Giovanni Sartor1[0000−0003−2210−0398]

1 Alma AI – Alma Mater Research Institute for Human-Centered Artificial
Intelligence , Alma Mater Studiorum—Università di Bologna, Italy

2 Dipartimento di Informatica – Scienza e Ingegneria (DISI), Alma Mater
Studiorum—Università di Bologna, Italy

Abstract. In this paper we sketch a vision of explainability of intelligent
systems as a logic approach suitable to be injected into and exploited by
the system actors once integrated with sub-symbolic techniques.
In particular, we show how argumentation could be combined with dif-
ferent extensions of logic programming – namely, abduction, inductive
logic programming, and probabilistic logic programming – to address the
issues of explainable AI as well as some ethical concerns about AI.
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1 Introduction

In the context of the new “AI Era”, intelligent systems are increasingly relying
on sub-symbolic techniques—such as deep learning (DL) [1, 6]. The opaqueness
of most sub-symbolic techniques engenders fears and distrust, thus it has been
argued that the behaviour of intelligent systems should be observable, explain-
able, and accountable—which is the goal of the eXplainable Artificial Intelligence
(XAI) field [7, 1].

In this paper we focus on logic-based approaches and discuss their potential
in addressing XAI issues especially in pervasive scenarios that can be designed
as open multi-agent system (MAS)—the reference for the design of intelligent
systems [6, 29, 30].

In particular, this paper proposes a possible architecture for delivering (ubiq-
uitous) symbolic intelligence to achieve explainability in pervasive contexts. In-
deed, we believe that the issue of ubiquitous symbolic intelligence is the key to
making the environment truly smart and self-explainable. We also think that
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the declarativeness and transparency of the approach can lead to the injection
of ethical behaviours into the system—according to the studies showing that
moral philosophy and psychology for choosing conceptual viewpoints are close to
reasoning based on logic programming (LP) [22]. It is worth noting that the pro-
posed vision – and the corresponding architecture – enables on-demand symbolic
intelligence injection, only where and when required. Sub-symbolic techniques –
e.g., deep networks algorithms – are therefore part of our vision, and can coexist
in the system even in case they are not fully explainable. Consequently, we be-
lieve that one of the main requirements of any system is to identify which parts
need to be explained – for ethical or legal purposes, responsibility issues, etc. –
and which ones can remain opaque.

Logic-based approaches already have a well-understood role in building intel-
ligent (multi-agent) systems; declarative, logic-based approaches have the poten-
tial to represent an alternative way of delivering symbolic intelligence, comple-
mentary to the one pursued by sub-symbolic approaches [6]. Logic-based tech-
nologies address opaqueness issues, and, when suitably integrated with argumen-
tation capabilities, can become the answer to reach features like interpretability,
observability, accountability, and explainability. In our vision, explainability can
consist of a system’s capability of conversing and debating about situations and
choices, having the ability able to provide reports and insights into what is hap-
pening. An explanation can be seen as a sort of conversation among the person
asking for clarification and the system actors – agents, environment and (e-
)institution – enabled by the fact that the system is capable of answer and argue
about the questions. As far as ethics is concerned, LP has recently been heavily
studied by the research community, precisely in relation to the implementation
of ethical machines and systems [27].

Argumentation is certainly the spearhead of the proposed approach, but –
in order to tackle the requirements of ubiquitous intelligence demanded by AI
– it should be strongly intertwined with logic programming and its extensions.
In particular, our vision of symbolic intelligence leverages on argumentation,
abduction, inductive logic programming, and probabilistic logic programming,
along the line of some recent research works—e.g., [15]. Accordingly, in the paper
we discuss our vision and how it can build upon some readily available models
and technologies, once they are suitably integrated.

2 Logic approaches for XAI

2.1 Why logic?

The main question that has driven us to sharpen this vision is the following:
“What is or can be the added value of logic programming for implementing
machine ethics and explainable AI?"

The main answer lies back in the three main features of LP: (i) being a
declarative paradigm, (ii) working as a tool for knowledge representation, and
(iii) allowing for different forms of reasoning and inference. These features lead



to some properties for intelligent systems that have the potential to be critical
in the design of ubiquitous intelligence.

Provability. By relying on LP, the models can provide for a well-founded seman-
tics ensuring some fundamental computational properties – such as correctness
and completeness. Moreover, extensions can be formalised, well-founded as well,
based on recognised theorems—like for instance, correctness of transitive clo-
sure, strongly equivalent transformation, modularity and splitting set theorem.
Provability is a key feature in the case of trusted and safe systems.

Explainability. The explainability feature is somehow intrinsic in LP techniques.
Formal methods for argumentation-, justification-, and counterfactual-based meth-
ods are often based on a logic programming approach [14, 23, 27]. These tech-
niques make the system capable to engage in dialogues with other actors to
communicate its reasoning, explain its choices, or to coordinate in the pursuit of
a common goal. So, the explanation can be a dialogue showing insights on rea-
soning or, again, the explanation can be the unravel of causal reasoning based
on counterfactual. Counterfactuals are the base for hypothetical reasoning, a
necessary feature both for explanation and machine ethics. Furthermore, other
logical forms of explanation can be envisaged via non-monotonic reasoning and
argumentation, through a direct extension of the semantics of LP.

Expressivity and situatedness. As far as the knowledge representation is con-
cerned, the logical paradigm brings non-obvious advantages—beyond the fact
of being human-readable. First of all, a logical framework makes it possible to
grasp different nuances according to the extensions considered—e.g., nondeter-
minism, constraints, aggregates [13]. Also, assumptions and exceptions can be
made explicit, as well as preferences—e.g., weighted weak constraints [3]. Finally,
extensions targeting the Internet of Things can allow knowledge to be situated
in order to be able to capture the specificities of the context in which it is located
[11]. Expressive, flexible, and situated frameworks are needed to cover various
problems and reasoning tasks closely related to each other.

Hybridity. One of the strengths of logic – and of LP specifically – is to make it
possible the integration of diversity [10, 28]—e.g., logic programming paradigms,
database theory and technologies, knowledge representation, non-monotonic rea-
soning, constraint programming, mathematical programming, etc. This makes it
possible to represent the heterogeneity of the contexts of intelligent systems –
also in relation to the application domains – and to customise as needed the sym-
bolic intelligence that is provided while remaining within a well-founded formal
framework.

2.2 User requirements for XAI

Before we move into the discussion of the main extensions that a symbolic intel-
ligence engine needs to have in order to inject explainability, let us define what



we should expect from an explainable system and what kind of intelligence the
system is supposed to deal with.

R1 First of all, the system should be able to answer what questions, i.e., it
should provide query answering and activity planning in order to achieve a
user-specified goal.

R2 The system should be able to answer why questions, i.e., it should provide
explanation generation (in the form of text, images, narration, conversation)
and diagnostic reasoning.

R3 The system should be able to answer what if questions, i.e., it should provide
counterfactual reasoning and predictions about what would happen under
certain conditions and given certain choices.

R4 The system should be able to answer which questions, i.e., it should be able
to choose which scenarios to implement, once plausible scenarios have been
identified as in the previous point. The choice should result from the system’s
preferences, which could possibly be user-defined or related to the context.

R5 The system should be able to provide suggestions, i.e., to indicate what is
better to do given the current state of affair, exploiting hypothetical reason-
ing.

R6 The system should be able to support two types of intelligence and therefore
reasoning, i.e., reactive reasoning – related to the data and the current situa-
tion – and deliberative reasoning—related more to consciousness, knowledge
and moral, normative principles.

Even if only R2 is strictly and explicitly related to the explainability feature,
also the other requirements can help to understand and interpret the system
model, so all the above-mentioned requirements can be identified as mandatory
for reaching ethical features such as interpretability, explainability, and trustwor-
thiness. According to the requirements, in the following we discuss what logical
approach should be part of an engine that enables symbolic intelligence to be
injected in contexts demanding for the aforementioned properties.

2.3 Logic approaches and technologies involved for XAI

In our vision, logic programming is the foundation upon which the architecture
for a symbolic intelligence engine can be built, enabling an intelligent system
to meet the R1 requirement. Clearly, enabling different forms of inference and
reasoning – e.g., non-monotonic reasoning – paves the way for the possibility
to get different answers (appropriate to the context) to the what questions.
Furthermore, the techniques of inference and reasoning grafted into the symbolic
engine make it possible to reason about preferences by meeting requirement R4.

However, LP needs to be extended in order to address explainability in differ-
ent AI technologies and applications, and to be able to reconcile the two aspects
of intelligence present in today’s AI systems—namely, reactive and deliberative
reasoning. In particular, in the following we show how argumentation, abduc-
tion, induction, and probabilistic LP can be fundamental ingredients to shape
explainable and ethical AI.



Argumentation. In this vision, argumentation is the enabler to meet requirement
R2. Argumentation is a required feature of the envisioned symbolic intelligence
engine to enable system actors to talk and discuss in order to explain and justify
judgements and choices, and reach agreements.

Several existing works set the maturity of argumentation models as a key
enabler of our vision [17, 20]. Despite the long history of research in argumenta-
tion and the many fundamental results achieved, much effort is still needed to
effectively exploit argumentation in our envisioned framework. First, research on
formal argumentation has mostly been theoretical: practical applications to real-
world scenarios have only recently gained attention, and are not yet reified in a
ready-to-use technology [9]. Second, many open issues of existing argumentation
frameworks concern their integration with contingency situation and situated
reasoning to achieve a blended integration of reactive and deliberative reason-
ing. Finally, the argumentation architecture should be designed in order to be
highly scalable, distributed, open, and dynamic and hybrid approaches should
be investigated.

Abduction. Abduction is the enabling technique to meet R3. Abduction, in fact,
allows plausible scenarios to be generated under certain conditions, and enables
hypothetical reasoning, including the consideration of counterfactual scenarios
about the past. Counterfactual reasoning suggests thoughts about what might
have been, what might have happened if any event had been different in the past.
What if I have to do it today? What have I learnt from the past? It gives hints
about the future by allowing for the comparison of different alternatives inferred
from the changes in the past. It supports a justification of why different alter-
natives would have been worse or not better. After excluding those abducibles
that have been ruled out a priori by integrity constraints, the consequences of
the considered abducibles have first to be evaluated to determine what solution
affords the greater good. Thus, reasoning over preferences becomes possible.
Counterfactual reasoning is increasingly used in a variety of AI applications,
and especially in XAI [16].

Probabilistic Logic Programming. Probabilistic logic programming (PLP) allows
the symbolic reasoning to be enriched with degrees of uncertainty. Uncertainty
can be related to facts, events, scenarios, arguments, opinions, and so on. On
the one side, PLP allows abduction to take scenario uncertainty measures into
account [25]. On the other side, probabilistic argumentation can account for
diverse types of uncertainty, in particular uncertainty on the credibility of the
premises, uncertainty about which arguments to consider, and uncertainty on
the acceptance status of arguments or statements [26].

Reasoning by taking into account probability is one of the key factors that
allow a system to fully meet R4 and R5, managing to formulate a well-founded
reasoning on which scenario to prefer and which suggestions to provide as out-
comes.



Inductive LP. Inductive logic programming (ILP) can help us to bridge the gap
between the symbolic and the sub-symbolic models—by inserting data and con-
text into the reasoning. As already expressed by R6, data, context, and reactive
reasoning are key features to take into account when designing intelligence. ILP
makes it possible learning from data enabling inductive construction of first-
order clausal theories from examples and background knowledge. ILP is a good
candidate to meet R6 and preliminary studies show ILP can be the glue be-
tween symbolic techniques and sub-symbolic ones such as numerical/statistical
machine learning (ML) and deep learning (DL) [2].

All these techniques must be suitably integrated into a unique consistent
framework, in order to be used appropriately when needed. They should be
involved in the engineering of systems and services for XAI.

2.4 Open challenges

The approaches discussed above are just the starting point for the design and the
implementation of the envisioned symbolic engine. Many problems and research
challenges remain to be resolved before the architecture can become a ready-to-
use framework.

First of all, the model formalisation deserve attention. [15] can provide us
with a base for the integration of abduction and PLP, but other approaches
integration need to be formalised. Well-founded properties have to been demon-
strated as well. Moreover, knowledge extraction and injection techniques have
to be explored. [8] depicts a first overview of the main existing techniques but
some challenges remain open—in particular, knowledge injection and extraction
when dealing with neural networks is a huge problem per se and it is not clear
how and where to inject the symbolic knowledge in such nets [18].

Apart from the extraction of causal cues, there are other cognitive traits that
should be taken into account in XAI systems, like, the selection of which kind
of explanations. This issue open up different related issues: (i) a formal defini-
tion of the term explainability, and (ii) the selection of a suitable explanation
depending on the context. As far as the explainability definition is concerned,
the terms “interpretability” and “explainability” are often used carelessly and
interchanged in the context of XAI. Although they are closely related and both
contributing to the ultimate goal of understandability, it is worth pointing out
the differences. On the one side, we borrow the definition of interpretation from
logic, where the word essentially describes the operation of binding objects to
their actual meaning in some context—thus, the goal of interpretability is to
convey to humans the meaning hidden into the data [12]. On the other side,
we define explanation as the act making someone understand the information
conveyed in a given discourse—i.e., the goal of explainability is to transfer to the
receiver (possibly humans) given information on a semantic level and, for such a
reason, we identify explainability as the capability of converse and debate about
a situation and on a reached agreement. Not that the distinction between in-
terpretability and explainability shows how most XAI approaches proposed into



the recent literature mostly focus on interpretability. As far as the explanation
selection is concerned, cognitive limitations comes into play. For instance, if the
explanation is required by a human, due to our cognitive limitations we do not
want to be presented with the whole chain of causal connections explaining a
given algorithmic decision, but rather users demand for a synthetic explanation
going to the core of the causal chain. The individuation of the mechanisms be-
hind such selection is, however, far from trivial and many cognitive techniques
should be taken into account [19].

3 System Architecture

Fig. 1 summarises our vision by highlighting the main roles involved in the sys-
tem as well as the main activity flows. The grey boxes represent the technologies
involved in the vision, while arrows represent the expected provided function-
alities. The symbolic reasoner embodies the unique framework integrating the
aforementioned logic approaches.

On one side, knowledge is collected from various sources – e.g., domain-
specific knowledge, ontologies, sensors raw data – and is then exploited by agents
that live in a normative environment. Note that we mean to exploit already
existing techniques to convert ML knowledge into logic KB [8] and to explore
other possibilities – always related to the exploitation of the aforementioned LP
approaches – to explain (part of) deep knowledge.

Fig. 1. Main architecture components and techniques for realising the vision.



The cognitive ability of the system is expanded with the concept of sym-
bolic (micro-)intelligence which provides the techniques of symbolic reasoning
discussed in Section 2 and tailored to LP. The multi-agent system, also thanks
to its rational reasoning and argumentation capabilities, can provide outcomes to
the users as well as explanations for their behaviours. On the other side, humans
can insert input into the system – like desires, preferences, or goal to achieve –
and these are transposed into agents’ goal, corresponding activity planning, and
lower-level commands for actuators.

The foundation of the vision is to have a symbolic reasoning engine – which
carries out the techniques discussed above – to be injectable on-demand into the
various system’s components—agents and/or environment and/or institutions.
Symbolic (micro-)intelligence architecture [4, 21] is exploited to deliver symbolic
intelligence according to the new paradigms of AI. The architecture of symbolic
(micro-)intelligence should enable – where and when necessary – actions at the
micro-level, in order to respond to local and specific needs (for this reason this
architecture can be deployed both on cloud and on edge) [5]. Symbolic (micro-
)intelligence complements agents’ own cognitive processes because it augments
the cognitive capabilities of agents, by embodying situated knowledge about the
local environment along with the relative inference processes, based on argumen-
tation, abduction, ILP and PLP.

Along this line, our vision stems from two basic premises underpinning the
above design: (i) knowledge is locally scattered in a distributed environment,
hence its situated nature; (ii) symbolic capabilities are available over this knowl-
edge, with the goal of extending local knowledge through argumentation, induc-
tion, deduction, abduction, and probabilistic reasoning; (iii) distributed knowl-
edge can be considered as compartmentalised in distinct knowledge modules
and can be used by itself, or by referring to other modules for specific questions
(according to the model of modular LP).

4 Preliminary Investigation: Examples

To ground our proposal, let us discuss a preliminary example from a case study
in the area of traffic management, considering the near future of self-driving
cars. In that scenario, cars are capable of communicating with each other and
with the road infrastructure while cities and roads are suitably enriched with
sensors and virtual traffic signs able to dynamically interact with cars to provide
information and supervision.

Accordingly, self-driving cars need to (i) exhibit some degree of intelligence
for taking autonomous decisions; they need to (ii) converse with the context
that surrounds them, (iii) have humans in the loop, (iv) respond to the legal
setting characterising the environment and the society, and (v) offer explanations
when required—e.g., in case of accidents to determine causes and responsibil-
ities. Fig. 2 (left) contains a possible example of the logical knowledge that,
despite its simplicity, highlights the main different sources of knowledge taken
into account in such a scenario. First of all, knowledge includes data collected by



vehicle sensors as well as the beliefs of vhicles—possibly related to the outcome
of a joint discussion among other entities in the system. Then, commonsense
rules enrich the system knowledge, for instance, linking perceptions to beliefs
about the factual situations at stake. Also, commonsense rules can state general
superiority relations, such as that sensors’ perceptions must be considered pre-
vailing over vehicles’ beliefs. An additional source of knowledge is e-institution
knowledge. Loosely speaking, e-institutions are computational realisations of tra-
ditional institutions that incarnate the global system norms as global, national,
state, and local laws, regulations, and policies. For instance, the e-institution
knowledge defined in Fig. 2 declares that general speed limit – according to Ger-
many federal government – is 100 km/h outside built-up areas (no highways). In
addition, a general norm is stated by the e-institution declaring that the over-
take is permitted only if it is not raining. Another possible source of knowledge
is situated knowledge collected by the surrounding context (infrastructure) that
can include specific local rules stating exceptions to the general e-institutions
rules. For instance, in the example, situated knowledge states that in the road
being represented the general speed limit only applies if it does not rain, other-
wise vehicles must slow down to 60 km/h. Note that in the example we list all
the different kinds of knowledge in a unique file, but a suitable technology that
embodies the envisioned architecture needs to manage different modules and to
combine them—depending on the situation.

Fig. 2 (right) shows some system outcomes, depending on the situation. All
examples have been implemented and tested on the preliminary implementation
of the system—namely, Arg-tuProlog [24].3 Arg-tuProlog – designed according
to the vision discussed in this paper – is a lightweight modular argumentation
tool that fruitfully combines modular logic programming and legal reasoning
according to an argumentation labelling semantics in which any statement (and
argument) is associated with one label which is IN, OUT, UND, respectively
meaning that the argument is accepted, rejected, or undecided. Example 1 is
run without taking into account the superiority relation of perceptions over
beliefs. In this situation, beliefs and perceptions are in conflict and no decision
can be taken by the system, i.e., vehicles can base their decision only by taking
into account the e-institution obligation and cannot be sure on the permission
of overtaking. Example 2, instead, takes superiority relation into account, and
according to the fact that sensor perception imposes a speed limit of 60 km/h
and negate permission to overtake. The argumentation process among the system
actors makes them meet on the conclusion that it rains, so both vehicles, despite
their beliefs, will set the maximum speed to 60 km/h. Conversely, Example 3
is run by negating rain perception. The system then recognises that it is not
raining, so vehicle speed can be set to 100 km/h, and overtakes are allowed.

The examples discussed are just a simplification of the scenario but already
illustrate the potential of rooting explanation in LP and argumentation. A first
explanation is provided by the argumentation labelling which allows correlat-
ing arguments (and statements) accepted as plausible to a graph of attacks,

3 https://pika-lab.gitlab.io/argumentation/Arg-tuProlog/



%******** SYSTEM KB ********************
%******** ************* ****************

%** PERCEPTIONS and BELIEFS **
pr1:[] => perception(rain).

b1: [] => belief(agent1, rain).
b2: [] => -belief(agent2, rain).

%** GENERAL-COMMONSENSE KB **
% perceptions/beliefs translation
r1: perception(X) => fact(X).
r2: -perception(X) => -fact(X).

r3: belief(A, X) => fact(X).
r4: -belief(A, X) => -fact(X).

%** GENERAL-COMMONSENSE KB **
% perceptions are superior to beliefs
sup(r1,r3).
sup(r1,r4).
sup(r2,r3).
sup(r2,r4).

%** e-INSTITUTION RULES **
% permissions and obligations
o1: [] => o(max_speed(100)).
p1: -fact(rain) => p(overtaking).

%** SITUATED LOCAL KB **
% specific road obligation
% if rains max speed 60 km/h
r5: fact(rain) => speed(60).
r6:-fact(rain),o(max_speed(X))=>speed(X).

%**** Example 1 ****
IN(accepted) =======>
[obl, [max_speed(100)]]
[neg, belief(agent2, rain)]
[belief(agent1, rain)]
[perception(rain)]
UND(undecided) ====>
[fact(rain)] [fact(rain)]
[neg, fact(rain)][speed(60)]
[speed(100)] [speed(60)]
[perm, [overtaking]]

%**** Example 2 ****
IN(accepted) =======>
[speed(60)][speed(60)]
[obl, [max_speed(100)]]
[fact(rain)][fact(rain)]
[neg, belief(agent2, rain)]
[belief(agent1, rain)]
[perception(rain)]
OUT (rejected) ======>
[speed(100)][neg, fact(rain)]
[perm, [overtaking]]

%**** Example 3 ****
IN(accepted) =======>
[speed(100)][speed(100)]
[perm, [overtaking]]
[obl, [max_speed(100)]]
[neg, fact(rain)][neg, fact(rain)]
[neg, belief(agent2, rain)]
[belief(agent1, rain)]
[neg, perception(rain)]
[perm, [overtaking]]
OUT (rejected) ======>
[speed(60)][fact(rain)]

Fig. 2. Example of system knowledge in the self-driving cars scenario, implemented in
Arg2P (left). Arg2P system outcomes in three discussed examples (right).



superiority and non-defeasible rules, detailing the system reasoning. If we think
about how the scenario could be enriched through abducible and counterfac-
tual enabling a what-if analysis of different scenarios, the possibilities of the
system to be explainable become manifold. Furthermore, probabilistic concepts
make it possible to stick weight on assumptions, rules and arguments, for in-
stance, agents’ beliefs can be weighted according to the social credibility of each
of them—possibly measured on numbers of sanctions or whatever. Ethics be-
haviours can be computed as well – in a human-readable way – preferring, for
instance, to minimize the number of deaths in case of accidents. Interesting dis-
cussions on the moral choices of the system can be introduced and compared
exploiting what-if analysis.

5 Conclusion

The paper presents a vision on how explainability and ethical behaviours in
AI systems can be linked to logical concepts that find their roots in logic pro-
gramming, argumentation, abduction, probabilistic LP, and inductive LP. The
proposed solution is based on a (micro-)engine for injecting symbolic intelligence
where and when needed. A simple example is discussed in the scenario of the
self-driving car, along with its reification on a (yet preliminary) technology—
namely Arg-tuProlog. However, the discussion and the corresponding example
already highlight the potential benefits of the approach, once it is fruitfully in-
tegrated with the sub-symbolic models and techniques exploited in the AI field.
In particular, the analysis carried out in the paper points out the key require-
ments of explainable and ethical autonomous behaviour and related them with
specific logic approaches. The results presented here represent just a preliminary
exploration of the intersection between LP and explainability, but it have the
potential to work as a starting point for further research.
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