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Abstract. In this paper we aim at establishing a link between the preferential

semantics for conditionals and self-organising maps (SOMs). We show that a

concept-wise multipreference semantics, recently proposed for defeasible descrip-

tion logics, which takes into account preferences with respect to different con-

cepts, can be used to to provide a logical interpretation of SOMs.

1 Introduction

Preferential approaches [15, 16] to common sense reasoning, having their roots in con-

ditional logics [17, 19], have been recently extended to description logics, to deal with

inheritance with exceptions in ontologies, allowing for non-strict forms of inclusions,

called typicality or defeasible inclusions (namely, conditionals), with different preferen-

tial semantics [10, 3] and closure constructions [5, 4, 12, 20].

In this paper we study the relationships between preferential semantics for condi-

tionals and self-organising maps (SOMs)[14], psychologically and biologically plausi-

ble neural network models that can learn after limited exposure to positive category ex-

amples, without any need of contrastive information. Self-organising maps have been

proposed as possible candidates to explain the psychological mechanisms underlying

category generalisation.

We show that a “concept-wise” multipreference semantics [8], recently proposed for

a lightweight description logic of the EL⊥ family, can be used to provide a logical se-

mantics of SOMs. The result of the process of category generalization in self-organising

maps can be regarded as a multipreference model in which different preference relations

are associated to different concepts (the learned categories). The combination of these

preferences into a global preference, following the approach in [8], defines a standard

KLM preferential interpretation. Such an interpretation can be used to learn or vali-

date conditional knowledge from the empirical data used in the category generalization

process. The evaluation of conditionals can be done by model checking, using the infor-

mation recorded in the SOM. We believe that the proposed semantic interpretation of

SOMs can be relevant in the context of explainable AI.

These results have been first presented at CILC 2020 [9].
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2 A concept-wise multi-preference semantics

In this section we shortly describe an extension of EL⊥ with typicality inclusions, de-

fined along the lines of the extension of description logics with typicality [10, 11], and

its multi-preference semantics [8].

We consider the description logic EL⊥ of the EL family [1]. Let NC be a set of

concept names,NR a set of role names andNI a set of individual names. The set of EL⊥

concepts can be defined as follows: C := A | ⊤ | ⊥ | C ⊓ C | ∃r.C, where a ∈ NI ,

A ∈ NC and r ∈ NR. Observe that union, complement and universal restriction are not

EL⊥ constructs. A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A
is an ABox. The TBox T is a set of concept inclusions (or subsumptions) of the form

C ⊑ D, where C,D are concepts. The ABox A is a set of assertions of the form C(a)
and r(a, b) where C is a concept, r ∈ NR, and a, b ∈ NI .

In addition to standard EL⊥ inclusions C ⊑ D (called strict inclusions in the fol-

lowing), the TBox T will also contain typicality inclusions of the form T(C) ⊑ D,

where C and D are EL⊥ concepts. A typicality inclusion T(C) ⊑ D means that “typi-

cal C’s are D’s” or “normally C’s are D’s” and corresponds to a conditional implication

C |∼ D in Kraus, Lehmann and Magidor’s (KLM) preferential approach [15, 16]. Such

inclusions are defeasible, i.e., admit exceptions, while strict inclusions must be satisfied

by all domain elements.

Let C = {C1, . . . , Ck} be a set of distinguished EL⊥ concepts. For each concept

Ci ∈ C, we introduce a modular preference relation <Ci
which describes the preference

among domain elements with respect to Ci. Each preference relation <Ci
has the same

properties of preference relations in KLM-style ranked interpretations [16], i.e., it is

a modular and well-founded strict partial order (an irreflexive and transitive relation),

where: <Ci
is well-founded if, for all S ⊆ ∆, if S 6= ∅, then min<Ci

(S) 6= ∅; and <Ci

is modular if, for all x, y, z ∈ ∆, if x <Cj
y then (x <Cj

z or z <Cj
y).

Definition 1 (Multipreference interpretation). A multipreference interpretation is a

tuple M = 〈∆,<C1
, . . . , <Ck

, ·I〉, where: (a) ∆ is a non-empty domain;

(b) <Ci
is an irreflexive, transitive, well-founded and modular relation over ∆;

(d) ·I is an interpretation function, as in an EL⊥ interpretation that maps each concept

name C ∈ NC to a set CI ⊆ ∆, each role name r ∈ NR to a binary relation

rI ⊆ ∆ × ∆, and each individual name a ∈ NI to an element aI ∈ ∆. It is

extended to complex concepts as follows: ⊤I = ∆, ⊥I = ∅, (C ⊓D)I = CI ∩DI

and (∃r.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ rI and y ∈ CI}.

The preference relation <Ci
allows the set of prototypical Ci-elements to be defined

as the Ci-elements which are minimal with respect to <Ci
, i.e., min<Ci

(CI
i ). As a

consequence, the multipreference interpretation above is able to single out the typical

Ci-elements, for all distinguished concepts Ci ∈ C.

The multipreference structures above are at the basis of the semantics for ranked

EL⊥ knowledge bases [8], which have been inspired by Brewka’s framework of basic

preference descriptions [2]. While we refer to [8] for the construction of the prefer-

ence relations <Ci
’s from a ranked knowledge base K , in the following we shortly

recall the notion of concept-wise multi-preference interpretation which can be obtained



by combining the preference relations <Ci
into a global preference relation <. This

is needed for reasoning about the typicality of arbitrary EL⊥ concepts C, which do

not belong to the set of distinguished concepts C. For instance, we may want to ver-

ify whether typical employed students are young, or whether they have a boss, starting

from a ranked KB containing inclusions T(Stud) ⊑ Young, T(Emp) ⊑ Has Boss ,

T(Emp) ⊑ NonYoung , andYoung ⊓ NonYoung ⊑ ⊥. To answer the questions above

both preference relations <Emp and <Stud are relevant, and they might be conflicting

as, for instance, Tom is more typical than Bob as a student (tom <Stud bob), but more

exceptional as an employee ( bob <Emp tom). By combining the preference relations

<Ci
into a single global preference relation < we can exploit the global preference <

for interpreting the typicality operator, which may be applied to arbitrary concepts, and

verify, for instance, whether T(Stud ⊓ Emp) ⊑ Has Boss .

A natural definition of the notion of global preference < exploits Pareto combina-

tion of the relations <C1
, . . . , <Ck

, as follows:

x < y iff (i) x <Ci
y, for some Ci ∈ C, and

(ii) for all Cj ∈ C, x ≤Cj
y

where ≤Ci
is the non-strict preference relation associated with <Ci

(≤Ci
is a total pre-

order). A slightly more sophisticated notion of preference combination, which exploits

a modified Pareto condition taking into account the specificity relation among concepts

(such as, for instance, the fact that concept PhdStudent is more specific than concept

Student), has been considered for ranked knowledge bases [8].

The addition of the global preference relation allows for defining a notion of concept-

wise multipreference interpretation M = 〈∆,<C1
, . . . , <Ck

, <, ·I〉, where typicality

concept T(C) is interpreted as the set of the <-minimal C elements, i.e., (T(C))I =
min<(C

I), where Min<(S) = {u : u ∈ S and ∄z ∈ S s.t. z < u}.

The notions of cwm-model of a ranked EL⊥ knowledge base K , and of cwm-

entailment can be defined in the natural way. In particular, cwm-entailment has been

proved to satisfy the KLM postulates of a preferential consequence relation [8].

3 Self-organising maps

Self-organising maps (SOMs, introduced by Kohonen [14]) are particularly plausible

neural network models that learn in a human-like manner. In this section we shortly

describe the architecture of SOMs and report Gliozzi and Plunkett’s similarity-based

account of category generalization based on SOMs [13]. Roughly speaking, in [13] the

authors judge a new stimulus as belonging to a category by comparing the distance of

the stimulus from the category representation to the precision of the category represen-

tation.

SOMs consist of a set of neurons, or units, spatially organized in a grid [14]. Each

map unit u is associated with a weight vectorwu of the same dimensionality as the input

vectors. At the beginning of training, all weight vectors are initialized to random values,

outside the range of values of the input stimuli. During training, the input elements are

sequentially presented to all neurons of the map. After each presentation of an input x,



the best-matching unit (BMUx) is selected: this is the unit i whose weight vector wi is

closest to the stimulus x (i.e. i = argminj ‖x− wj‖).

The weights of the best matching unit and of its surrounding units are updated in

order to maximize the chances that the same unit (or its surrounding units) will be

selected as the best matching unit for the same stimulus or for similar stimuli on sub-

sequent presentations. In particular, it reduces the distance between the best matching

unit’s weights (and its surrounding neurons’ weights) and the incoming input. The learn-

ing process is incremental: after the presentation of each input, the map’s representation

of the input (in particular the representation of its best-matching unit) is updated in or-

der to take into account the new incoming stimulus. At the end of the whole process,

the SOM has learned to organize the stimuli in a topologically significant way: similar

inputs (with respect to Euclidean distance) are mapped to close by areas in the map,

whereas inputs which are far apart from each other are mapped to distant areas of the

map.

Once the SOM has learned to categorize, to assess category generalization, Gliozzi

and Plunkett [13] define the map’s disposition to consider a new stimulus y as a member

of a known category C as a function of the distance of y from the map’s representation

of C. They take a minimalist notion of what is the map’s category representation: this

is the ensemble of best-matching units corresponding to the known instances of the cat-

egory. They use BMUC to refer to the map’s representation of category C and define

category generalization as depending on the distance of the new stimulus y with respect

to the category representation compared to the maximal distance from that representa-

tion of all known instances of the category. This captured by the following notion of

relative distance (rd for short) [13] :

rd(y, C) =
min‖y −BMUC‖

maxx∈C‖x−BMUx‖
(1)

where min‖y − BMUC‖ is the (minimal) Euclidean distance between y and C’s cat-
egory representation, and maxx∈C‖x−BMUx‖ expresses the precision of category

representation, and is the (maximal) Euclidean distance between any known member of

the category and the category representation.

By judging a new stimulus as belonging to a category by comparing the distance of

the stimulus from the category representation to the precision of the category representa-

tion, Gliozzi and Plunkett demonstrate [13] that the Numerosity and Variability effects

of category generalization, described by Griffiths and Tenenbaum [22], and usually ex-

plained with Bayesian tools, can be accommodated within a simple and psychologically

plausible similarity-based account, which contrasts what was previously maintained. In

the next section, we show that their notion of relative distance can also be used as a

basis for a logical semantics for SOMs.

4 Relating self-organising Maps and multi-preference models

Once the SOM has learned to categorize, we can regard the result of the categorization

as a multipreference interpretation. Let X be the set of input stimuli from different

categories, C1, . . . , Ck, which have been considered during the learning process. For

each categoryCi, we let BMUCi
be the ensemble of best-matching units corresponding



to the input stimuli of category Ci, i.e., BMUCi
= {BMUx | x ∈ X and x ∈ Ci}. We

regard the learned categories C1, . . . , Ck as being the concept names (atomic concepts)

in the description logic and we let them constitute our set of distinguished concepts

C = {C1, . . . , Ck}.

To construct a multi-preference interpretation, first we fix the domain ∆s to be

the space of all possible stimuli; then, for each category (concept) Ci, we define a

preference relation <Ci
, exploiting the notion of relative distance of a stimulus y from

the map’s representation of Ci. Finally, we define the interpretation of concepts.

Let ∆s be the set of all the possible stimuli, including all input stimuli (X ⊆ ∆s)

as well as the best matching units of input stimuli (i.e., {BMUx | x ∈ X} ⊆ ∆s). For

simplicity, we will assume the space of input stimuli to be finite.

Once the SOM has learned to categorize, the notion of relative distance rd(x,Ci) of

a stimulus x from a category Ci can be used to build a binary preference relation <Ci

among the stimuli in ∆s w.r.t. category Ci as follows: for all x, x′ ∈ ∆s,

x <Ci
x′ iff rd(x,Ci) < rd(x′, Ci) (2)

Each preference relation <Ci
is a strict partial order relation on ∆s. The relation <Ci

is also well-founded, as we have assumed ∆s to be finite.

We exploit this notion of preference to define a concept-wise multipreference inter-

pretation associated with the SOM. We restrict the DL language to the fragment of EL⊥

(plus typicality) not admitting roles.

Definition 2 (multipreference-model of a SOM). The multipreference-model of the

SOM is a multipreference interpretation Ms = 〈∆s, <C1
, . . . , <Ck

, ·I〉 such that:

(i) ∆s is the set of all the possible stimuli, as introduced above;

(ii) for each Ci ∈ C, <Ci
is the preference relation defined by equivalence (2).

(iii) the interpretation function ·I is defined for concept names (i.e. categories) Ci as:

CI
i = {y ∈ ∆s | rd(y, Ci) ≤ rdmax,Ci

}

where rdmax,Ci
is the maximal relative distance of an input stimulus x ∈ Ci from

categoryCi, that is, rdmax,Ci
= maxx∈Ci

{rd(x,Ci)}. The interpretation function

·I is extended to complex concepts in the fragment of EL⊥ without roles according

to Definition 1.

Informally, we interpret as Ci-elements those stimuli whose relative distance from cat-

egory Ci is not larger than the relative distance of any input exemplar belonging to

category Ci. Given <Ci
, we can identify the most typical Ci-elements wrt <Ci

as the

Ci-elements whose relative distance from category Ci is minimal, i.e., the elements in

min<Ci
(CI

i ). Observe that the best matching unit BMUx of an input stimulus x ∈ Ci

is an element of ∆s. As, for y = BMUx, rd(y, Ci) is 0, BMUCi
⊆ min<Ci

(CI
i ).

4.1 Evaluation of concept inclusions by model checking

We have defined a multipreference interpretation Ms where, in the domain ∆s of the

possible stimuli, we are able to identify, for each category Ci, the Ci-elements as well



as the most typical Ci-elements wrt <Ci
. We can exploit Ms to verify which inclusions

are satisfied by the SOM by model checking, i.e., by checking the satisfiability of inclu-

sions over model Ms. This can be done both for strict concept inclusions of the form

Ci ⊑ Cj and for defeasible inclusions of the form T(Ci) ⊑ Cj , where Ci and Cj are

concept names (i.e., categories), by exploiting a notion of maximal relative distance of

BMUCi
from Cj , defined as rd(BMCCi

, Cj) = maxx∈Ci
{rd(BMUx, Cj)}.

While we refer to [9] for details, let us observe that checking the satisfiability of

strict or defeasible inclusions on the SOM may be non trivial, depending on the number

of input stimuli that have been considered in the learning phase, although from a logical

point of view, this is just model checking. Gliozzi and Plunkett have considered self-

organising maps that are able to learn from a limited number of input stimuli, although

this is not generally true for all self-organising maps [13].

Note also that the multipreference interpretation Ms introduced in Definition 2 al-

lows to determine the set of Ci-elements for all learned categories Ci and to define the

most typical Ci-elements, exploiting the preference relation <Ci
. Although, we are not

able to define the most typical Ci ⊓ Cj-elements just using single preferences. Start-

ing from Ms, we can construct a concept-wise multipreference interpretation Msom

that combines the preferential relations in Ms into a global preference relation <, and

provides an intepretation to all typicality concepts as, for instance, T(Ci ⊓ Cj ⊓ Ch).
The interpretation Msom can be constructed from Ms according to the definition of

the global preference in Section 2.

We have focused on the multipreference interpretation of a self-organising map after

the learning phase. However, the state of the SOM during the learning phase can as

well be represented as a multipreference model (in the same way). During training, the

current state of the SOM corresponds to a model representing the beliefs about the input

stimuli considered so far (beliefs concerning the category of the stimuli). We can than

regard the category generalization process as a model building process and, in a way, as

a belief revision process.

5 Conclusions

We have explored the relationships between a concept-wise multipreference semantics

and self-organising maps, showing that conditional logics can be used to provide a logi-

cal explanation to self-organising maps. In particular, self-organising maps can be given

a logical semantics in terms of KLM-style preferential interpretations. In particular, the

model can be used to learn or to validate conditional knowledge from the empirical data

used in the category generalization process, based on model checking.

Much work has been devoted, in recent years, to the combination of neural networks

and symbolic reasoning. Let us mention Neural Symbolic Computing [7, 6], Logic Ten-

sor Networks [21], and the approaches based on computational logic and logic pro-

gramming DeepProbLog [18], a probabilistic logic programming language which in-

corporates deep learning by means of neural predicates, and NeurASP [23], a simple

extension of answer set programs that embrace neural networks.
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