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Abstract. Deep Learning has established itself to be a common occurrence in
the business lexicon. The unprecedented success of deep learning in recent years
can be attributed to: an abundance of data, availability of gargantuan compute
capabilities offered by GPUs, and adoption of open-source philosophy by the re-
searchers and industry. Deep neural networks can be decomposed into a series
of different operators. MIOpen, AMD’s open-source deep learning primitives li-
brary for GPUs, provides highly optimized implementations of such operators,
shielding researchers from internal implementation details and hence, accelerat-
ing the time to discovery. This paper introduces MIOpen and provides details
about the internal workings of the library and supported features.
MIOpen innovates on several fronts, such as implementing fusion to optimize for
memory bandwidth and GPU launch overheads, providing an auto-tuning infras-
tructure to overcome the large design space of problem configurations, and im-
plementing different algorithms to optimize convolutions for different filter and
input sizes. MIOpen is one of the first libraries to publicly support the bfloat16
data-type for convolutions, allowing efficient training at lower precision without
the loss of accuracy.

Keywords: Convolution, Deep Learning, GPU, HIP, Machine Learning, MIOpen,
OpenCL® , Performance.

1 Introduction

Deep Learning has burgeoned into one of the most important technological break-
throughs of the 21st century. The use of deep learning has garnered immense success in
applications like image and speech recognition, recommendation systems, and language
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translation. This in turn advances fields like autonomous driving and disease diagnosis.
GPUs have played a critical role in the advancement of deep learning. The massively
parallel computational power of GPUs has been influential in reducing the training time
of complex deep learning models hence, accelerating the time to discovery [29]. The
availability of open-source frameworks like TensorFlow and PyTorch is another corner-
stone for the fast-paced innovation in deep learning [1, 24].

The deep learning frameworks decompose the models as either a computational
graph or a sequence of operations [12, 22]. These high-level operations are then com-
piled down to a series of hardware specific high-performance primitives. These prim-
itives in deep learning are akin to BLAS (Basic Linear Algebra Subprograms) [18] in
linear algebra and high performance computing. Availability of a library which pro-
vides highly optimized implementations of such primitives enables the deep learning
researchers to focus on their science and leaves the burden of developing such primi-
tives on the hardware vendors. The library then provides a simple and callable appli-
cation programming interface (API) to enable seamless integration with client libraries
and be flexible so that new features may be added easily.

MIOpen is AMD’s deep learning primitives library which provides highly opti-
mized, and hand-tuned implementations of different operators such as convolution,
batch normalization, pooling, softmax, activation and layers for Recurrent Neural Net-
works (RNNs), used in both training and inference [9]. Moreover, MIOpen is fully
open-source including all its GPU kernels; complementing AMD’s open-source ROCm
stack [4]. MIOpen is the first to extend the open-source advantage into GPU vendor
libraries thereby, continuing to embark on the same ethos as the deep learning commu-
nity.

As deep learning has gained critical acclaim over the years, substantial research
has been conducted to accelerate it. One optimization technique called fusion has been
recognized to be more potent than others [19]. Fusion allows to fuse or collapse several
neural network layers thereby, optimizing on 1) memory bandwidth requirements by
requiring less data to be moved between host and GPU memories, and 2) GPU kernel
launch overheads by launching fewer GPU kernels compared to the vanilla, non-fused
neural network. Aside from discrete primitives, MIOpen also offers a fusion API which
allows the frameworks to fuse some of the operations mentioned above. MIOpen fusion
can be used to accelerate both convolution and recurrent neural networks.

Another area that has flourished with the popularity of deep learning is open-source
graph compilers [19], [26], [16], [6]. Graph compilers further the relevance of deep
learning to wide-spread applications by generating the implementations of aforemen-
tioned operators instead of relying on hardware specific libraries. However, generating
high-performance implementations of two operators, convolution and GEMM, is ex-
tremely cumbersome without inherent knowledge of the underlying hardware. There-
fore, the graph compilers rely on libraries like MIOpen for these operators. MIOpen’s
open-source nature enables a plethora of optimization opportunities which were not
possible before. For example, fusing an operator generated by the compiler with MIOpen’s
convolutions. MIOpen facilitates these optimization by breaking down complex oper-
ators like convolutions into several simple and small operators and providing high-
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performance implementations of these simple operators to the graph compiler. This
MIOpen feature is called composable kernels.

The primary aim of MIOpen is to provide access to high-performance kernels, sup-
port several data-types, and also support as many hardware targets as required. To that
end, MIOpen supports four different data-types: float32, float16, bfloat16,
and int8, and two programming models: OpenCL® [23] and HIP. The kernels in
MIOpen are backed by both high-level language as well as hand-tuned assembly imple-
mentations. MIOpen also provides an auto-tuning infrastructure to achieve maximum
performance on the user’s hardware and software environment.

This document provides an under-the-hood look at the MIOpen library providing
detailed information about the functionality of the library as well as introduce MIOpen’s
capabilities to users and developers. The rest of the paper is organized as follows: Sec-
tion 2 describes some prior work, Section 3 describes the overall design philosophy of
the library and provides details about kernel compilation, abstractions used to localize
those details in the library, tuning infrastructure for improving kernel performance and
MIOpen’s support for OpenCL® and HIP. This is followed by Section 4 which provides
details about the supported operations; primarily the convolution operation. Section
5 describes MIOpen’s Fusion API for merging different operations for increased per-
formance, this is followed by some usage statistics and performance comparisons in
Section 6. Section 7 presents conclusion and future work.

2 Related Work

Developing hardware-optimized libraries for most critical and time-sensitive operations
is a well-known practice. For linear algebra such libraries are known as BLAS (Basic
Linear Algebra Subsystem) and have different implementations for different systems [5,
18, 28]. In similar spirit different deep learning libraries have been written, to make
it easier for client applications to implement different deep learning primitives. Alex
Krischevsky’s cuda-convnet is one of the initial libraries to implement convolutions
and inspired many others [27], [11]. Chetlur et al. developed cuDNN, a deep neural
network library for nvidia GPUs [7]. MIOpen falls in this category since it provides a
C programming language based API for deep learning primitives. While these libraries
aim to accelerate deep learning primitives on GPUs, research also been conducted to
improve the performance of inference only loads on different CPUs such as MKL-
DNN [11].

Most of the above mentioned libraries focus on lower level optimization opportuni-
ties. An orthogonal approach is to abstract this detail behind a domain specific language
(DSL). This technique has already been successfully applied to other domains such as
computer vision and linear algebra [13,14,25]. Vasilache et al. developed Tensor Com-
prehensions, which takes a similar approach and designs a language which can infer
tensor dimensions and summation indices automatically [27]. However, such an ap-
proach makes it complicated to support a wide array of platforms and hardware targets
as is required of MIOpen.
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2.1 MIOpen and higher level frameworks

The above libraries are augmented by a community of frameworks which enable re-
searchers and practitioners to express their computation pipeline using a host language
(typically Python™ or some other higher level language) [12] [1]. These frameworks
in turn call out libraries such as MIOpen for efficient implementation of the primitives
required to implement the computation in those graphs. Frameworks strive to support a
wide array of hardware and applications, for instance both TensorFlow and PyTorch al-
ready support MIOpen as a backend aimed at AMD GPUs. Thus a user can seamlessly
change the hardware target without changing their application code.

3 Overall Design

This section describes the MIOpen’s design philosophy using the convolution operation
as an example.

3.1 Kernels and Solvers

Mapping a problem description to a particular kernel requires MIOpen to determine
the file which contains the required GPU kernel, the name of the kernel in the file
and the compiler arguments required to compile it. Typically, there is more than one
kernel which can perform similar operations. However, each kernel has a unique set of
constraints and may result in different performance due to differing code optimizations
and input dimensions of the problem.

All this information is grouped in MIOpen classes collectively called solvers. These
classes together solve for the best convolution kernel given a problem description. This
construct creates a layer of abstraction between the rest of the MIOpen library and
kernel specific details, thus all the details of a kernel are completely localized.

If a developer wishes to add a new kernel to the MIOpen, all that is required is to
add the source code for the kernel and implement the associated solver, thereafter the
kernel may be selected automatically.

3.2 Auto tuning infrastructure

In general, any high-performance code leverages auto-tuning for choosing the parame-
ters that may change with the underlying architecture as well as the problem description
thereby, impacting performance. MIOpen is not an exception to this rule. This requires
that all tunable kernels be tuned for known configuration to achieve maximum perfor-
mance. Once known, these tuning parameters can be shipped with MIOpen or, the user
may employ the same infrastructure to tune MIOpen kernels for custom configurations.

A solver encapsulates the constraints for the tuning parameters as well as the in-
terface machinery to launch tuning instances. The tuning parameters create a grid of
possible values of the kernel tuning parameters and the tuning infrastructure compiles
and launches a unique kernel for each of these combinations using a pruned search
space approach. Once a kernel is tuned and the optimum tuning parameters are known,
they are serialized to a designated directory on the user’s system for future retrieval.
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3.3 Kernel compilation and caching

Launching a kernel requires setting up the compilation parameters and invoking a device-
code compiler to generate the binary object. MIOpen device-code consists of kernels
written in OpenCL® , HIP [3] and GCN assembly [2], which may be compiled using
clang [8].

Since compiling a kernel is a costly and time-consuming procedure, MIOpen em-
ploys two levels of caching to improve the runtime performance of the library. This
design choice is tightly coupled with how device-code compilers compile and load
compute-kernels from the binaries.

Once an kernel file is compiled, it is cached to disk to avoid future compilations
of the same source-file with the same parameters. Due to the caching effects described
above, it is recommended that the user’s application performs a warmup iteration so
that MIOpen’s different caches can be populated. Such runs will ensure that subsequent
network invocations are accurately timed without the effects of disk I/O or compilation
delays. This limitation is not unique to MIOpen and is also applicable to other high-
performance libraries.

3.4 HIP and OpenCL® backends

MIOpen supports applications that use the OpenCL® and HIP programming models [3].
All the APIs remain consistent from the client application’s perspective, the only differ-
ence is in the creation of miopenHandle structure, which is created either with a HIP
stream or an OpenCL® device context. Internally the HIP backend compiles the kernel
using an appropriate complier depending on the kernel source type. Subsequently, the
compiled binary object is loaded and passed off to the runtime for execution.

4 Machine Learning Primitives

4.1 Convolution

Most modern neural networks employ convolution as a central operation. Its usefulness
and popularity make it a critical piece of the machine learning puzzle, particularly in
image processing.

The numerical complexity of the convolution operation and it’s diverse set of inputs
make it difficult to generalize accross multiple hardware architectures. Different algo-
rithms have been proposed to compute the convolution of a filter and an image, among
them MIOpen provides implementation for the Winograd algorithm [17], a direct algo-
rithm and using the matrix-matrix multiplication (GEMM) operation [12] as well as the
Fast Fourier Transform.

The best performing algorithm is rarely readily apparent on a given architecture for
a set of input and filter dimensions. To assess the relative performance of these kernels
and return the best performing kernel, MIOpen employs the find step before the actual
convolution operation. For this step, the user constructs the necessary data structures
for the input/output image tensors as well as the convolution descriptor specifying the
properties of convolution such as striding, dilation, and padding. The user then calls the
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MIOpen convolution Find API which allows MIOpen to benchmark all the applicable
kernels for the given problem configuration, this information is returned in an array of
type miopenConvAlgoPerf t. This enables the library to adjust for any variations
in the user hardware and also allows the user to balance the trade-off between execution
time and additional memory that may be required for some algorithms.

Types of Supported Convolutions

Transpose Convolution Transposed Convolution (also known as deconvolution or
fractionally-strided convolution) is an operation typically used to increase the size of the
tensor resulting from convolution. The standard convolution operation reduces the size
of the image, which is desirable in classification tasks. However, tasks such as image
segmentation require the output tensor to have the same size as the input. MIOpen sup-
ports transpose convolution required by such networks and may be enabled by setting
the miopenConvolutionMode t in miopenConvolutionDescriptor t to
miopenTranspose.

Depthwise convolution In depthwise convolution, the input is separated along the
depth (channels) and then is convolved with a filter that is also separated along the same
axis. The results are stacked into a tensor. Separating out the process of finding spatial
correlation and cross channel correlations, results in fewer parameters as compared to
regular convolution. Smaller and more efficient neural networks with depthwise sepa-
rable convolutions have applications in training on embedded systems such as mobile
phones.

Grouped convolutions Group convolutions were introduced in Alexnet [15], to re-
duce the memory required for convolution operation. Grouped convolutions are able to
achieve accuracy similar to non-grouped convolutions while having fewer parameters.
Further details may be found in [15].

The function miopenSetConvolutionGroupCount may be used to set the
group count for a groupwise convolution. To perform a depthwise convolution use the
same function to set group count to the number of channels [10].

Composable Kernels Different variations of the convolution operation discussed above
as well as the variety of algorithms that may be used to implement them make it dif-
ficult to develop efficient kernels. One solution to tackle this complexity is to break
down these operations into reusable modules that can be universally used by different
implementations of different algorithms, and express a kernel as a composition of these
modules.

Development work would fall into one of the following categories: 1) describe an
algorithm with a hardware-agnostic expression, 2) decide how to map the hardware-
agnostic expressions into hardware-dependent modules, 3) implement and optimize the
hardware-dependent modules for specific hardware. Breaking down these primitives
into smaller modules opens new doors to optimization that may fuse these modules
together.
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This new kernel programming model is referred to as composable kernels in MIOpen.
MIOpen v2.0 includes an implementation of the implicit GEMM convolution algo-
rithm, using the composable kernel programming approach. Further details about this
novel programming paradigm will be published in the future.

4.2 Batch Normalization

Batch normalization is a very successful technique for accelerating deep neural net-
work training. There are two versions of batch normalization supported in MIOpen:
Per-activation and Spatial batch normalization. Per-activation batch normal-
ization is typically positioned after a fully connected layer in a network. Batch normal-
ization for convolution layers is termed spatial in that it learns separate scaling(γi)
and bias(βi) parameters for each channel, the resulting transform is applied to all the
activations in a single feature map.

MIOpen supports the batch normalization operation for both training and inference.
They all accept the mode parameter from the miopenBatchNormMode t enum,
Which has two modes miopenBNPerActivation, which does element-wise nor-
malization for a fully connected layer and miopenBNSpatial which does normal-
ization for convolutions layers. For more information see [20] and [21].

4.3 Recurrent Neural Networks

MIOpen supports three RNN types prevalent in the industry and research: vanilla RNN,
LSTM and, GRU and two kinds of activation function for the hidden state of vanilla
RNN neuron: Rectified Linear Unit (ReLU) and hyperbolic tangent (Tanh). Further-
more, information through the RNN may flow in the forward direction (unidirectional
RNNs) or both in the forward and backward directions (bi-directional RNNs). MIOpen
supports all three RNN types in the unidirectional miopenRNNunidirection as
well as the bidirectional model miopenRNNbidirection. Some RNN layers take
input sequences directly from the output of a previous layer while others require a
transform to align the intermediate vector dimension or simply to achieve better results.
MIOpen satisfies this requirement by supporting two input types: 1) miopenRNNlin-
ear, which performs a linear transform before feeding the input to the neuron, and 2)
miopenRNNskip, which allows a direct input into the neuron. Similarly, bias to the
neural network may be added or removed by choosing the mode miopenRNNWith-
Bias or miopenRNNNoBias.

The dependence of current state on the previous state as well as different RNN
configurations make it difficult to achieve high computational efficiency on a GPU plat-
form. Prevalent frameworks such as TensorFlow encapsulate the state updating func-
tions of the RNN neuron in a cell format to achieve better compatibility in different
modes, though the impact of the data layouts and computation procedures on perfor-
mance is neglected. MIOpen handles the RNN computation by taking advantage of
two powerful ROCm platform GEMM libraries (1) rocBLAS for the HIP backend, and
(2) MIOpenGEMM for the OpenCL® backend, which are augmented by specialized
MIOpen kernels for other primitive functions.
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MIOpen achieves high computational efficiency for RNNs by batching together dif-
ferent time steps and performing them as single GEMM operation. The is made possible
due to the independent input vectors at different time points.

In addition to the operations mentioned above, other operations required to support
popular neural network architectures are also supported by MIOpen.

5 Fusion API

Most neural networks are data-flow graphs where data flows from one direction and
is operated upon as it moves from one layer to another. While conceptually data is
flowing only in one direction, the underlying kernels implementing these operations
have to read data from the global memory, operate on the data and then write the result
back for layers down the pipeline. This is necessary due to the limited on-chip memory
of the GPUs given the large image and filter sizes in neural network architectures.

However, not all operations require that data be read from and written back to the
global memory each time. That is some operations may be fused to increase the compute
efficiency of these kernels. This merger of the operations to be performed by a single
kernel may be termed as kernel-fusion.

As a simple example let us consider an addition operation followed by a rectified
linear unit (ReLU) operation. In this case, the intermediate result need not be written
back to the main memory, and both the operations may be performed while the individ-
ual data elements are in the on-chip memory. Another common sequence of operations
is convolution followed by a bias (addition) and ReLU operation. It must be kept in
mind that fusions for other operators are much more involved such as the fusion of the
convolution and batch normalization operation.

The MIOpen library offers the fusion API to facilitate the efficient fusion of such
operations; it allows the user to specify a sequence of operations that are desired to
be fused. Once the user specifies this sequence, MIOpen decides the applicable kernel
and compiles it; all this information is encapsulated in the miopenFusionPlan-
Descriptor data structure [21].

If merging of the required fusion sequence is feasible, the compilation step of the
fusion plan will return success; thereafter the user would supply the runtime arguments
for the kernels such as parameters for different operations. Following which, the user
would execute the fusion plan with data pointers for the input and output data. The
advantage of separating the compilation step from the argument structure is that the
fusion plan which has been compiled once, need not be compiled again for different
input values. Further details and example code can be found at [20].

6 Results

This section highlights the performance improvements that MIOpen is able to offers
particularly in convolution as well as some supported fusions. To date, the primary
beneficiary of Machine Learning progress has been machine vision as well as Natu-
ral Language processing. In machine vision, the convolution operation is the primary
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workhorse due to the low number of parameters required to learn as compared to regular
neural networks as well as the favorable mathematical properties. However, the param-
eters associated with the convolution operations in different deep convolution neural
networks have changed considerably. The early CNNs employed larger filter sizes to re-
duce the height and width of the feature maps and simultaneously increase the number
of feature maps. For instance, LeNet employed filters of size 5× 5 while, Alexnet [15]
contained filters of size 5 × 5 as well as 11 × 11. However, recently networks have
almost exclusively relied on smaller filter sizes namely only 1 × 1 and 3 × 3 coupled
with striding to reduce the size of the feature map.

Figure 1 shows the relative speedup of different convolution configurations as com-
pared to MIOpen’s im2col+GEMM implementation. The configurations shown therein
have been selected randomly from different popular networks such as GoogLeNet, In-
ception v3, and Inception v4 for image classification. The y-axis in Figure 1 shows log
of the speedup obtained by MIOpen, while the x-axis shows the labels for different
configurations. Each label shows, respectively, the filter height, filter width, input chan-
nels, image height, image width, output channels, padding (height) and padding (width)
separated by a hyphen (-).

Figures 1a, 1c and 1e depict the performance gains for kernels with filter height and
width equal to 1 (1 × 1 convolutions) in the forward, backwards-data and backwards-
weights directions respectively. While mathematically 1 × 1 convolutions may be de-
scribed as a pure GEMM operation, still MIOpen may provide substantial performance
benefit in certain cases. Similarly, Figures 1b, 1d and 1f show the performance benefit
attained for non-1 × 1 kernels in the forward, backward-data and backward-weights
directions respectively.

As mentioned in Section 4 MIOpen employs the Winograd algorithm for applicable
convolutions while the 1 × 1 convolutions are primarily serviced by kernels written
in GCN ISA. Due to the efficiency of the Winograd algorithm, MIOpen can speed
up many 3 × 3 convolutions, however, on larger filter sizes it is not as effective due
to granularity loss. Wherein MIOpen’s other convolutional kernels step in to provide
speedup, however, in some cases, this speedup is not substantial. The MIOpen team is
continuously working on new algorithms to improve performance in these areas.

7 Conclusions and Future Work

This paper identified some of the challenges faced by a high performance computing li-
brary and some of the mechanisms implemented in MIOpen to address these challenges
were presented. The open source nature of MIOpen makes it easy for researchers and
academics to experiment and implement novel solutions to these problems, the authors
look forward to constructive feedback from the community.
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(a) 1x1 filter size (Forward) (b) non 1x1 filter sizes (Forward)

(c) 1x1 filter size (Backward Data) (d) non 1x1 filter sizes (Backward Data)

(e) 1x1 filter size (Backward Weights) (f) non 1x1 filter sizes (Backward
Weights)

Fig. 1. Relative performance improvement for different convolution configurations as compared
to im2col+GEMM
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