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Abstract. This work is devoted to the application of a generalized computa-

tional experiment for a comparative assessment of numerical methods accuracy. 

A generalized computational experiment allows one to obtain a numerical solu-

tion for a class of problems determined by the ranges of defining parameters 

variation. The approaches to the application of a generalized computational ex-

periment in the presence of a reference solution and in its absence are dis-

cussed. An example of constructing error surfaces is given when the solvers of 

the OpenFOAM software package are compared. The classic inviscid problem 

of oblique shock wave is used as a basic task. Variations of the key parameters 

of the problem — the Mach number and angle of attack — are considered. An 

example of the problem of flow around a cone at an angle of attack with vary-

ing Mach number, cone angle and angle of attack is also considered. The con-

cept of an error index is introduced as an integral characteristic of deviations 

from the exact solution for each solver in the class of problems under considera-

tion. 
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Error Index. 

1 Introduction 

Throughout the history of the development of computational mathematics and math-

ematical modeling, problems of verification of numerical methods have occupied a 

special place. When creating a new numerical method or modifying an existing one, 

the authors had to show the efficiency of their developments and evaluate their accu-
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racy before proceeding with solving practical problems. A huge number of works are 

devoted to these studies. As an example, we can point to the works [1-12]. Verifica-

tion of the obtained results and assessment of the accuracy of the applied numerical 

method was an obligatory part of research in the field of mathematical modeling of 

physical processes. 

As a rule, a comparison of the numerical results was carried out with some refer-

ence solution, in the role of which the exact solution was used if available or the 

available experimental data. A separate problem is the estimation of the accuracy of 

numerical methods in the absence of a reference solution. 

In the practice of a physical experiment, results that do not have an error spread-

band are not considered complete and, as a rule, are not submitted to journals. In con-

trast, in the practice of a computational experiment (especially in CFD problems), the 

results containing information about the error of the result (calculation) are currently 

rather an exception. This is not to say that there are no methods for estimating the 

approximation error at all, the problem is rather different. Quite a long time ago 

(1986) paper [1] lists thirteen ways to estimate the error. Now there are definitely 

more of them, but such a number of methods implicitly hints at the lack of one accu-

rate, reliable and economical method. 

The relevance of the problems of verification of numerical methods and calcula-

tions based on them is also evidenced by the presence of federal standards, both for-

eign [13,14] and recently appeared Russian [15]. 

It should be noted that at present the relevance of verification problems is steadily 

increasing due to the widespread use of open and commercial packages for solving 

various problems of mathematical modeling. As a rule, such packages provide the 

user with a certain set of numerical methods presented in the form of solvers integrat-

ed into the software package. In this case, the user is faced with the problem of choos-

ing a solver. And here a number of difficulties arise. Not all solvers undergo compre-

hensive testing before being implemented into a software package. Commercial pack-

ages do not provide complete open information about the implemented numerical 

methods and their properties. Various development teams can add solvers to open 

source packages, but they often cannot provide full testing. Therefore, research in the 

field of verification and comparative evaluation of numerical methods is becoming 

more and more necessary. 

Historically, verification in problems of computational aerogasdynamics consisted 

of two parts. The first is modeling a qualitative flow pattern containing discontinui-

ties, separated flows, vortices, etc. The second is to ensure the accuracy of the calcu-

lation of quantitative characteristics. Here it was necessary to rely on a reference solu-

tion - experimental, accurate, or obtained by calculations using other methods. 

Verification was usually carried out for one separate task. By default, it was as-

sumed that with a small variation in the governing parameters of the problem (veloci-

ty, viscosity, time scales, thermophysical characteristics of the medium, geometric 

parameters), the numerical method under consideration will be applicable and provide 

a similar accuracy. 

At the present stage, researchers need more comprehensive estimates of the accu-

racy of numerical methods. For example, in assessing accuracy, not for a single task, 
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but for a class of tasks. By a class of tasks is meant a basic task considered in the 

ranges of change in the set of key parameters. Such parameters in computational aer-

odynamics can serve  characteristic numbers that determine flow velocity,  viscosity, 

thermophysical properties of the medium, geometric parameters, etc.  An opportunity 

of getting solution for a class of problems is provided by the construction of a gener-

alized computational experiment. Also, a generalized computational experiment can 

be very useful in assessing the accuracy in the absence of a reference solution. In this 

case, it is possible to estimate the accuracy using an ensemble of solutions obtained 

by various numerical methods. The variation of the solver is considered as a parame-

ter and the parametric problem is solved using a generalized computational experi-

ment. 

The concept, basic methods and approaches of a generalized computational exper-

iment, as well as a number of software tools for its implementation were developed in 

Keldysh Institute of Applied Mathematics RAS. The main aspects of constructing a 

generalized computational experiment and examples of its implementation are de-

scribed in detail in [16–23, 28-30]. 

2 Generalized computational experiment 

The emergence of the concept of a generalized computing experiment is associated 

with the development of high-performance computing clusters and parallel technolo-

gies. In problems of computational aerodynamics, parallel technologies usually pro-

vide the ability to quickly calculate on detailed grids. However, parallel technologies 

provide us with another important opportunity. This is the ability to simultaneously 

calculate on different nodes the same task with different input data. As a rule, such a 

calculation is performed in multitasking mode. 

This opens up the possibility of implementing a generalized computational experi-

ment. The key parameters of the problem under consideration are divided in certain 

ranges with a certain step, forming a grid partition of a multidimensional box in a 

multidimensional space of key parameters. The basic problem is solved using parallel 

technologies at each point of the grid partition. The obtained results represent multi-

dimensional data volumes. Processing, analysis and visual presentation of this data is 

carried out using methods of visual analytics and scientific visualization. This compu-

ting technology is the most general description of a generalized computing experi-

ment. 

Obviously, such a concept can be applied to a wide range of tasks. This range in-

cludes parametric studies, optimization problems. A generalized computational exper-

iment is an effective tool for solving inverse problems. 

A large number of different applications of a generalized computational experi-

ment are described in detail in [16–23, 28-30]. The concept of a generalized computa-

tional experiment was applied to a wide range of both model and practical problems. 

These tasks include the analysis of the interaction of a viscous supersonic flow 

with a jet barrier, the flows in the wake of the body, the problems of the interaction of 

jets, the problem of flowing around a cone at an angle of attack, the problem of 



4 A. Alekseev et al. 

oblique shock waves, and many others. The approach to constructing a generalized 

computational experiment was applied to the problem of finding the optimal three-

dimensional shape of the blades assembly for a power plant in terms of power loads.  

Also, this approach was applied to the problems of verification of numerical meth-

ods. A comprehensive comparative analysis of a number of solvers of the Open-

FOAM open software package [24] was carried out in [20–23, 29, 30]. As basic tasks, 

we used problems that have a reference solution (exact solution or experimental data). 

These tasks include the problem of a supersonic inviscid flow around a cone at an 

angle of attack and the problem of an oblique shock wave formation. In both cases, a 

class of problems was considered, formed by key parameters variations of the prob-

lem in question. 

3 The approach of accuracy estimation on the ensemble of 

solutions  

The estimation of the accuracy of numerical methods in the absence of a reference 

solution is a separate problem.  

Undoubtedly, at present, the understanding of the need to estimate the calculation 

error is present in the field of CFD and is even formulated as standards [13-15]. How-

ever, the methods proposed there are based mainly on the convergence of the solution 

over the grid (according to [2], this approach goes back to C. Runge) and on Richard-

son's extrapolation. Both of these approaches are based on the asymptotic behavior of 

the lowest (in the expansion in terms of the grid step) term of the approximation error 

and, accordingly, do not provide strict inequalities in the error estimation. For conver-

gence “by adhesion” (Runge), the difference of two solutions (on coarse and fine 

meshes) is used as an estimate of the error. In Richardson's method, this difference 

between the solutions is refined using a coefficient that depends on the order of ap-

proximation. An additional problem in the field of CFD, which complicates the appli-

cation of the Richardson method, is the space-variable order of convergence of differ-

ent algorithms. In particular, on the shock wave for schemes of any approximation 

order, the convergence order demonstrates values around unity. To take this effect 

into account, the generalized Richardson method is used, which allows one to esti-

mate the local order of convergence. Unfortunately, this method is significantly un-

stable and requires at least four successive mesh refinements, which creates huge 

computational problems. 

One of the alternatives in this case is the estimation of accuracy on the ensemble of 

solutions. The ensemble of solutions obtained by various numerical methods on the 

same grid allows us to estimate the location of the exact solution and to divide the 

obtained numerical solutions into clusters of different levels of accuracy. This direc-

tion is being actively developed at present and is presented in [25-27]. A natural 

drawback of this approach is the need for researcher to have at his disposal a certain 

number of solvers that implement numerical methods with different computational 

properties. 
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In general, a fairly large volume of numerical experiments [25-27] confirms the 

possibility of estimating the approximation error on an ensemble of independent nu-

merical calculations, which cannot but arouse interest in the analysis of this approach. 

It seems likely that the transition from a single numerical solution to an ensemble of 

independent solutions opens up opportunities for the implementation of non-standard 

concepts of a numerical solution.  These topics need deeper analysis and develop-

ment. However, if successful, one can hope for the creation of computationally effi-

cient algorithms that ensure the verification of numerical solutions even in the ab-

sence of reference solutions. An important role in this can be played by the construc-

tion of a generalized computational experiment, where the parameter is the choice of 

the solver, and the numerical solution is implemented in parallel mode simultaneously 

for the solvers participating in the calculation. 

4 Comparative accuracy estimation using reference solution 

This section provides two examples of constructing a generalized computational ex-

periment for a comparative assessment of numerical methods accuracy. As examples, 

we use the numerical results described in detail in the authors' works [20,23,29,30]. In 

these papers, two classes of computational gas dynamics problems were considered.  

The first class of problem describes a flow around a cone at an angle of attack. 

The second class describes the incidence of an inviscid supersonic gas flow onto a flat 

plate at an angle of attack. Both of these problems are fairly well known. The first 

problem has a tabular solution [36], used as a reference solution. The second problem 

has an exact solution. 

Let’s consider the first class of problems. We solve the problem of a supersonic 

gas flow around a cone at an angle of attack. Variable parameters are angle of attack α 

= 0°, 5°, 10°, Mach number M = 3, 5 and cone half-angle β = 10°, 15°, 20°. The flow 

scheme is shown in Figure 1. The conditions of the incoming stream at the input are 

indicated by the index “∞”, and at the output, by the index ξ, since the solution is self-

similar and depends on the dimensionless variable. 

For calculation, the Euler system of equations is used. The system is supplemented 

by the ideal gas equation of state. 

Three solvers were selected from the OpenFOAM software package: rhoCentral-

Foam (rCF), sonicFoam (sF), and pisoCentralFoam (pCF). Solver rhoCentralFoam is 

based on a central-upwind scheme which is a combination of central difference and 

upwind schemes [31,32]. Solver sonicFoam is based on the PISO algorithm (Pressure 

Implicit with Splitting of Operator) [33]. Solver pisoCentralFoam is a combination of 

a central-upwind scheme with the PISO algorithm [34]. This solver is not included in 

the standard set of  OpenFOAM solvers. It was created by independent team of devel-

opers at the Ivannikov Institute for System Programming RAS. All the calculations 

were performed using the OpenFOAM version 2.3.0. 
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Fig. 1. Flow scheme 

 

We solved the problem with each solver for the entire set of variable parameters. 

Thus, we obtained a set of numerical solutions. The exact solution was obtained by 

interpolating the table solution from [3]. Then we found the error of the solution in 

the norms L1 and L2. Since different servers implement different numerical methods, 

the errors were markedly different from each other. The initial and boundary condi-

tions, as well as the settings of the solvers, were set similarly to [26,28]. 

 

Fig. 2. Pressure field for steady flow 

 

Fig. 2 shows the steady-state solution for the pressure field obtained by interpolating 

the tabular solution from [36], cone half-angle β = 20°, angle of attack α = 10°, Mach 

number M = 3. 
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Figure 3 shows the error surface in L2 norm for this problem with the variation of 

the solver and the half-cone angle at fixed Mach number 3 and fixed angle of attack 

5°. It can be seen that the deviation from the exact solution increases with the growth 

of the half-solution angle. One can also see that the rhoCentralFoam and pisoCentral-

Foam solvers are approximately equally accurate, while the sonicFoam solver accura-

cy is much lower. 

 

 

Fig. 3. Image of the surface deviation from the exact solution for the Mach number 3 and the 

angle of attack 5° with variation of solvers and half-cone angle.  

 

Figure 4 shows the error surface for the same problem with variation of solvers and 

angle of attack at a Mach number of 5 and a cone half-angle of 15°. 

Thus, analyzing Figure 3 and Figure 4, we see that for all solvers, the error increas-

es with increasing the angle of attack and the angle of the cone half-angle. 

So, we have here the accuracy assessment for all three solvers participating in this 

research. This is the result of constructed generalized numerical experiment for the 

class of problems in question. 
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Fig. 4. Image of the surface deviation from the exact solution for the Mach number 5 and a 

cone half-angle 15° with variation of solvers and angle of attack.  

 

 

 

Fig. 5. Error surfaces with variation of the Mach number and angle of attack for the oblique 

shock wave [29]. 
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Let’s consider another class of problems. In this case we use well-known problem of 

oblique shock wave formation. 

A supersonic gas flow falls on the plate at an angle. Reflecting from the plate, the 

flow forms an oblique shock wave. The problem has exact solution. In the problem, 

the Mach number M and the angle of incidence of the supersonic flow β varied, simi-

larly to [29,30]. Figure 5 shows the error surfaces for this problem for 4 solvers: rho-

CentralFoam (rCF), sonicFoam (sF), pisoCentralFoam (pCF), QGDFoam (QGDF). 

Now we include into consideration a new solver QGDFoam (QGDF). This solver is 

based on a system of quasi-hydrodynamic equations. The solver was also created by 

independent developers. 

Carrying out similar calculations for several numerical methods implemented in 

the solvers of the open software package OpenFOAM, makes it possible to build sev-

eral such surfaces on one drawing. This opens up the possibility of a deep and clear 

comparative analysis of the accuracy of the studied numerical methods. The construc-

tion of such a generalized computational experiment involves the creation of compu-

tational technology from solving a direct problem up to visual analysis of the results.  

This technique allows carrying out a detailed visual comparison of deviations from 

the exact solution. It can be seen that in our case, all error surfaces change in the same 

way. The error increases with the growth of key parameters. The best accuracy in this 

class of problems is provided by the rCF and pCF solvers, for which the error surfaces 

are almost identical. Thus, the construction of a generalized computational experi-

ment allows us to conduct a full-fledged comparative accuracy assessment for four 

solvers of the OpenFOAM software package in the class of problems. The class of 

tasks in this particular case is determined by the basic task (oblique shock wave) and 

the ranges of variation of the key parameters of the problem — the Mach number and 

angle of attack. 

The image of error surfaces presented in Figure 5 gives a fairly clear idea of the 

com-parative accuracy of OpenFOAM solvers in the class of problems. However, for 

a more complete assessment, we enter an integral characteristic for each surface. We 

will call this characteristic the Error Index (EI). The error index is defined as follows. 

Let i = 1, M and j = 1, N be the grid partitions of key parameters, and 𝐴𝑖𝑗  - the devia-

tion from the exact solution at each point of the grid partition. Then the error index is 

defined as: 

𝐸𝐼 =∑𝐴𝑖𝑗
𝑖𝑗

(𝑀 ∗ 𝑁)⁄  

First, we calculate the Error Index for the problem of flow around a cone at an an-

gle of attack. 
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Table 1. Error Index values for the problem of flow around a cone at an angle of attack 

Solver rCF pCF sF 

Error Index 0.089811 0.095587 0.182798 

 

Next, we calculate the values of the error index for the problem of oblique shock for-

mation. 

 

Table 2. Error Index values for the problem of oblique shock formation 

Solver rCF pCF QGDF sF 

Error Index 0.037734 0.038751 0.0453406 0.058216 

 

Tables 1 and 2 show that the values of the error index EI fully correspond to the rela-

tive positions of the numerical results presented in Figures 3, 4 and 5. Therefore, the 

calculated error index can serve as a characteristic of the accuracy of numerical meth-

ods in the selected class of problems. 

5 Conclusion 

The application of a generalized computational experiment to the problems of com-

parative estimation of the accuracy of numerical methods is considered. A generalized 

computational experiment allows simultaneous calculations of the same problem with 

different input data based on parallel technologies in a multitasking mode. The ob-

tained multidimensional results are examined using visual analysis tools. 

Two examples of constructing a generalized computational experiment for classes 

of problems are presented - flow around a cone at an angle of attack and the formation 

of an oblique shock wave. For both cases the class of problems is formed on the basis 

of the basic problem and variations of the determining parameters of the problem. For 

both classes of problems, a comparative assessment of the accuracy of the solvers of 

the software package  OpenFOAM. An example of constructing error surfaces is giv-

en. The concept of a numerical method error index for a class of problems is intro-

duced.  

The construction of a generalized computational experiment can serve as an effec-

tive tool for verification problems.  

6 Acknowledgments 

This work was supported by RFBR grants 19-01-00402 and 20-01-00358. 

 



On Applying of Generalized Computational Experiment to  Numerical…11                                                                                                       

References 

1. Skeel, R.: Thirteen ways to estimate global error. Numer. Math. 48, 1–20 (1986). 

2. Repin, S..: A posteriori estimates for partial differential equations. Vol. 4. Walter de Gruy-

ter (2008). 

3. Oden, J., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite ele-

ment method. Computers&Mathematics with Applic. 41, 735–756 (2001). 

4. Prudhomme, S., Oden, J.: On goal-oriented error estimation for elliptic problems: Applica-

tion to the control of pointwise errors, Computer Methods in Applied Mechanics and En-

gineering 176, 313-331 (1999). 

5. Ainsworth, M., Oden, J.: A posteriori error estimation in finite element analysis. Wiley – 

Interscience, NY (2000). 

6. Babuska, I., Osborn, J.: Can a finite element method perform arbitrarily badly?. Mathemat-

ics of Computation of the American Mathematical Society 69(230), 443–462 (2000). 

7. Carpenter, M., Casper, J.: Accuracy of shock capturing in two spatial dimensions. AIAA J. 

37(9), 1072–1079 (1999). https://doi:10.2514/2.835 

8. Banks, J., Hittinger, J., Woodward, C.: Numerical error estimation for nonlinear hyperbol-

ic PDEs via nonlinear error transport, Comput. Methods Appl. Mech. Eng. 213, 1–15 

(2012). https://doi:10.1016/j.cma.2011.11.021 

9. Rauser, F., Marotzke, J., Korn, P.: Ensemble-type numerical uncertainty quantification 

from single model integrations. Journal Comp. Physics 292, 30–42 (2015). 

https://doi.org/10.1016/j.jcp.2015.02.043 

10. Johnson, C.: On computability and error control in CFD. International J. for Numerical 

Methods in Fluids 20, 777–788 (1995). https://doi.org/10.1002/fld.1650200806 

11. Babuska, I., Rheinboldt, W.: A posteriori error estimates for the finite element method. Int. 

J. Numer. Methods Eng. 12, 1597–1615 (1978). https://doi.org/10.1002/nme.1620121010 

12. Roy, Ch., Raju, A.: Estimation of discretization errors using the method of nearby prob-

lems. AIAA J. 45(6), 1232–1243 (2007). https://doi.org/10.2514/1.24282 

13. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, 

American Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Reston, VA, 

(1998). 

14. Standard for Verification and Validation in Computational Fluid Dynamics and Heat 

Transfer, ASME V&V 20-2009 (2009). 

15. Federal standard Р 57700.12–2018. Numerical simulation of supersonic flows for an invis-

cid gas. Software verification. National standard of the Russian Federation for numerical 

modeling of physical processes. (2018). 

16. Bondarev, A.: Analysis of space-time flow structures by optimization and visualization 

methods. In: Gavrilova, M.L., Kenneth Tan, C.J., Konushin, A. (eds.) Transactions on 

Computational Science XIX, LNCS, vol. 7870, pp. 158-168. Springer, Heidelberg (2013). 

17. Bondarev, A. Galaktionov, V.: Parametric optimizing analysis of unsteady structures and 

visualization of multidimensional data. International Journal of Modeling, Simulation and 

Scientific Computing 04 (supp01) (2013). 

18. Bondarev, A.: On the construction of the generalized numerical experiment in fluid dy-

namics. Mathematica Montisnigri XLII, 52–64 (2018). 

19. Bondarev, A.: On visualization problems in a generalized computational experiment. Sci-

entific Visualization 11(2), 156–162 (2019). https://doi.org/10.26583/sv.11.2.12 

20. Bondarev, A., Kuvshinnikov, A.: Analysis of the accuracy of OpenFOAM solvers for the 

problem of supersonic flow around a cone. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 



12 A. Alekseev et al. 

10862, pp. 221–230. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93713-

7_18 

21. Bondarev, A.: On the estimation of the accuracy of numerical solutions in CFD problems. 

In: Rodriguez, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540, pp. 325–333. Springer, 

Cham (2019). https://doi.org/10.1007/978-3-030-22750-0_26 

22. Bondarev, A., Galaktionov, V.: Generalized computational experiment and visual analysis 

of multidimensional data. Scientific Visualization 11(4), 102–114 (2019). 

https://doi.org/10.26583/sv.11.4.09 

23. Alekseev, A., Bondarev, A., Galaktionov, V., Kuvshinnikov, A.: On the construction of a 

generalized computational experiment in verification problems. Matematica Montisnigri 

XLVIII, 19-31 (2020). https://doi.org/10.20948/mathmontis-2020-48-3 

24. OpenFOAM Foundation. http://www.openfoam.org. last accessed 2020/08/10. 

25. Alekseev, A., Bondarev, A.: On exact solution enclosure on ensemble of numerical simu-

lations. Mathematica Montisnigri XXXVIII, 63–77 (2017) 

26. Alekseev, A., Bondarev, A., Kuvshinnikov, A.: Verification on the ensemble of independ-

ent numerical solutions. In: Rodriguez, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540. 

pp. 315–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22750-0_26 

27. Alekseev, A., Bondarev, A.: Estimation of the distance between true and numerical solu-

tions. Computational mathematics and mathematical physics 59(6), 857–863 (2019). 

https://doi.org/10.1134/S0965542519060034 

28. Alekseev, A., Bondarev, A., Kuvshinnikov, A.: On uncertainty quantification via the en-

semble of independent numerical solutions. Journal of Computational Science 42, 101114 

(2020). https://doi.org/10.1016/j.jocs.2020.101114 

29. Alekseev, A.,   Bondarev, A., Kuvshinnikov, A.: Comparative analysis of the accuracy of 

OpenFOAM solvers for the oblique shock wave problem. Mathematica Montisnigri XLV, 

95–105 (2019). https://doi.org/10.20948/mathmontis-2019-45-8 

30. Bondarev, A., Kuvshinnikov, A.: Parametric study of the accuracy of OpenFOAM solvers 

for the oblique shock wave problem. IEEE The Proceedings of the 2019 Ivannikov 

ISPRAS Open Conference 2019, 108–112 (2019). 

https://doi.org/10.1109/ISPRAS47671.2019.00023 

31. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conserva-

tion laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000). 

https://doi.org/10.1006/jcph.2000.6459 

32. Greenshields, C., Wellerr, H., Gasparini, L., Reese, J.: Implementation of semi-discrete, 

non-staggered central schemes in a colocated, polyhedral, finite volume framework, for 

high-speed viscous flows. Int. J. Numer. Meth. Fluids 63(1), 1–21 (2010). 

https://doi.org/10.1002/fld.2069 

33. Issa, R.: Solution of the implicit discretized fluid flow equations by operator splitting. J. 

Comput. Phys. 62(1), 40–65 (1986). https://doi.org/10.1016/0021-9991(86)90099-9 

34. Kraposhin, M., Bovtrikova, A., Strijhak, S.: Adaptation of Kurganov-Tadmor numerical 

scheme for applying in combination with the PISO method in numerical simulation of 

flows in a wide range of Mach numbers. Procedia Computer Science 66, 43–52 (2015). 

https://doi.org/10.1016/j.procs.2015.11.007 

35. Kraposhin, M., Smirnova, E., Elizarova, T., Istomina, M.: Development of a new Open-

FOAM solver using regularized gas dynamic equations. Computers & Fluids, 166, 163–

175 (2018). https://doi.org/10.1016/j.compfluid.2018.02.010 

36. Babenko, K., Voskresenskii, G., Lyubimov, A., Rusanov, V.: Three-dimensional ideal gas 

flow past smooth bodies. Nauka, Moscow (1964). (In Russian) 

https://doi.org/10.20948/mathmontis-2020-48-3
http://www.openfoam.org/

