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Abstract. The automated tracking of subcellular structures in live microscopy
image sequences is an actual problem in many biological research areas. A uni-
versal solution for this problem still does not exist due to a huge variety of data
of different nature. In this work, we propose an algorithm for tracking actin fila-
ments in 2D fluorescent image sequences. The filaments are moving in a random
and abrupt manner frequently crossing each other. We used steerable filters based
ridge detection followed by crossing filaments correction algorithm for filaments
detection. The tracking was performed using a greedy nearest neighbor method.
The quantitative evaluation of our approach was performed on several manually
annotated image sequences using object tracking quality metric MOTA. It was
shown that the proposed approach outperforms an existing approach in tracking
accuracy. In addition, the proposed approach allows processing crossed filaments,
unlike the existing methods.
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1 Introduction

Research on muscle functions is conducted for many years [5], yet there are still un-
curable muscle diseases. In 1954 sliding filament theory [9] was proposed, which
explained the inner work of muscles. Two proteins actin and myosin are responsible
for muscle contraction. To analyze their interaction in vitro motility assay (IVMA) is
used. Myosin is immobilized on a glass while fluorescent-stained actin filaments are
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immersed in a solution with ATP (Adenosine Triphosphate). Actin filaments start mov-
ing when they interact with myosin in the presence of ATP. By analyzing the velocity of
actin filaments different mutations of myosin and actin can be studied. To analyze the
velocities filaments must be tracked. An example of images with filaments are given in
Fig. 1.

Fig. 1. First four frames from a sequence.

Most existing methods [13] solve the tracking task in two stages: first, the objects are
detected in the image sequence, second, the tracks are formed by the same objects from
several consequent frames using data association techniques. The most accurate tech-
nique that gives the optimal solution is multiple-hypothesis tracking (MHT), yet it has
polynomial complexity, and thus computationally intensive. That’s why a lot of methods
were designed to approximate this optimal solution, such as multi-dimensional assign-
ment problem (MAP) solver [7], noniterative greedy assignment (NGA) [12], two-step
linear assignment procedure (LAP) [11], greedy nearest-neighbor (GNN) linking [3].

In [1], the authors proposed an object tracking method named FAST (Fast Auto-
mated Spud Tracker) that was specifically designed to solve the actin filament tracking
problem. The FAST method relies on the generalized nearest neighbor method for data
association and uses additional information about filaments (their shape and behavior)
to make data association step more robust. The filament detection stage is based on
background subtraction and skeletonization. The method showed a good performance;
however, does not track intersecting filaments and makes a lot of false negatives when
detecting filaments.

In this work, we propose a new method for actin filament tracking. We use steer-
able filters with Canny-like criteria [10] to detect filaments. In addition, we address the
problem of crossed filaments tracking by aggregating information from several consec-
utive frames. The data association step is performed with the greedy nearest neighbor
approach using distance between filament centroids. Our approach has been quantita-
tively evaluated using manually annotated real microscopy image data and a comparison
with the existing approach in [1] has been performed.

2 Methods

Our filament tracking approach consists of three stages: filament detection, correction
of crossed filaments, and data association.
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2.1 Filament Detection

We use steerable filters with Canny-like criteria [6, 10] to detect the filaments in each
image of the sequence. The algorithm consists of the following steps: ridge detection,
non-maximum suppression, double thresholding, and hysteresis.

For ridge detection we use steerable filters [8]. To detect a particular feature on an
image we need to convolve the image with a filter representing the ideal template of this
feature rotated at different angles. Thus, a high magnitude of the resulting convolution
with the rotated template indicates the presence of the feature and its orientation:

θ∗(x) = argmax
θ

(f(x) ∗ h(Rθx)), (1)

r∗(x) = f(x) ∗ h(Rθ∗x), (2)

where f(x) is the initial image, h(x) is the filter, r∗ is the filter response, θ∗ is the
feature orientation, and Rθ is the rotation matrix.

To detect the feature in all orientations one needs to have a very fine angle grid
resulting a number of convolutions with templates oriented at various angles. The steer-
able filters are used to simplify the computations as they can be rotated efficiently by
taking a linear combination of a small number of filters.

In this work, the following filter was chosen [10]:

h(x, y) = −
√

3

4π
σ
(
gyy −

gxx
3

)
= α · gxx + β · gyy, (3)

where g(x, y) is the Gaussian function, α = 1
3

√
3
4πσ, β = −

√
3
4πσ. Visualization of

the h(x, y) filter is shown in Fig. 2.

Fig. 2. The steerable filter h(x, y) used for ridge detection.

We can derive the equation to compute this filter at any orientation by applying
Fourier transform to a rotated filter, combining like terms, and applying inverse Fourier
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transform:

h(Rθx) = cos2 θ · (α · gxx + β · gyy)︸ ︷︷ ︸
q1(x)

+

+cos θ sin θ · (2 α · gxy − 2 β · gxy)︸ ︷︷ ︸
q2(x)

+

+sin2 θ · (α · gyy + β · gxx)︸ ︷︷ ︸
q3(x)

.

(4)

Thus, plugging Eq. (4) into Eq. (1) we can analytically maximize the filter response
by θ at every pixel of the image after computing only three convolutions with the filters
q1(x), q2(x), and q3(x).

After getting filter response in every pixel of the image, we thin the found ridges by
non-maximum suppression (we suppress all pixel values that have lower intensity than
their neighbors along the θ angle). Then, we apply double thresholding and hysteresis
to remove the noisy detections. The low threshold is computed using the Otsu method,
while the high threshold is a parameter of the algorithm and is typically set in a way
that the thresholded image has 90% of the brightest pixels from the image after non-
maximum suppression step.

As the result of the hysteresis we get the detected filaments. They can be seen in
Fig. 3 as magenta lines.

2.2 Correction of Crossed Filaments

In case the filaments cross, the detection approach described above causes splitting of
one of the filaments or merging two neighboring filaments (see Fig. 3). In the third
frame of Fig. 3 the filaments splitting problem is shown. In the second and the fifth
frames of Fig. 3 one can see merged filaments.

Fig. 3. Five frames are visualized. Original input images are overlayed by detected fil-
aments and found traces. Red dots mark filament centroids. Magenta lines are detected
filaments. Green lines are filament traces.
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(a) The 11-th frame of the image sequence. (b) The maximum projection of 5 frames (from
10-th to 15-th).

Fig. 4. The illustration of the maximum projection image from five consecutive frames.
The maximum projection image is used to construct filament traces.

(a) False merging filaments problem. Two fil-
aments that were merged during the detection
stage are on the left. The result of the false
merging correction algorithm where the fila-
ment is split into two is on the right.

(b) False splitting filaments problem. On the
left, the horizontal filament is split into two fil-
aments. The result of false splitting correction
algorithm where two filaments are merged into
one is shown on the right.

Fig. 5. False merging filaments problem (a), and false splitting filaments problem (b).
The detected filaments are shown with different colors. Red dots mark the centroids of
the filaments.

To address this problem, we use the information from several consecutive frames
(the number of frames is the parameter of the algorithm) by taking the maximum in-
tensity over time in each pixel (maximum projection). An example of the maximum
projection can be seen in Fig. 5.
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The resulting maximum projection images represent the filament motion traces
within the specified period. To analyze these structures we use FIRE algorithm [14].
This algorithm was created to join ridge-like structures of similar direction that sepa-
rated on the ridge detection stage.

First, the maximum projection image is binarized. We consequentially apply the
steerable (see Section 2.1) and median (5× 5) filters to the image. After that, the image
is thresholded by the global Otsu threshold. Then, the distance transform is applied fol-
lowed by Gaussian smoothing (σ = 1.5) resulting in a smoothed distance transform E.
After that, the nucleation points are found as the local maxima in a square neighborhood
of the radius smax (which is set to 5 in our method). Then we form a set of branches
for every nucleation point. The branch begins in the nucleation point and follows the
directions given by local maxima of the distance transform E. The initial direction is
given by the local maxima on a border of a square neighborhood of the nucleation point.
The branch extension process ends when the branch meets the background or another
nucleation point. For the formal description of this approach we refer to [2]. Finally,
the co-directional branches are merged and branches shorter than 5 pixels are removed
resulting in filament traces (see Fig. 3).

After the filament traces are found each filament in every frame is assigned to its
closest trace. Thus, one filament trace can have a lot of filaments associated with it. Then
each trace can be described by frame numbers where it appeared ti and the number of
filaments assigned to the trace in each frame nti :

{t1 : nt1 , t2 : nt2 , ... , tk : ntk} , (5)

where k is the number of consecutive frames that are taken for maximum projection
(we typically use k = 5).

For example, {11: 1, 12: 2, 13: 1, 14: 1, 15: 1}means that in the 11-th, 13-th, 14-th,
and 15-th frames the trace was assigned to one filament, and in the 12-th frame it was
assigned to two filaments.

Ideally, each trace in every frame must have exactly one filament that forms the
trace. However, we can distinguish two kinds of errors: zero filaments associated with
the trace in a frame (nti = 0), and more than one filaments associated with the trace in
a frame (nti > 1). When we have zero filaments in a frame, it means that the filament
which was supposed to be detected and assigned to this trace was not detected or merged
with some other filament. We call this false merging problem (see Fig. 5a). In case we
have more than one filament associated with the trace in one frame, it means that the
filament was incorrectly split into two separate filaments (see Fig. 5b). The solution for
both problems is described below. To simplify further descriptions, let us define m as
the mean length of all filaments from the current trace where nti = 1.

False Merging Filaments Correction. First, we find all traces with nti = 0 at least
for one frame number. We restore lost filaments using the following procedure. If
nti−1

= nti+1
= 1, we can construct filament along the trace with length m and cen-

troid computed as mean of centroids of filaments in the neighboring frames ti−1 and
ti+1. If the missing filament is in the first or last frame (nt1 = 0 or ntk = 0), we form
the filament by cutting a piece of the trace of the lengthm from its start (or end). In case
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the miss of the filament was caused by merging with another filament, we have to cor-
rect the length of the latter one by removing the part corresponding to the reconstructed
filament. Thus, we get two distinct filaments from one merged filament (see Fig. 5a).

False Splitting Filaments Correction. We find all traces with nti > 1 at least for one
frame number. For each trace, for every frame ti where nti > 1 we calculate the sum
of filaments lengths in this frame lti . If the length lti is close to the mean length m
(their difference is less than 20 pixels), we merge these filaments into a single one (see
Fig. 5b).

Algorithm Summary. The described correction steps are used iteratively using the
following algorithm:

1. Construct the set of filament traces from one aggregated image.
2. Assign all filaments to the traces.
3. Apply false splitting filaments correction to all traces.
4. Apply false merging filaments correction to all traces.
5. If any filament was split or merged, mark the corresponding traces as changed, and

mark them unchanged overwise.
6. If all traces are unchanged, then the algorithm is finished. Otherwise, return to step

3.

2.3 Filament Association

For filament association we use the generalized nearest neighbor algorithm. The algo-
rithm is applied iteratively from the first frame to the last frame.

Suppose that all the tracks are constructed till t-th frame {γ1, . . . , γN}. We need to
continue tracks from t frame to t+ 1 frame. Let us describe the procedure for the track
γi and its last filament f .

First, we compute distances between the centroids of the filament f and all the
filaments from the frame t+ 1. Then, we filter out all the filaments which length differ
more than 1.5 times from the length of the last filament in this track. We do not filter
out the filaments shorter than 25 pixels, as the length of the filaments can vary up to 10
pixels between the frames due to the noise. After that, we filter out all filaments that are
too far. We do not consider the filaments that are further than the search radius of 3r,
where r is the mean of all filament displacements in the track γi. Finally, for the filament
f we choose the closest filament from the remaining candidates from the frame t + 1.
If there is no such filament then the track is ended. The procedure is repeated greedily
for all the tracks γi. All filaments from frame t+ 1 that were not assigned to any track
are considered as the beginnings of the new tracks.

3 Results

3.1 Dataset

The data was kindly provided by the Institute of Immunology and Physiology, Ural
Branch of the Russian Academy of Sciences. The image sequences consist of 30 frames
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with the size of 512 × 512. The time interval between the frames is 300 ms. For the
algorithm evaluation, three sequences with 123 tracks were manually annotated.

3.2 Evaluation Metric

We used the MOTA metric from the CLEAR MOT metrics [4] for quantitative evalua-
tion of the tracking results:

The multiple object tracking accuracy (MOTA) is defined as

MOTA = 1−
∑
tmt∑
t gt
−
∑
t fpt∑
t gt
−
∑
tmmet∑
t gt

(6)

Here, mt is the number of misses, fpt is the number of false positives, mmet is the
number of mismatch errors, gt is the number of ground truth objects in frame t.

Note, that MOTA can be negative (because there could be more false positives and
misses than ground truth objects).

3.3 Experiments

We calculated the values of MOTA metric on three manually annotated image sequences
for the FAST method [1], and the proposed method.

In Table. 1 the results of MOTA are presented. Our method has higher MOTA val-
ues. It is important to note that the proposed approach is able to work with crossed
filaments, while FAST method does not consider them at all, which partly affects such
a difference in MOTA values.

In Fig. 6 the tracking results for the first 24 frames of one of the sequences are
visualized. To make images less cluttered the finished tracks are not shown.

Table 1. MOTA metrics computed for the FAST method [1] and the proposed methods.
Method Seq. 1 Seq. 2 Seq. 3
FAST -0.316 -0.177 -0.169
Proposed method 0.422 0.482 0.589

4 Conclusion

In this paper, we have presented a method for tracking actin filaments in fluorescence
microscopy image sequences. The filament detection is based on ridge detection using
steerable filters with Canny-like criteria. In addition, the filament detection includes
crossed filaments correction algorithm based on filament trace analysis. The tracking
is based on the greedy nearest neighbor approach that takes into account the distance
between filaments and their lengths. We compared the results of the proposed method
with the existing approach [1] using MOTA metric on the manually annotated data. The
quantitative evaluation showed that our approach outperforms the existing approach for
our data in tracking accuracy.
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Fig. 6. Filaments tracking result. From left to right from top to bottom every second
frame is shown.

References

1. Aksel, T.e.a.: Ensemble force changes that result from human cardiac myosin mutations and
a small-molecule effector. Cell Reports 11, 910–920 (2015)
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