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Abstract. Glands segmentation is a very important and yet challenging problem
of histological images analysis. Accurate segmentation of mucous glands is a cru-
cial step to obtain reliable morphological statistics and is necessary for the devel-
opment of high-quality diagnostic algorithms, which are an integral part of timely
medical care. In this paper we propose a two-stage segmentation method, which
predicts the probability maps of glands boundaries in histological images based
on a priori knowledge about the geometric shape of the mucous glands and uses
a convolutional neural network (CNN) model to get the final segmentation re-
sult based on the predicted probability maps. The proposed method demonstrates
good results in separating adjacent glands, which is one of the most challeng-
ing aspects in automatic segmentation of histological glands and one of the most
complicated for algorithms based on applying convolutional neural networks. The
evaluation of the proposed algorithm was performed with Warwick-QU dataset,
which contains real histological images of colon tissue.
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1 Introduction

Over the past decade a notable reduction in colorectal cancer mortality was achieved.
A significant role in this was played by the appearance of automated systems for seg-
mentation and analysis of histological images which allow to obtain accurate results for
large amount of data in a short period of time.

In this paper we propose an adaptive method of glands segmentation on histological
images that considers the form of histological glandular structures and evaluate the
implementation of the proposed method on a real histological dataset.
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All existing techniques of histological gland segmentation can be divided into three
main groups:

1. methods based only on mathematical principles of image processing,
2. methods that are built upon classical image processing methods with embedding of

machine learning approaches at one or several stages,
3. methods that are entirely based on neural network model usage.

More detailed overview of existing histological image segmentation methods is given
below.

Classical methods that do not use machine learning are based mainly on texture anal-
ysis of data. For example, in [1] intensity dispersion and Gaussian filters were used to
extract structural features from the glands structures. After that K-means clustering [2]
was applied. The main disadvantage of such methods is the lack of prior knowledge
about the relationships between the glands structural components, therefore these meth-
ods can lead to incorrect segmentation.

Methods that use classical methods and machine learning in conjunction analyze struc-
tural features of glands using a prior knowledge about their relationships [3, 4]. This
allows to avoid problems that arise in texture based analysis methods.

Fig. 1. Typical parts of mucous glands on histological image.

In [5] at the initial stage the Bayesian classifier is used to segment lumen areas
(the bright region in the center of the gland), cytoplasm and nuclei (Fig. 1). Then, the
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levelset method [6] is applied to the previously classified areas to find desired gland
contour. Considering the information about grandular structure allows to achieve better
results in comparison to texture based methods, however, a serious limitation of this
method lies in the inaccuracy of levelset method. The reason for these inaccuracy is
insufficiently smooth and uniform lumen boundary that breaks the levelset method.

The authors of [7] proposed a more effective approach, where boundaries of glands
are determined by using the stochastic polygons method. At the initial stage, nuclei are
segmented. They are further considered as possible vertices of the desired boundary
polygonal approximation. After that a Bayesian-based dropout is performed. Decision
of the dropout is based on information about the spatial connectivity and curvature of
the contours that can be formed by considered vertexes.

Methods fully based on the neural network model usage are represented with works [8–
10]. The results in these methods were obtained after passing the initial image through
a pre-trained neural network. The architectures used in such methods are quite diverse.
Neural networks have great generalizing ability that allows to achieve segmentation
with accuracy in some cases close to 1.

Hereinafter, by the accuracy we mean the ratio of the number of correctly segmented
image pixels to the total number of pixels.

In [8] multi-level contextual features with auxiliary supervision detection for gen-
erating likelihood maps of glands were used. They were found with end-to-end trained
fully convolutional network (FCN). Next, deep-contouraware network drawn from FCN
for effective gland segmentation by fusing the complementary information of objects
and contours was used. This allowed this method to take the first place in 2015 MICCAI
Gland Segmentation Challenge [11, 7].

In [10] two convolutional networks were used. A segmentation network takes an
input image and produces segmentation probability maps for this image. An evaluation
network takes the segmentation probability maps and the corresponding input image
and determines a score indicating the quality of the segmentation.

The main feature of [10] is the use of unannotated data. The authors achieved
Dice score equal to 0.903 on the Warwick-QU dataset:

Dice(A,B) =
2 · |A ∩B|
|A|+ |B|

, (1)

In [9] the segmentation process was divided into several base stages:
– foreground segmentation stage in which the separation of glands from the back-

ground was done,
– edge detection stage in which the glands borders were highlighted,
– object detection stage in wich glands were separated from each other,
– fusion stage in whitch the final segmentation is obtained by combining the data

obtained in the previous stages.
All stages were performed with convolutional neural networks.

The authors achieved Dice score equal to 0.908 on the Warwick-QU dataset.
In this paper we propose a method based on a priory information knowledge about

structural features of glands. The proposed method constructs a probability map of
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glands position in the image and performs post-processing on predicted results receiv-
ing initial coarse segmentation. After that the received areas, that are candidates to be
glands, are classified with a convolutional neural network.

2 Proposed method

The glandular structures are predominantly elliptical in shape. Their borders are ex-
pressed in dark color (based on Warwick-QU), that is the main criterion for their detec-
tion within the proposed method.

Our method consists of two main steps: calculating glands contour probability map
that is described in Section 2.1 and classification and postprocessing of gland candidates
that is described in Section 2.2.

Fig. 2. Visualization of a template assembled from circular sectors.

2.1 Calculating glands contour probability map

The proposed method, as mentioned earlier, consists of two stages. At the initial stage
a uniform grid is placed on the image. After that the center of the described below tem-
plate is placed in the each of grid nodes. Template represents a circle that is uniformly
divided into circular sectors (Fig. 2). Directed weighted graph consisting of vertices
lying in the rays is constructed with the help of this template. Each circular sector cor-
responds to a single vertex lying in the ray corresponding to this sector. Total number
of vertices is calculated as:

Nvert = Nrays · Nv on ray, (2)



Adaptive Method of Glands Segmentation on Histological Images 5

where Nvert is total number of vertices, Nrays is total number of rays and Nv on ray is
number of vertices on the each ray.

The weight of each vertex is calculated as the average intensity of image pixels
lying in corresponding to this vertex circular sector:

Wij =
1

|Ωij |
∑

u,v∈Ωi,j

I(u, v), (3)

whereΩij is circular sector corresponding to the vertex (i, j) and I(u, v) is the intensity
of the image pixel with coordinates (u, v).

Fig. 3. Initial images from Warwick-QU dataset on the left and the probability maps calculated
for these images on the right.

Next, for each graph constructed for grid node a closed cycle with the lowest total
weight is searched in the graph. This cycle, transferred to the template, corresponds to
the expected gland boundary contour for this node.

Contours obtained for each of the nodes overlap each other thus forming a proba-
bility map (Fig. 3) for the glands position in the image. This map is used as a heights
map to obtain initial segmentation using Watershed algorithm [12].

The initial segmentation (Fig. 4) is built without taking into account whether areas
belong to the glands or not, therefore it is necessary to throw out inappropriate areas.
Filtering these areas is done on the second stage of the proposed algorithm.

2.2 Classification and postprocessing of gland candidates

To perform filtering of glands candidates each of the initial segmentation areas are feed
to a pretrained convolutional neural network that estimates the probability of belonging
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Fig. 4. Initial images from Warwick-QU dataset on the left and initial segmentation obtained from
a probability maps using the Watershed algorithm on the right.

this area to the ’gland’ class. Based on the information received, the final segmentation
is constructed by eliminating areas that do not belong to ’gland’ class. Area is consid-
ered as ’not a gland’ if the probability predicted by the convolutional neural network is
less than 0.5.

The architecture of the used convolutional neural network is sequential and consists
of three convolutional blocks and two fully connected layers (Fig. 5). Each convolu-
tional block consists of two convolutional layers as well as a pooling layer and batch
normalization layer. First two convolutional blocks are used to highlight features in the
image. They use 3× 3 convolution. First pooling layer use 4× 4 AVG pooling. Second
pooling layer use 2 × 2 MAX pooling. Third convolution block is used to remove in-
significant features and uses 1×1 convolution and 2×2 MAX pooling. Fully connected
layers are used to convert the obtained characteristics directly into the probability that
the area belongs to the ’glands’ class. The first fully connected layer consists of 16
neurons and the second one consists of 1 neuron.

All layers except the last one uses ReLU activation:

ReLU(x) =

{
x, x ≥ 0,

0, x < 0.
(4)

Last layer uses Sigmoid activation for binary classification:

sigmoid(x) =
1

1 + e−x
. (5)

Before each pooling layer a batch normalization [13] is used.
This architecture demonstrated the best results among the several other convolu-

tional architectures with two or three convolutional blocks that were tested during the
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Fig. 5. The architecture of the convolutional neural network that was used to filter glands candi-
dates at the second stage of the proposed method.

development of the algorithm. During the experiments, various sizes and types of pool-
ing layers were used as well as a different number of filters in convolutional layers. All
convolutional networks were trained from scratch.

3 Experiments and results

3.1 Data selection and preprocessing

We used Warwick-QU [7, 11] dataset as material for the study. It contains 165 colon tis-
sue images obtained with Zeiss MIRAX MIDI microscope with a resolution of 0.62 µm/
pixel and a ground truth gland annotation made by medical experts for each of the im-
ages.

Warwick-QU dataset was divided by ourselves into three subsets: test, validation
and training:

– training subset consists of 133 images. Images from this group are used to train the
CNN,

– validation subset consists of 12 images that are used to evaluate intermediate results
during the training process and tune hyper parameters of the network,

– test subset consists of 10 images. They are used for the final assessment of the
neural network prediction quality.

The first stage of the proposed algorithm, that was described in Section 2.1, was run
for each image in the dataset, though providing the initial segmentation. After that each
area on the image was compared to the ground truth annotation and was assigned to one
of three classes (Fig. 6):
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Fig. 6. Initial images from Warwick-QU dataset on the left and visualization of the received di-
vision into ’gland’, ’not a gland’ and ’unknown’ classes of the initial segmentation areas on the
right.

1. gland,
2. not a gland,
3. unknown.

The ’unknown’ class was introduced to avoid feeding incorrect patches to the neu-
ral network during training process. Patch is incorrect if it’s central part consists of
pixels corresponding to a class that differs to class of the most pixels in the image. This
has significantly improved the prediction. Only those areas, for which it was impossi-
ble to establish exact membership to a gland or non-gland class, were assigned to the
’unknown’ class.

For each area of initial segmentation a bounding box is constructed. All pixels in
this bounding box form a patch. The pixels that are not relevant to considered region
in the patch are set to 0 in all RGB channels. All patches received are rectangles of
different sizes.

3.2 Data augmentation

For augmentation, we used random rotations and reflections, as well as small shifts and
zooming. Rotations were carried out from−10 to 10 degrees and shifts were carried out
no more than 15 percent of the patch size (which is 256 × 256 pixels for Warwick-QU
dataset).

The number of patches belonging to the ’gland’ class is synthetically increased by
1.3 times by creating an extra patch for each third region. Each of these patches contains
from 40% to 60% of the original patch area. This is necessary to artificially increase the
number of patches which are examples of ’gland’ class lying on the image border since
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the number if these patches is much smaller than the number of patches that do not lie
on the image border.

3.3 Training the convolutional neural network

Each patch is rescaled to the 256 × 256 patch and gets a single-number label: 1 if the
corresponding area belongs to the class of glands and 0 otherwise.

In total about 17, 000 patches were received using the described above procedure.
About 14, 000 of these patches are from training subset. The number of patches be-
longing to the class of glands differs by no more than 5% from the number of patches
belonging to the class of glands, which is preferable to obtain a robust CNN training.

Fig. 7. Values of accuracy and loss function over epoch on training and validation datasets.

To train the described above CNN we used the Adam optimizer [14], with an initial
learning rate equal to 0.001, batch size equal to 16 and binary cross entropy as a loss
function:

Loss = − 1

N

N∑
i=1

yi · log (p(yi)) + (1− yi) · log (1− p(yi)), (6)
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where yi is the label (1 for ’gland’ samples and 0 for ’not a gland’ samples), p(yi) is
the predicted probability of the sample being ’gland’ for all N samples.

At the end of each epoch, prediction accuracy was obtained on a validation set
after which a decision was made about the network hyper parameters changing. If the
averaged loss function value on the validation dataset did not decrease for 6 epochs in
a row, the coefficient of learning rate was decreased by 5 times. If it did not decrease
during 8 epochs, the training process was stopped.

3.4 Results

Fig. 8. The results obtained with the proposed algorithm on Wariwck-QU dataset. Left to right:
source image, predicted segmentation, ground truth, overlay. In the overlay green zones are cor-
rectly segmented, violet ones are over-segmented, yellow ones are under-segmented.

We achieve accuracy of 0.85 on the test subset. Values of accuracy and loss function
over epoch on training and validation datasets showed in Fig. 7.

The average Dice score (Equation 1) on the test set was 0.790.
The final results of the proposed algorithm can be observed in the Fig. 8.
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4 Implementation details

The used segmentational CNN which is used as the send stage of the proposed algo-
rithm was implemented using opensource neural network framework Keras with Ten-
sorFlow 2.1.0 [15] backend. Python 3.7 was used as a programming language.The ex-
periments were performed on a personal computer AMD Athlon II X4 760K and Nvidia
GeForce GTX 650. Neural network training took about 8 hours, processing of one image
from Warwick-QU took about 120 seconds. The source code of the proposed method
can be found at
https://github.com/moscap/classic gland segmentation.

5 Conclusion

In this work we propose a method of glands segmentation in histological images that
constructs a probability map of glands contours based on a priory information about
glandular structures and afterwards uses a CNN model to get a final segmentation. The
average accuracy on the Warwick-QU is 0.825, Dice score value is 0.790. The pro-
posed method also showed good separation properties in the case of processing the
adjacent glands which is often a problem for methods fully based on convolutional net-
works.

The continuation of this research will include enhancing the prediction of glands
contours maps and evaluating the method on PATH-DT-MSU [16, 17] dataset.
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