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Abstract. Artificial neural networks (ANNs) are used to substitute computation-
ally expensive radiative transfer models (RTMs) and inverse operators (IO) for
retrieving optical parameters of the medium. However, the direct parametriza-
tion of RTMs and IOs by means of ANNs has certain drawbacks, such as loss
of generality, computations of huge training datasets, robustness issues etc. This
paper provides an analysis of different ANN-related methods, based on our re-
sults and those published by other authors. In particular, two techniques are pro-
posed. In the first method, the ANN substitutes the eigenvalue solver in the dis-
crete ordinate RTM, thereby reducing the computational time. Unlike classical
RTM parametrization schemes based on ANN, in this method the resulting ANN
can be used for arbitrary geometry and layer optical thicknesses. In the second
method, the IO is trained by using the real measurements (preprocessed Level-2
TROPOMI data) to improve the stability of the inverse operator. This method pro-
vides robust results even without applying the Tikhonov regularization method.
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1 Introduction

Machine learning techniques have become of paramount importance in the geosciences,
lighting engineering and remote sensing [22]. Atmospheric parameter retrieval (in par-
ticular, trace gas retrieval) is an important application of remote sensing [20]. At-
mospheric composition sensors on board satellites provide a huge amount of data of
high spatial resolution about atmospheric constituents [30]. The sensor measures the
spectral radiances reflected by the terrestrial atmosphere. From these measurements,
information can be retrieved about ozone (including tropospheric ozone), nitrogen,
formaldehyde, carbon monoxide as well as clouds and aerosols. Radiative transfer mod-
els (RTMs) are key components of the algorithms designed for the retrieval of atmo-
spheric constituents from remote sensing data. The RTMs encompass our understand-
ing of the physics behind the measurement process and relate the optical parameters
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of the medium with the signal measured by the sensor. To process a big amount of
data comping from the state-of-the-art atmospheric composition sensors, acceleration
techniques for RTMs are required. Numerous approaches based on analytical proper-
ties of dimensionality reduction techniques have been developed (see e.g. [3, 14, 26] for
general review).

To boost further the performance of RTMs, the machine learning based approaches
are widely used. In particular, artificial neural networks (ANNs) are used to reproduce
the results of RTMs, but at low computational costs. As input, ANN takes the optical
parameters of the atmosphere, while as output it provides the radiance field. Despite its
high efficiency, this approach has a certain drawbacks. For instance, extensive computa-
tions of the training datasets are required. Usually, the training is restricted to a chosen
model for the single scattering phase function (e.g. Henyey-Greenstein), so no arbitrary
phase functions are allowed. Besides, ANN does not necessary capture implicit proper-
ties of the radiance field, such as the symmetry relation with respect to the incident and
viewing polar angles. Finally, the use of ANNs for the forward RTM parameterization
relies on the universal approximation theorem [9, 19] which states that a feed-forward
network with a single hidden layer and with a finite number of nodes can approximate
any continuous function from a compact interval. However in practice, the ANN-based
approach is not fail-save, i.e. the error can be large in some cases which have not been
captured by the training procedure.

ANNs are used to parameterize an inverse operator in retrieval problems. The ad-
vantage of this approach is that the explicit inversion of the RTM is avoided, while the
resulting ANN operator is fast. However, this approach requires two regularization pro-
cedures. One regularization is required to deal with ill-posedness of the inverse problem
and is usually done by means of the Tikhonov regularization in the L2 metric [29]. The
second regularization is required to obtain robust weights of the ANN itself and can be
done in the L1 metric.

In this paper we consider two alternative approaches. In the first method, the ANN
is used to substitute a part of RTM, namely, the eigenvalue solver, thereby reducing
the computational time. In the second method, the ANN inverse operator is trained on
real measurements (namely, preprocessed TROPOMI data) to improve the robustness
of retrievals.

2 Overview of the Radiative Transfer Model

We consider computations of the spectral radiances in the Huggins band (280-335 nm),
which is used for ozone profile retrievals. Due to strong influence of Rayleigh scatter-
ing, multiple scattering plays an important role. The one-dimensional radiative transfer
equation for the radiance L reads as follows [8]:

µ
dL (τ, µ, ϕ)

dτ
= −L (τ, µ, ϕ) +

ω (τ)

4π

2π∫
0

1∫
−1

p (τ, µ′, µ, ϕ− ϕ′)L (τ, µ′, ϕ′) dµ′dϕ′,

(1)
where τ is the optical depth, µ and ϕ are the cosine of the polar angle and the azimuth
angle, respectively, ω is the single scattering albedo, while p is the single scattering
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phase function. The numerical solution of Eq. (1) is described in numerous textbooks
and papers (e.g. [2, 6, 28]). Here we outline main steps to put our considerations in the
proper context.

We consider the cosine azimuthal expansion of the radiance field and the phase
function providing an equation for the azimuthal component Lm (τ, µ). Then, the radi-
ance field is discretized in the µ -domain by considering Ndo Gaussian points {µi} per
hemisphere and corresponding weights {wi}, where i = 1, ..., Ndo(the positive values
of µ correspond to the downwelling radiance, while the negative values of µ correspond
to the upward radiance). For an inhomogeneous atmosphere, we consider a spatial dis-
cretization using N layers: τ1 < τ2 < ... < τN+1, where τ1 = 0 and τN+1 = τs. A
layer l is bounded above by the level τl and below by the level τl+1. The single scatter-
ing albedo and the single scattering phase function are assumed to be constant within
each layer. For layer l with optical thickness τ̄l = τl+1 − τl Eq. (1) is rewritten in a
discrete space as the following linear system of differential equations (for simplicity we
omit azimuth index m):

d

dτ

[
i↑ (τ)
i↓ (τ)

]
= −Al

[
i↑ (τ)
i↓ (τ)

]
+ bl (τ) , τl ≤ τ ≤ τl+1, (2)

where [
i↑↓ (τ)

]
i

= Lm (τ,∓µi) , i = 1, ..., Ndo, (3)

while A and b are the so called layer matrix and layer source vector, respectively (ex-
pressions for them can be found in [12]). The integral of Eq. (2) is

−
[
i↑l
i↓l

]
+ eAlτ̄l

[
i↑l+1

i↓l+1

]
=

∫ τ̄l

0

eAltbl (t) dt. (4)

To evaluate eAlτ̄l , the eigenvalue decomposition method can be applied:

eAlt = VleΛltV−1
l , (5)

where Vl is the eigenvectors matrix and Λl is the eigenvalues matrix for the lth layer.
Then, substituting Eq. (5) in Eq. (2) and rearranging the entries, we obtain an equation
which relates the radiances at the layer boundary. It has the following form:[

i↑l
i↓l+1

]
=

[
R↑l T↑l
T↓l R↓l

][
i↓l
i↑l+1

]
+

[
P↑l
P↓l

]
, (6)

where R↑↓l and T↑↓l are the reflection and transmission matrices, respectively, while
P↑↓l is the source term. They can be expressed in terms of Vl and Λl (ready-to-compute
formulas are given in [17]).

By using the matrix operator method [27], two layers can be merged into one layer.
Applying this approach iteratively for each atmospheric layer, the equation similar to
Eq. (6) is derived for the whole atmosphere. Finally, applying the boundary conditions,
i↑0 corresponding to the upward (reflected) radiance at the top of the atmosphere can be
found.
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Table 1 shows the computational times for the eigenvalue decomposition part and
the matrix operator method. The eigenvalue part consumes about 70 % of the total com-
putational time. Also note, that the computational time of the whole discrete ordinate
RTM scales as ∼ N2.5

do due to eigenvalue problem and matrix multiplications in the
framework of the matrix operator method. From Table 1 one can see that the eigenvalue
problem (5) imposes a performance bottleneck in the whole discrete ordinate RTM.
Several approaches were developed to accelerate or to avoid computations of the eigen-
values. In particular, by setting Ndo = 1, we obtain the two-stream model, in which the
eigenvalues are expressed analytically, and thus, Eq. (2) has a closed form solution.

Table 1. Computational times of the eigenvalue decomposition part and the matrix operator
method as a function of number of discrete ordinates.

Number of discrete ordinates Computational time

Eigenvalue solver Matrix operator method

2 0.53 0.2
4 1.78 0.58
8 5.68 1.92
16 26.0 10.3
32 100.1 49.7

3 Parameterization of the Eigenvalue Problem by Means of
Artificial Neural Network

The classical approach to parametrize the RTM is illustrated in Fig. 1 with a blue line.
Here the RTM is used as a black box, and the ANN is capturing the input-output de-
pendencies of RTM. In this case, the ANN is trained for a fixed number of layers.
Besides varying the geometry (the viewing zenith angle, the relative azimuth angle and
the incident angle), for each layer, the following parameters should be given: the optical
thickness, the single scattering albedo, and the Legendre expansion coefficients of the
phase function. Note that it is quite challenging to capture the dependencies of the radi-
ance with respect to high-order expansion coefficients. This is why, usually, the phase
function is restricted to a certain model. An alternative approach proposed in this paper
is shown with a green line in Fig. 1 and consists in applying the ANN for computations
of Λl. We recall again, that Λl depend neither on the layer optical thickness nor the
geometry. Hence, as inputs, we require only the single scattering albedo and the phase
function. Once Λl are known, Vl can be readily computed.

We consider two types of layers. The first type of layers has only Rayleigh scattering
and gaseous absorption. The phase function is smooth and assumed to be constant (the
weak dependence on the depolarization factor related to the King factor is neglected
[4]). The second type of layers has a cloud. The phase function in this case is computed
by applying Mie theory [5] using the particle size parameter and the refractive index as
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Fig. 1. Scheme used for radiative transfer model parametrization by means of artificial neural
networks.

inputs. The particle size distribution is described by the modified gamma distribution
[10]:

f (r) = arαe−br
γ

, (7)

where r is the particle size, while a, b, α and γ are real positive constants controlling
the shape of the distribution. Note that f (r) satisfies the normalization condition,

∞∫
0

f(r)dr = 1, (8)

and thus, f (r) is defined by three independent parameters. The examples of the cal-
culated phase functions are shown in Fig. 2. The ANN for the Rayleigh layers uses as
inputs the single scattering albedo only, while the ANN for the cloudy layers uses as in-
puts the single scattering albedo and 3 parameters of the modified gamma distribution,
i.e. in total 4 parameters. The outputs of the ANNs are the eigenvalues Λl. Note that we
use Ndo = 16 and there are Ndo = 16 independent eigenvalues and eigenvectors for
each azimuthal harmonic.

The training is performed using Keras API. For the cloudy layers, the ANN config-
uration with 1 hidden layer with 25 neurons is used. The training data set consists of
20000 samples, while the testing phase of the ANN training is performed on 5000 sam-
ples. For Rayleigh scattering case, the ANN configuration with 1 hidden layer with 10
neurons is used. The training data set consists of 2000 samples, while the testing phase
of the ANN training is performed on 500 samples. Note that by excluding dependen-
cies on geometries and optical thickness, the dimension of the datasets is significantly
reduced. The output functions (i.e.) depend smoothly on chosen inputs and the training
procedure is fast (e.g. computations of the training dataset and the training procedure
take less than two hours on Intel Core i5-3210).

To test this method, a 15 layer atmosphere with the Lambertian boundary at the
bottom is considered. One layer contains a cloud. The ozone profile is modeled as in
[31]. The computations are performed in the spectral range 280-335 nm. The results are
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Fig. 2. Examples of calculated phase functions, which are used for training. The blue curve corre-
sponds to the Rayleigh phase function, while the black curve is related to the Mie computations.

compared against a reference solution, in which full multi-stream RTM with Ndo = 16
is used. The examples of spectra are shown in Fig. 3. The error is computed for each
spectrum in each spectral point. As the radiance values around λ =290 nm are very
small comparing to radiances at longer wavelengths, the relative error e is computed as
follows:

e (λ) =
L (λ)− Lref (λ)

Lref (315 nm)
, (9)

where Lref stands for the reference model. The histogram of errors is shown in Fig. 3.
As we can see, the error of this approach is within 0.1 %.

The overall computational time is reduced by approximately 5 times as compared
to the reference RTM. Note that as the ANN part is much faster than the matrix opera-
tor part, the latter becomes a performance bottleneck. This scheme appears to be quite
stable, since no cases with high errors have been captured. We should note that the
performance enhancement is not significant (up to 5 times) in comparison to 1000-fold
performance enhancement, e.g. in [7, 23]. However, this approach is flexible and the
training procedure is fast. In addition, one should note that by replacing the eigenvalue
solver with the ANN, the computational time of the RTM is mostly due to the time re-
quired to the matrix operator method. That makes it comparable to closed-form RTMs,
in which the eigenvalues are found analytically (e.g. the two-stream RTMs).
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Fig. 3. (left) Examples of simulated spectra in the Hartley-Huggins band; (right) the histogram of
errors of the method, in which the eigenvalue part of the RTM is substituted with the ANN.

4 Inverse Model Parametrization Using Real Measurements

Now we consider the ANN-based approach for accelerating the inverse operator. Fol-
lowing Tikhonov [29], the retrieval algorithm finds the state vector x of medium pa-
rameters that minimizes the discrepancy between the simulated and measured spectra
in the following sense:

x = arg min
x

{
‖y − RTM(x)‖2 + αΩ (x)

}
, (10)

where y is the vector of measurements (in the case of atmospheric retrievals, spectral
radiances at the top of the atmosphere), α is the regularization parameter and Ω is the
stabilizing functional. The expression in curly brackets is referred to as the Tikhonov
function. In principle, RTM in Eq. (10) can be substituted with the ANN, i.e.

x = arg min
x

{
‖y − ANN(x)‖2 + αΩ (x)

}
. (11)

Then the minimization problem can be solved either by using the local or global op-
timization algorithms. In the former case, ANN has to be linearized to compute the
Jacobian matrix [25]. Alternative approach is to train ANN in the backward direction,
as shown in Fig. 4. The main advantage of the backward trained ANNs over the classi-
cal optimization approach (Eq. (10)) is that the resulting inverse operator can be readily
applied to real measurements to retrieve the parameter of interest. The concept of back-
ward ANNs was applied to several problems of remote sensing, including CO2 [21] and
SO2 plume height [16, 18] and surface albedo [24] and ozone profile [31] retrieval.

However, the retrieval problem is ill-posed and the resulting ANN has to be reg-
ularized. Essentially, the instability comes from the facts that the inverse operator is
highly sensible to perturbations in the measurement data space. As RTMs cannot re-
produce accurately the measurements (due to noise in real data, instrumental artifacts
and imperfection of the physical model (RTM)), there is always a discrepancy between
the simulated and real data. This discrepancy propagates (and grows) into the space of
parameters to be retrieved. Consequently, the inverse operator has to be regularized.
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Fig. 4. Scheme of the ANN training to parameterize the inverse operator.

Fig. 5. Training of ANN for retrieval of atmospheric constituents using real measured spectral
radiances and parameters retrieved by using conventional retrieval algorithm.

The alternative approach is to use real measurements in training, in particular, the
data already processed by using traditional retrieval methods. This concept is illustrated
in Fig. 5. The ANN is trained in the reverse mode, i.e. the sun-normalized spectral ra-
diances (Level-1 data) are fed to the ANN as input, while the retrieved atmospheric
parameters (Level-2 data) are considered as outputs. Since Level-2 data has been re-
trieved using the conventional RTM and regularization procedures (according to Eq.
(10)), the RTM is captured by the ANN implicitly, and thus, the predictions of the ANN
are still based on physical models comprising instrument-specific features (e.g. noise,
offset, wavelength calibration, detector degradation issues, etc.).

To examine this approach, we consider the TROPOMI spectra (date 04.04.18) in
the wavelength range 325-335 nm, available at [1]. The spectra together along with the
geometry parameters (i.e. solar zenith angle, viewing zenith angle, and relative azimuth
angle) and the surface albedo are used to train and test the ANN. The output of the ANN
is the ozone total column value. The data is being shuffled and divided into 70% train
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Fig. 6. The histogram of differences between retrieved ozone total column values by using ANNs
and those retrieved by using the conventional approach based on the Tikhonov regularization.

and 30% test data sets. The ANN configuration with 3 hidden layers with 50, 15 and 5
neurons respectively is trained with 185000 samples and tested on 79067 samples. The
histogram of differences between retrieved ozone total column values by using ANNs
and those retrieved by using the conventional approach is shown in Fig. 6. The mean
relative difference is of about 0.6% (i.e. below 3 DU). Note that the error increases if
the ANN trained with the data from one day is applied to another date. Therefore, there
are two possible applications of this method. First, to train ANN by using a part of the
available data per day, and use the trained ANN to process the rest of the data. Secondly,
ANN can be used for finding a first estimation in the iterative retrieval procedure.

5 Conclusions

We have analyzed several machine learning based schemes for solving direct and in-
verse problems of radiative transfer. The conventional RTMs are the most flexible tools
for simulating and processing the optical data; however, the flexibility comes at high
computational costs. By substituting the eigenvalue computations in the discrete ordi-
nate radiative transfer models by neural networks, we obtain a flexible tool with mod-
erate performance enhancement. However, the training datasets are relatively small and
the training procedure is not time consuming.

To parameterize the inverse RTM operator, the ANNs can be trained in the backward
direction. Although the ANN is computationally very fast, some sort of regularization
is still required. We have considered the ANN trained using the real radiance spectra
instead of synthetic data. The key point here is that the training is performed by using
real measurements, which have been already processed via conventional retrieval algo-
rithms with full RTM simulations. Thus, the trained ANN already captures the physics
behind the measurement process (expressed by the RTM) as well as the instrument-
related features. This approach seems to be the most stable from considered techniques.
However, a big amount of data is required for the training procedure.
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Taking into account the high computational performance of ANNs, our future re-
search will be focused on applying machine learning based approaches to more accu-
rate radiative transfer models taking into account stochastic cloud inhomogeneities of
the atmosphere [13, 15] as well as three-dimensional effects [11].
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