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Abstract. The visualization of the parameters of the stress state of a solid remains one 

of the parameters influencing the adoption of engineering decisions. For example, 

methods for determining finite elements (FEM), which make it possible to determine 

and visualize stress in the selected regions of the model. Applying element methods to 

analytically constructed models to localize the search for stress to its values at a point, 

however, will not lead to successful results. The paper discusses the principles of 

visualization of local stresses based on the functional-voxel method. The concept 

of a volume vector as a unit of volume distribution of a force vector in a solid 

isotropic medium is introduced. Geometrical foundations are proposed for 

computer representation of the stress unit in an isomorphic body based on a raster 

image. Geometric models of the stress tensor are constructed for the main site, 

the inclined platform. The principles of applying the functional-voxel model in 

the tasks of constructing complex objects are proposed. The application of the 

functional voxel method for discrete modeling of the deformation of a geometric 

object is illustrated by the example of a function that describes a rectangular plate. 

Keywords: Discrete Geometric Model, Finite Element Method, Stress in a Solid, 

Functional Voxel Method, Volumetric Vector, Deformation Modeling. 

1 Introduction 

One of the key parameters that significantly affect engineering decisions is the 

parameters of the state of stress of a solid. However, if the issue of stress visualization 

in the selected grid regions, as it is realized, for example, in the finite element method 

is sufficiently illuminated and widely applied, then the problems of modeling and 

visualization of local stresses remain open. But the development of new approaches to 

modeling and visualization opens the possibility of solving these problems. 
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Currently, researchers are working towards the development of scientific 

visualization and the introduction of analytically described geometric models into the 

design process. This direction is actively promoted by such directions as R-functional 

modeling (RFM), which got its start in the Laboratory of Applied Mathematics of 

IPMASH NAS of Ukraine under the guidance of academician of NAS of Ukraine 

V.L. Rvachev [1], as well as the functional-voxel modeling method, developed under 

the guidance of Professor A.V. Tolok in ICS RAS [2]. In the first case, the problems 

of the analytical description of the constructive approach to constructing a complex 

functional space by means of the mathematical apparatus are considered. This allows 

a single analytical representation to describe a geometric object of any complexity. The 

second method is aimed at constructing a voxel computer representation of a functional 

area of any dimension and complexity of description, leading to simplification of 

computer processing of such a model. 

The study of the capabilities of the functional-voxel model for solving stress 

determination problems showed that it is designed to work with an analytical 

description of the problem statement and is not suitable for visualizing the results of 

calculations obtained by the traditional finite element method. This is due to the 

specifics of organizing the data of the functional-voxel model,  

which differs from the organization of data from the surface models used in CAD. 

The developed below tools for computer visualization of normal and tangential 

stresses using functional voxel models for use in engineering tasks lay the foundation 

for the further development of the functional voxel modeling method and interactive 

graphic modeling tasks for analytical CAD systems based on a voxel modular platform. 

2 Volumetric vector  

A volume vector should be understood as a geometric object defined by analogy with 

a conventional vector (a directed segment from the starting point having a direction 

angle γ and a value of ρ), only the direction function γ (γ) and the function of the value 

ρ (ρ) are 

defined for the starting point. The volumetric vector is illustrated in Figure 1. 

To construct the first function – function of the quantity 𝜌(𝑅𝐴) it is necessary to 

localize the point of force application by some unit neighborhood, i.e. sphere with a 

unit surface area 𝑆1 = 4𝜋𝑅2, where 𝑅 = 1/(2√𝜋). 
Parameter 𝑅𝐴 is the increment of the distribution radius of the force vector 𝑆 =

4𝜋(𝑅 + 𝑅𝐴)2, thus: 

                                         𝑆 = 1 + 2√𝜋𝜌 + 4𝜋𝜌2 = 1 +
𝑅𝐴

𝑅
+ 4𝜋                                      (1) 

The increase in the area under the applied force acts inversely with the value, so the 

law can be written as 𝜌(𝑅𝐴) = 1/(1 + 𝑅𝐴/𝑅 + 4𝜋𝑅𝐴
2). In the case of the application 

of force to the surface of a solid body, the considered neighborhood of the point turns 

into a hemisphere, which means that the law changes to 𝜌(𝑅𝐴) = 2/(1 + 𝑅𝐴/𝑅 +
4𝜋𝑅𝐴

2) respectively. 
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Fig.1. Volumetric vector. 

Figure 2 shows the principle of projection of force F perpendicular to the main site 

of normal stress. The perpendicular to such a site is determined by the direction of the 

line passing between the point of the body under consideration 𝐴 and the point of 

application of force (the initial exact volumetric vector). Power projection 𝐹𝐴 = 𝐹𝑐𝑜𝑠𝛾. 

The applied force must have the radius of the plane neighborhood of the application, 

the radius of the neighborhood is taken 𝑅. 

Taking the body as an infinite bundle of bounded planes intersected at point А, we 

can imagine an infinite number of rotatable minimal neighborhoods with the 

unidirectional flow of force 𝐹 applied to them. 

Figure 3 demonstrates a separate case of such a turn of the neighborhood relative to 

the flow𝐹, here there is a decrease in the number of flow elements (in the form of 

arrows) falling on the site of the neighborhood when turning through an angle 𝛾. the 

rotation is indicated by an arrow. Given the obtained property, the projection 𝐹𝐴 takes 

the following form: 𝐹𝐴 = 𝐹 cos 𝛾 cos 𝛾 = 𝐹𝑐𝑜𝑠2 𝛾.  Combining the functional laws 

𝜌(𝜌) and 𝛾(𝛾) y means of multiplication, we obtain the general functional law of 

constructing the volumetric stress vector 𝜎 = 𝑉(𝜌(𝑅𝐴), 𝛾(𝛾)): 

                                             𝜎 =
𝐹𝑐𝑜𝑠2𝛾

1 + 2
𝑅𝐴

𝑅 + 4𝜋𝑅𝐴
2
, где 𝑅 =

1

2√𝜋
                              (2)  
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Fig.2. The distribution of the power flow on a single site near the point of application of force. 

 

Fig.3. Change in load F when turning the platform. 

In that case, if the origin of the coordinate system is set at the point of application 

of force, then 𝑅𝐴(𝑥𝐴, 𝑦𝐴, 𝑧𝐴) = √𝑥𝐴
2 + 𝑦𝐴

2 + 𝑧𝐴
2.  

The resulting volumetric vector model is representable by the sum of two basic 

physical laws that determine the vector (direction, distance to the point of application), 

their geometric meaning is expressed by two laws. The first law can be represented by 

two states: the axial distribution of the volume vector and the radial distribution. 

The axial distribution is shown in Figure 4 and is constructed by analogy with the 

Lambert law of light for a simple lighting model 𝐼 = 𝐼𝑙 cos 𝛼 where 𝐼  − reflected light 

intensity, 𝐼𝑙 − the intensity of the incident light and 𝛼 − normal angle �⃗�  к site reflection. 

For the case in question: 

                                                     |𝐹 𝐴| = |𝐹 | 𝑐𝑜𝑠 𝛾 = |𝐹 |
𝐴𝑧

𝑅𝐴
⁄                                            (3) 

R 

𝛾 

𝐹  
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The radial distribution does not depend on the angle of rotation of the reflection 

platform, preserving its value of the length of the applied vector (see Fig.5). 

The law of temperature distribution and many wave processes can be attributed to 

the radial distribution. 

 

 

Fig.4. Lambert's cosine law. Axial distribution. 

Raster representation of local geometric characteristics |𝐹 𝐴| axial law for a point 𝑃, 

selected in the body space relative to the point of application of force F is demonstrated 

by the intensity of the semitone in Figure 6. 

 

 

Fig.5. Radial distribution of the vector 

The second law is related to the distance from the initial point of application of force: 

𝛾 

𝐹  

𝐹 𝐴 

𝐴 

O 

𝛾 

𝐹  

𝐹  

O 

𝐹  
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                                                                    1
𝑆𝐴

⁄ = 1
(𝜋𝑅𝐴

2)⁄                                                     (4) 

Since the dependence on the area 𝑆𝐴, then the law is quadratic (see Fig.7), or rather 

hyperbolic. Both laws can be attributed to the geometric transformations of the object 

(by analogy: rotation, shift), which means that their product will give a general 

transformation that calculates the stress characteristic |𝜎 | (see Fig.8). 

 

Fig.6. Display the axial distribution of the volume vector. 

 

Fig. 7. Displays force versus distance from start point. 
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Fig. 8. The stress state of the loading unit of the simulated FVM 

The volumetric vector allows you to build a geometric model of the stress tensor at 

point А for its main platform: 

                                                    𝜎𝑖𝑗 =

[
 
 
 
 
 
 
𝐹𝐴𝑧𝐴𝑥

𝜋𝑅𝐴
4 0 0

0
𝐹𝐴𝑧𝐴𝑦

𝜋𝑅𝐴
4 0

0 0
𝐹𝐴𝑧

2

𝜋𝑅𝐴
4]
 
 
 
 
 
 

                                        (5)  

And the geometric model of the stress tensor for an inclined platform: 

                                                 𝜏𝑖𝑗 =

[
 
 
 
 
 
 𝜎𝑥𝑥

𝐹𝐴𝑥𝑦𝐴𝑥

𝜋𝑅𝐴
4

𝐹𝐴𝑥𝑦𝐴𝑧

𝜋𝑅𝐴
4

𝐹𝐴𝑥𝑦𝐴𝑥

𝜋𝑅𝐴
4 𝜎𝑦𝑦

𝐹𝐴𝑥𝑦𝐴𝑦

𝜋𝑅𝐴
4

𝐹𝐴𝑥𝑦𝐴𝑧

𝜋𝑅𝐴
4

𝐹𝐴𝑥𝑦𝐴𝑦

𝜋𝑅𝐴
4 𝜎𝑧𝑧

]
 
 
 
 
 
 

                                (6)  

For the correct visualization of the stress tensor at the point, the equilibrium at the point 

is also determined. For this, the law of paired tangential stresses is introduced into the 

geometric model. 

Figure 9 shows the visualization of the local normal 𝜎 (а) distributed over the local 

area of application of force and the local tangential (b) stress |𝜏 | modeled in the 

RANOK 2D system. 
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Fig.9. Visualization of the local normal 𝜎 (a) distributed over the local area of application of 

force and the local tangential (b) stress |𝜏 | modeled in the RANOK 2D system. 

3 Discrete modeling of deformation of a geometric object 

The following illustrates the discrete modeling of the deformation of a geometric object 

using the functional-voxel method is considered as the interaction of two functions - 

the description of a rectangular plate and the geometric form of loading, united by a 

common space and independent in its representation. This approach allows us to 

consider the transformation from the position of the form of loading, and from the 

position of the geometric object itself. For such a description, R-functional modeling 

is applicable, which allows one to analytically describe the space. 

The formulation of the function space for describing the shape of the loading region ω 

is realized using the principle of the perceptual model [3], in which the body of the 

geometric object is filled with units and the surrounding space with zeros (see Fig.10). 

In this way, a spatial object is formed where the unit area expresses the loading field, 

and the zero area excludes such a field, while maintaining the possibility of conversion.  

 

Fig.10. Perceptual square model 
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The example of the square function illustrates the process of forming a perceptual 

model in an R-functional way. The intersection of two bands of the same width 2d (see 

Fig. 11), functionally described by 𝜔1 = 𝑑2 − 𝑦2 and 𝜔2 = 𝑑2 − 𝑥2 functionally 

describes the positive range of values of the square function with the negative region 

of the surrounding space. Moreover, each of these laws describes an infinitely 

distributed parabola along the chosen axis, intersecting the 𝑥𝑂𝑦 plane at a distance 𝑑. 

The R-functional intersection of such functions allows us to obtain a positive range 

of 𝜔 in the form of a square with sides 2d (see Fig.12): 

 

                                                     𝜔 = 𝜔1 + 𝜔2 − √𝜔1
2 + 𝜔2

2.                                               (7) 

 
Fig.11. Display a positive function area 𝜔1 and 𝜔2 

 

Fig. 12. Positive area of space 𝜔  «square» 

The obtained range of values allows us to go on to describe the perceptual model 

directly, for which the space region of the function 𝜔 is reduced to the unit value of the 

positive region and zeroing of the negative region. 

                                                                   𝜔0
1 =

𝜔
|𝜔| + 1

2
                                                         (8) 
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As a result of the described transformations, an M-image of the perceptual model can 

be obtained С𝜔0
1 = 𝜔0

1𝑃, (𝑃 = 255) (see Fig.13), here the positive area of the function 

is displayed in white 𝜔, and black - negative.  

The following is the process of modeling the function space 𝜔пл, describing the 

geometrical object «plate». 

 

Fig. 13. Perceptual function image 

 𝜔 - «unit square» 

«Plate» - rectangular prism specified by the parameters: 2𝑎, 2𝑏 и 2𝑐 (see Fig.14) by 

analogy to the square described above. Here is the function space 𝜔1 = 𝑎2 − 𝑥2 will 

have a positive range of values enclosed between parallel planes 𝑥 = 𝑎 and 𝑥 = −𝑎. 

Function space 𝜔2 = 𝑏2 − 𝑦2  will create a positive range of values between the planes  

𝑦 = 𝑏 and 𝑦 = −𝑏. A function space 𝜔3 = 𝑐2 − 𝑧2 will take positive values between 

the planes given by the equations z= 𝑐 and z= −𝑐.  

 

Fig. 14. Drawing plate to describe the  

function space. 

Thus, to describe the positive range of values of the function space, concluded between 

all pairs of planes, describing the space of a given plate with a size of 2𝑎 × 2𝑏 × 2𝑐, 
we can use the R-functional modeling apparatus: 
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                                                      𝜔12 = 𝜔1 + 𝜔2 − √𝜔1
2 + 𝜔2

2                                         (9)  

                                                      𝜔𝑝𝑙 = 𝜔12 + 𝜔3 − √𝜔12
2 + 𝜔3

2                                     (10) 

Figure 15 shows the positive region of the space of the plate function 𝜔пл, obtained in 

the RANOK 3D system.  

 

Fig. 15. Drawing plate to describe the function space. 

This model is the initial one for the further construction of the algorithm for 

calculating the geometric transformation based on the application of the field of volume 

vectors given on the domain 𝜔0
1. It (FV-model) describes a discrete representation of a 

given space of the function  𝜔pl in the form of a set of five voxel M-images in the form 

of a set of five voxel M-images that graphically display information about the 

components 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5 (see Fig.16).  

 
𝐶1 → 𝑛      1 𝐶2 → 𝑛2 𝐶3 → 𝑛3      𝐶4 → 𝑛4 

Fig. 16. Voxel M-images making up the FV-model of the function space 
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The transition to a discrete model allows you to develop a computer algorithm for 

geometric transformation of function space. According to the principles of functional 

voxel modeling, for computer calculations, the local function 𝑢pl at the point in 

question will be used  

                                              𝑢𝑝𝑙 =
𝑛5

𝑛4
−

𝑛1

𝑛4
𝑥 −

𝑛2

𝑛4
𝑦 −

𝑛3

𝑛4
𝑧                                              (11) 

The following is an algorithm for converting function space points 𝜔pl relative to a 

given field of volume vectors specified by the model 𝜔0
1. The essence of the algorithm 

is the calculation of stress values (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) and (𝜏𝑥 , 𝜏𝑦, 𝜏𝑧), created by a given field 

of volume vectors through a perceptual model 𝜔0
1, at each point of a given space of a 

function with coordinates (𝑥, 𝑦, 𝑧). The obtained values will determine the spatial shift 

along the coordinate axes to determine the new function value 𝜔pl for the current point 

in question. Thus, function 𝜔pl changes its values on a given space and, thereby, affects 

the shape of the positive region of its values. The given region of volume vectors is 

continuous. The discrete model of the M-image (see. Fig 13) allows you to discretely 

distribute the points of application of volume vectors with uniform filling density of a 

single space. Using the basic calculation formulas at the point of the stress value based 

on the volume vector, it is possible to determine the stress field in the region described 

by the units of the function 𝜔0
1, which is the sum of unit stresses: 

                          (𝜔0
1) = ∑ ∑ (

𝐹𝑐𝑜𝑠2𝛾

1 + 2
𝑅𝐴

𝑟 + 4𝜋𝑅𝐴
2
)

40

𝑦=−40

40

𝑥=−40

𝜔0
1(𝑥, 𝑦)                             (12) 

                      𝜏(𝜔0
1) = ∑ ∑ (

𝐹𝐴 ∙ 𝑠𝑖𝑛2𝛾

2(1 + 2
𝑅𝐴

𝑟
+ 4𝜋𝑅𝐴

2)
)

40

𝑦=40

40

𝑥=−40

𝜔0
1(𝑥, 𝑦)                           (13) 

where 𝑅𝐴 = √𝑥2 + 𝑦2 + 𝑧2, 𝑟 =
1

2√𝜋
,      𝑐𝑜𝑠𝛾 =

𝑧

𝑅𝐴
, 𝑠𝑖𝑛𝛼 =

𝑥

√𝑥2+𝑦2
. 

 

Parameters of spherical coordinates of a volume vector (𝛾, 𝛼) allow you to 

decompose into components each of the stresses of the above amounts. 

𝜎𝑥 = 𝜎(𝜔0
1) 𝑠𝑖𝑛 𝛾𝑐𝑜𝑠𝛼; 

𝜎𝑦 = 𝜎(𝜔0
1) 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 𝛼 ; 

𝜎𝑧 = 𝜎(𝜔0
1)𝑐𝑜𝑠 𝛾 ; 

𝜏𝑥 = 𝜏 (𝜔0
1) 𝑐𝑜𝑠 𝛾 𝑐𝑜𝑠 𝛼 ; 

𝜏𝑦 = 𝜏 (𝜔0
1) 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝛼 ; 

𝜏𝑧 = 𝜏(𝜔0
1) 𝑠𝑖𝑛 𝛾. 

(14) 
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Relative spatial shift along each axis, taking into account the obtained projections of 

local stresses (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) и (𝜏𝑥, 𝜏𝑦, 𝜏𝑧) calculated as: 

 

                               ∆𝑥 = 𝜎𝑥 + 𝜏𝑥 ,    ∆𝑦 = 𝜎𝑦 + 𝜏𝑦,     ∆𝑧 = 𝜎𝑧 + 𝜏𝑧                               (15) 

The essence of the transformation is that the coordinates of each point in the function 

space 𝜔pl submitted to the calculation taking into account the received bias 

(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑧 + ∆𝑧), but retain their spatial position (𝑥, 𝑦, 𝑧), which leads to a 

relative change in the values of the function 𝜔′pl, while maintaining the continuity and 

differentiability of the transformed space region (see Fig.17). 

 

Fig. 17. Transformed function image 𝜔′𝑝𝑙. 

This conversion 𝑇𝜎 belongs to the class of spatial, and the resulting space of the 

function after applying such a transformation retains its smoothness and continuity. 

The presented geometric models do not consider some physical parameters that would 

be used in the physical formulation of the described problems. For example, Young's 

modulus characterizes the physical properties of the material and is certainly necessary 

in the case of physical calculation, but it does not influence the geometric model of 

deformation. Figure 18 shows examples of M-images for a different description of the 

function 𝜔0
1 and Figure 19 shows the result of the conversion for each of these images. 

1.  2.  3.  

4.  5.  

Fig. 18. M-images of various forms of function space 𝜔0
1. 
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1. 2. 3.  

4. 5.  

 

Fig.19. Spatial transform results 
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