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Abstract. The solution to the problem of spatial spline construction by its or-

thogonal projections on the Monge model is considered in the present paper. 

Constructively, spatial interpolation of a discrete set of points given on projec-

tion planes 1 and  2 is performed through planar interpolation of its projec-

tions. The initial boundary conditions for spatial spline construction are given in 

the form of initial derivative vector projections in the initial and the terminal 

points of the discrete set. The possibility of the solution to the problem of spa-

tial spline construction by planar projections, i.e. reduction of a spatial solution 

to a planar one, is determined by the projectional properties of the Monge mod-

el. An algorithm of construction of a spatial polynomial segment by projection-

ally defined initial conditions – projections of two points and projections of the 

initial derivatives in these points – is considered. A solution to a more complex 

problem – formation of a spatial spline consisting of a number of segments 

connected under a certain order of smoothness – is proposed on the basis of this 

algorithm. The validity of the proposed projectional algorithm of spline for-

mation is confirmed on numerical example. The algorithm can be applied in so-

lution to a more general and relevant problem of synthesis of 3D geometric 

models by their projectional 2D images that is currently lacking complete solu-

tion. 
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1 Introduction 

The commonly known term “spline” is used to describe a geometric image in the 

shape of a curve defined by the mathematical model of a smooth segment-polynomial 

function constructed through a specific algorithm. The spline function is an essential 

instrument of various computational methods widely relied upon in a number of sci-

ence, engineering, and design applications. The particularly significant ones include 

design and construction of surface forms in the fields of machine-building, naval ar-

chitecture, aircraft construction, architecture and construction. Spline is the basic 

element of surface form generation; it is also applied in solutions to the problems of 
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interpolation and smoothing [1–5]. The solutions to surface form generation problems 

apply both flat and spatial splines. It is known that construction of a spatial spline is 

more algorithmically complex and computationally heavy than construction of a flat 

spline. At the same time, there are models of space R3 known in the field of engineer-

ing geometry, for example, constructive models based on the method of two images 

and two traces [6]. These models of space realize various spatial theoretical and ap-

plied tasks. The Monge model (Monge drawing), as a particular case of the method of 

two images, constitutes a homeomorphic model of space R3, i.e. the property of conti-

nuity is the invariant of orthogonal representation [7]. The question arises: Does the 

Monge model have the capability to realize a model of spatial spline, i.e. is it possible 

to construct a spatial spline through its planar projections? In order to answer this 

question, let us refer to the definition of the term “spline”. According to the known 

definition [1, 8, 9], a spline of order m is a function 
3( ) :[ , ]a t a b R→ of a real variable 

t defined on a net with real knots ti: 0 1 ... na t t t b=    =  such that: 

1. ( )a t   is a polynomial of order 2p   on each segment  
1[ , ]i it t +

,  0,..., 1;i n= −  

2. ( )a t  is a 1pC −  function. 

It obviously follows from the definition of the term “spline” and the mentioned prop-

erties of the Monge model that this model has the capability to realize a model of 

spatial line: 

 

2

3

2

: [ , ] ,
( ) : [ , ]

: [ , ] ,

xy xy xy

xz xz xz

a a b a R
a t a b a R

a a b a R

 → 
→   

→ 

 (1) 

where a, axy, axz represents a spatial spline and its orthogonal projections. Therefore, 

the Monge model (Monge method) is accepted as the method for solution to the con-

sidered task. According to the method, the solution can be carried out through the 

following algorithm: 

1. Mapping of the three-dimensional initial conditions of the task of spatial 

spline construction on projection planes 1 and 2. 

2. Construction of the two flat splines that constitute the orthogonal projec-

tions of the sought spline and form its model. 

3. Reconstruction of the geometry, including shape and differential geomet-

ric characteristics, of the spatial spline by its model. 

4. Verification of the acquired model of spatial spline formation. 

There is a reverse task of the Monge method known in the field of engineering ge-

ometry: spatial reconstruction of the shape and the internal structure of a 3D object by 

its orthogonal projections, i.e. by a drawing. There is no complete solution to the task 

regardless of its practical relevance [10]. With regard for the application of a spline as 

the universal computational instrument in the problems of formation, it is logical to 

consider relevant the problem of construction of a spline by its orthogonal projection 

images. 
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2 Problem Definition 

There are projections of boundary points n of polynomial segments given on a Monge 

model. The projections of the boundary conditions, namely vector derivatives of the 

initial orders in the initial point of the first segment and the terminal point of the final 

segment, are also given. It is required to construct a spline of n polynomial segments 

connected under the order of smoothness  kC . 

3 Spatial Spline Projectional Construction 

Formation of a spatial spline is based on projectional formation of its segments with 

consideration for the given smoothness kC  of connection of its segments and the 

specified boundary conditions in the form of projections of the initial vector deriva-

tives in the initial point of the first segment and in the terminal point of the final seg-

ment. The order of smoothness and the boundary conditions must define a complete 

system of linear equations, the solution to which yields the missing boundary condi-

tions in the points of connection of the segments. 

3.1 Spatial Polynomial Segment Projectional Construction 

A segment is defined by a pair of points and boundary conditions in the form of the 

initial vector derivatives. The order n of the polynomial defining a segment depends 

on the number of boundary conditions: 
1 2 1n k k= + +  , where k1 and k2 represent the 

number of the boundary conditions in the first and the second respective points. 

 

Fig. 1. Constructed orthogonal projections axy and axz of the sought polynomial segment a 

Let us consider the problem of spatial polynomial segment construction given the 

orthogonal projections of its points and boundary conditions. 
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A polynomial segment passes through points C1 and C2. The points C1, C2 are defined 

by respective projections 1 1 1( , )xyC x y , 2 2 2( , )xyC x y  on 1,  1 1 1( , )xzC x z , 2 2 2( , )xzC x z  

on 2 . Projections of boundary conditions in these points are also given: 1xyС  , 1xyС  ,  

1xzС , 1xzС and  2xyС  , 2xyС  , 2xzС  , 2xzС   in projection planes 1 and 2  respectively (see 

Fig.1).  1xyС  , 1xzС , 2xyС  , 2xzС  are the first vector derivatives constituting projections 

of tangent vectors in endpoints of the sought segment a; 1xyС  ,  1xzС ,  2xyС  , 2xzС   are 

the second vector derivatives constituting projections of acceleration vectors of a 

point passing along the segment a. 

 

It should be noted given the initial conditions that the projections of the sought seg-

ment can be described by a polynomial 
6

1

1

( ) i

i

i

a t At −

=

= : 

 
2 3 4 5

1 2 3 4 5 6( )xy xy xy xy xy xy xya t A A t A t A t A t A t= + + + + + , 
1 2t t t  . (2) 

 
2 3 4 5

1 2 3 4 5 6( )xz xz xz xz xz xz xza t A A t A t A t A t A t= + + + + + , 
1 2t t t  . (3) 

The initial conditions are sufficient to determine vector coefficients xyiA  and xziA  

i=1,2,…,6  in equations (2) and (3). Let us begin by expressing the first and the sec-

ond derivatives of vector functions ( )xya t  and ( )xza t : 

 
6 6

2 3

2 3

( ) ( 1) ,       ( ) ( 1)( 2)  .i i

xy xyi xy xyi

i i

a t A i t a t A i i t− −

= =

 = − = − −   (4) 

 
6 6

2 3

2 3

( ) ( 1) ,       ( ) ( 1)( 2)  .i i

xz xzi xz xzi

i i

a t A i t a t A i i t− −

= =

 = − = − −   (5) 

Without loss of generality we can accept that 
1 0t =  , i.e. 

20 t t   . This allows us to 

determine the values of the first three vector coefficients in equations (2) and (3): 

 
1 1 2 1

3 1 3 1

(0) ,   (0) ,

1
(0) 2 ,  i.e.  .

2

xy xy xy xy xy xy

xy xy xy xy xy

a A C a A C

a A C A C

 = = = =

  = = =
 (6) 

 
1 1 2 1

3 1 3 1

(0) ,   (0) , 

1
(0) 2 ,  i.e.  .

2

xz xz xz xz xz xz

xz xz xz xz xz

a A C a A C

a A C A C

 = = = =

  = = =
 (7) 

The remaining three vector coefficients in equations (2) and (3) are determined 

through the following conditions: 
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2 2 2 2 2 2

2 2 2 2 2 2

( ) ,   ( ) ,  ( ) ,

( ) ,   ( ) ,  ( ) ,

xy xy xy xy xy xy

xz xz xz xz xz xz

a t C a t C a t C

a t C a t C a t C

   = = =

   = = =
 (8) 

that result in systems of equations 

 

6 6
1 1

2 2

1 1

6 6
2 2

2 2

2 2

6 6
3 3

2

3 3

0,                                    0,

( 1) 0, ( 1) 0,

( 1)( 2) =0, ( 1)( 2)

i i

xyi xy xzi xz

i i

i i

xyi xy xzi xz

i i

i i

xyi xy xzi

i i

A t C A t C

A i t C A i t C

A i i t C A i i t C

− −

= =

− −

= =

− −

= =


− = − =




 − − = − − =



 − − − − − −


 

 

  2 =0.xz











 (9) 

The systems of equations (9) yield the values of the coefficients  4 5 6,  , xy xy xyA A A  and 

4 5 6,  , xz xz xzA A A . 

The systems of equations (9) can be presented in matrix form: 

 

1 1

2

3
3 2 3 2

2 22 2 2 24

5
4 3 2 4 3 2

2 2 2 2 2 26

5 4 3 5 4 3

2 2 2 2 2 2

1 0 0 0 0 0

0 1 0 0 0 0

1
0 0 0 0 0

2

10 6 1.5 10 4 0.5

15 8 1.5 15 7 1

6 3 0.5 6 3 0.5

xy xy

xy

xy

xy

xy

xy

xy

A C

A

A
A

t tt t t tA

A

t t t t t tA

t t t t t t

 
 
 

   
   
   
   

− − − −  = =    
   
   

− −   
    

 
− − − − 
 

1

1

2

2

2

xy

xy

xy

xy

xy

C

C

C

C

C

 
 

 
 
 
 
 
 

  

. (10) 

 

1 1

2

3
3 2 3 2

2 22 2 2 24

5
4 3 2 4 3 2

2 2 2 2 2 26

5 4 3 5 4 3

2 2 2 2 2 2

1 0 0 0 0 0

0 1 0 0 0 0

1
0 0 0 0 0

2

10 6 1.5 10 4 0.5

15 8 1.5 15 7 1

6 3 0.5 6 3 0.5

xz xz

xz

xz

xz

xz

xz

xz

A C

A

A
A

t tt t t tA

A

t t t t t tA

t t t t t t

 
 
 

   
   
   
   

− − − −  = =    
   
   

− −   
    

 
− − − − 
 

1

1

2

2

2

xz

xz

xz

xz

xz

C

C

C

C

C

 
 

 
 
 
 
 
 

  

. (11) 
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The matrices (10) and (11) are of explicit form and can be expressed in a contracted 

form:    A T G  =    , where  T  and  G  represent parameter matrix and derivative 

matrix respectively. 

By substituting the values of vector coefficients (10, 11) into equations (2) and (3), 

we acquire the sought equations of polynomial curve segment projections in projec-

tion planes  1 and 2. The two projections (2) and (3) define, as it follows from the 

properties of Monge drawing, the shape and the differential geometric characteristics 

of a polynomial segment in space. 

3.2 Spatial Spline Construction 

Let us specify the projections of boundary points of a finite number of polynomial 

segments, e.g., three segments 1 1( , )xy xzС С , 2 2( , )xy xzС С , 3 3( , )xy xzС С , 4 4( , )xy xzС С  on a 

Monge drawing. Let us also specify the projections of the boundary conditions, the 

vector derivatives of the first and the second order in the initial point of the first and 

the terminal point of the third segment (see Fig.2). 

 

Fig. 2. The initial data for projectional construction of a spatial spline consisting of three poly-

nomial segments. 

Let us construct projections of the spline in projection planes 1 and 2. Each projec-

tion consists of three segments xyia  and 
xzia  , i=1, 2, 3 connected under the order of 

smoothness C3. In order to connect the segments by three in projection planes 1 and 

2 under the order of smoothness C3 it is required to establish equality of the second 

and the third derivatives of vector-functions in the points of connection: 
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1

1

( 1)= ( 0) ,

( 1)= ( 0),

xyi xyi

xyi xyi

a t a t

a t a t

+

+

 = =

 = =

    
1

1

( 1)= ( 0) ,

( 1)= ( 0),

xzi xzi

xzi xzi

a t a t

a t a t

+

+

 = =

 = =

 (12) 

where i=1, 2; 0 1.t    

The system of linear equations (12) allows us to determine the unknown vectors of 

the first and the second derivatives in connection points of the segments in projection 

plane 1: 

 

2 1 3 1 3 1 2 3

2 1 3 1 3 1 2 3

3 2 4 2 4 2 3 4

8 8 1 2 1 20 10
2(  ),

3 3 3 3 3 3 3

4 4 1 1 10 20 10
 ,

3 3 6 6 3 3 3

8 8 1 2 10 20 10
2(  

3 3 3 3 3 3 3

xy xy xy xy xy xy xy xy

xy xy xy xy xy xy xy xy

xy xy xy xy xy xy xy xy

C C C C C C C C

C C C C C C C C

C C C C C C C C

    = − + + − − +

    = − + + + − +

    = − + − + − − +

3 2 4 2 4 2 3 4

),

4 4 1 1 10 20 10
 ,

3 3 6 6 3 3 3
xy xy xy xy xy xy xy xyC C C C C C C C    = − + + + − +

 (13) 

and in projection plane 2: 

 

2 1 3 1 3 1 2 3

2 1 3 1 3 1 2 3

3 2 4 2 4 2 3 4

8 8 1 2 1 20 10
2(  ),

3 3 3 3 3 3 3

4 4 1 1 10 20 10
 ,

3 3 6 6 3 3 3

8 8 1 2 10 20 10
2(  

3 3 3 3 3 3 3

xz xz xz xz xz xz xz xz

xz xz xz xz xz xz xz xz

xz xz xz xz xz xz xz xz

C C C C C C C C

C C C C C C C C

C C C C C C C C

    = − + + − − +

    = − + + + − +

    = − + − + − − +

3 2 4 2 4 2 3 4

),

4 4 1 1 10 20 10
 .

3 3 6 6 3 3 3
xz xz xz xz xz xz xz xzC C C C C C C C    = − + + + − +

 (14) 

Thus we have determined the required vector derivatives in points of connection un-

der the order of smoothness C3 are in planes 1 and 2. This allows us to move to the 

equations of the segments in the form of polynomials (2) and (3) through the equa-

tions (10) and (11).  

The properties of the Monge drawing - algebraic curve order preservation and 

drawing reversibility – allow us to conclude that a spline is reconstructible by its two 

orthogonal projections. Transformation of the equations (13) and (14) results in sys-

tems of linear equations with the unknown vectors 2xyС  , 3xyС  , 2xyС  , 3xyС     and  2xzС  , 

3xzС  , 2xzС  , 3xzС    relocated to the left parts of the equations: 
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2 3 3 1 2 3 1 1

3 2 3 1 2 3 1 1

2 3 2 2 3 4 4

8 2 10 20 10 4 1
2(  ),

3 3 3 3 3 3 6

4 1 10 20 10 4 1
 ,

3 6 3 3 3 3 6

8 1 10 20 10 4 1
2(  

3 3 3 3 3 3 3

xy xy xy xy xy xy xy xy

xy xy xy xy xy xy xy xy

xy xy xy xy xy xy xy x

C C C C C C C C

C C C C C C C C

C C C C C C C C

    − + + = − + + +

    + − = − + + +

    − − + = − + − − 4

2 2 3 2 3 4 4 4

),

4 1 10 20 10 4 1
 .

3 6 3 3 3 3 6

y

xy xy xy xy xy xy xy xyC C C C C C C C










     − − + = − + − +


 (15) 

 

2 3 3 1 2 3 1 1

3 2 3 1 2 3 1 1

2 3 2 2 3 4 4

8 2 10 20 10 4 1
2(  ),

3 3 3 3 3 3 6

4 1 10 20 10 4 1
 ,

3 6 3 3 3 3 6

8 1 10 20 10 4 1
2(  

3 3 3 3 3 3 3

xz xz xz xz xz xz xz xz

xz xz xz xz xz xz xz xz

xz xz xz xz xz xz xz x

C C C C C C C C

C C C C C C C C

C C C C C C C C

    − + + = − + + +

    + − = − + + +

    − − + = − + − − 4

2 2 3 2 3 4 4 4

),

4 1 10 20 10 4 1
 .

3 6 3 3 3 3 6

z

xz xz xz xz xz xz xz xzC C C C C C C C










     − − + = − + − +


 (16) 

Let us express the equations (15, 16) in the matrix form. It is convenient to apply the 

matrix form in calculation of the unknown vector coefficients through one of the 

methods of solution of simultaneous linear algebraic equations known in the field of 

linear algebra, for example, through the Jordan-Gauss method: 

 

1 2 3 1 1

2

1 2 3 1 1
3

2
2 3

3

8 2 10 20 10 4 1
1 0 2(  )

3 3 3 3 3 3 6

4 1 10 20 10 4 1
0 1  

3 6 3 3 3 3 6

8 1 10 20 10
1 0 2(  

3 3 3 3 3

4 1
0 1

3 6

xy xy xy xy xy

xy

xy xy xy xy xy
xy

xy
xy xy x

xy

C C C C C

C

C C C C CC

C
C C C

C

 
 − − + + + 

  
    − − + + +  

=  
  − − − +

  
    

 − −
 

4 4 4

2 3 4 4 4

4 1
)

3 3

10 20 10 4 1
 

3 3 3 3 6

y xy xy

xy xy xy xy xy

C C

C C C C C

 
 
 
 
 
 
  − −
 
 
  − + − +
 

, (17) 

 

1 2 3 1 1

2

1 2 3 1 1
3

2
2 3 4

3

8 2 10 20 10 4 1
1 0 2( )

3 3 3 3 3 3 6

4 1 10 20 10 4 1
0 1

3 6 3 3 3 3 6

8 1 10 20 10 4
1 0 2(

3 3 3 3 3 3

4 1
0 1

3 6

xz xz xz xz xz

xz

xz xz xz xz xz
xz

xz
xz xz xz

xz

C C C C C

C
C C C C C

C

C
C C C

C

 
 − − + + + 

   
     − − + + +

   
=      − − − + −

     
 − −
 

4 4

2 3 4 4 4

1
)

3

10 20 10 4 1
 

3 3 3 3 6

xz xz

xz xz xz xz xz

C C

C C C C C

 
 
 
 
 
 
  −
 
 
  − + − +
 

. (18) 
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3.3 Numerical Experiment 

Let us consider an example. Given the boundary conditions of three segments 

1(0,20)xyC , 2 (20,30)xyC , 3 (50,30)xyC , 4 (80,40)xyC ; 
1(0,10)xzC , 

2 (20,20)xzC , 

3 (50,40)xzC , 
4 (80,60)xzC ; 1(1,3)xyC  , 1( 1,1)xyC  − , 1(1,1)xzC , 1( 1,2)xzC − ; 

4 ( 17,85)xyC  − ,  4 ( 1, 40)xyC  − − , 4 ( 17,18)xzC − , 4 ( 1, 7)xzC − − , it is required to construct 

a spatial three-segment spline, segments of which are connected under the order of 

smoothness C3 (see Fig. 3). 

 

Fig. 3. A three-segment spline a reconstructed by its orthogonal projections axy and axz. 

As a result of calculations performed using the equations (15), (16), (10), and (11), a 

three-segment spline  
1 2 3:  a a a a a=  is acquired in space by its orthogonal pro-

jections. Each of the segments is defined by a polynomial of the fifth order. Table 1 

represents the values of curvature and torsion in the points of connection of the spline 

a. The calculation of the values of curvature k and torsion  in the points of the spatial 

spline modeled by a pair of projections are performed through the known formulas [7] 

 
2 2 2k A B C= + + . (19) 

 
( ) ( ) ( )

2

BL CK D AK FB E

k

 


− − + −  
=  (20) 

where 1 i =  , 1 i =  , 2 i =  , 2 i =  , 2 k =  , 2 k =  , 

1

2 2 2

ds

ds



  
=

+
; 2

2 2 2

ds

ds



  
=

+
, 1 j =  , 1 j =   (see Fig. 4). 

Calculation of the values of the rest of the coefficients of the formulas (19) and 

(20) is omitted due to its bulkiness. However, these values are defined by geometry 
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and differential characteristics of the given projections 
1a  and 

2a  of the reconstructed 

spatial curve a (see Fig. 4). The formulas for the coefficients are detailed in [7]. 

 

Fig. 4. Projections a1 and a2 of the spatial curve a and its tangent and normal unit vectors in 

point A. 

Table 1. Curvature and torque values in boundary points of segments ai, i=1, 2, 3. 

Segment Boundary point Curvature value  Torque value  

segment 
1a : 

1( )a t   С1, t=0 0.1938188331 265.2382716 

С2, t=1 0.003720362183 –0.6729237999 

segment  
2a : 

2 ( )a t   С2, t=0 0.003720362183 –0.6729237999 

С3, t=1 0.01329625195 1.898108432 

segment  
3a : 

3( )a t   С3, t=0 0.01329625195 1.898108433 

С4, t=1 0.001134369327 0.7192054044 

4 Conclusion 

The solution to the problem of spatial spline construction with the initial conditions 

given on the Monge model is considered and confirmed on example of the presented 

numerical solution. The considered problem is classified as reverse problem of engi-

neering geometry performed on the Monge model. Its solution can be applied in re-

construction of one-dimensional geometric forms for surface form generation of com-

puter 3D geometric models of objects by their blueprints. The properties of the 

Monge model allow for projectional solution to the problem of spatial spline con-

struction regardless of its type (including rational and fractionally rational Bezier 

splines [8,11], B-splines, etc.) and order of its equations. 
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