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Abstract. The article explores the application of machine learning approach to
detect both single-vessel and multivessel coronary artery disease from X-ray an-
giography. Since the interpretation of coronary angiography images requires in-
terventional cardiologists to have considerable training, our study is aimed at
analysing, training, and assessing the potential of the existing object detectors
for classifying and detecting coronary artery stenosis using angiographic imag-
ing series. 100 patients who underwent coronary angiography at the Research
Institute for Complex Issues of Cardiovascular Diseases were retrospectively en-
rolled in the study. To automate the medical data analysis, we examined and com-
pared three models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, Faster-
RCNN NASNet) with various architecture, network complexity, and a number
of weights. To compare developed deep learning models, we used the mean Av-
erage Precision (mAP) metric, training time, and inference time. Testing results
show that the training/inference time is directly proportional to the model com-
plexity. Thus, Faster-RCNN NASNet demonstrates the slowest inference time. Its
mean inference time per one image made up 880 ms. In terms of accuracy, Faster-
RCNN ResNet-50 V1 demonstrates the highest prediction accuracy. This model
has reached the mAP metric of 0.92 on the validation dataset. SSD MobileNet
V1 has demonstrated the best inference time with the inference rate of 23 frames
per second.

Keywords: Stenosis Detection, X-ray Angiography, Deep Learning, Transfer
Learning

1 Introduction

Coronary artery disease (CAD) is the leading cause of mortality worldwide [1]. CAD
is commonly caused by atherosclerotic plaques encroaching the coronary artery lu-
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men and resulting in its narrowing or complete blockage. To date, invasive coronary
angiography is the gold standard for diagnosing coronary artery stenosis using X-ray
visualisation of a radiopaque agent. Therefore, analysis and interpretation of coronary
angiography data play an important role in the accurate diagnosis of coronary artery
stenosis. The severity of stenosis and the SYNTAX score are used for selecting either
minimally invasive extravascular surgery or invasive intervention.

Despite recent advances in diagnostic tools and algorithms, capable of detecting the
location of coronary artery stenosis (82 - 95%) and classifying it (80 - 97%) [2–8] there
are significant limitations, necessitating further studies. Major drawbacks include poor
scalability and flexibility of preprocessing algorithms that require fine-tuning. Most
detection algorithms use the cascading principle, prone to the accumulation of errors.
Therefore, our study is aimed at developing, training, and assessing several neural net-
works to determine coronary artery stenosis with the highest predicting accuracy on
original angiographic imaging series.

2 Source data

One hundred patients who underwent coronary artery angiography using angiography
systems Coroscop (Siemens) and Innova (GE Healthcare) at the Research Institute for
Complex Issues of Cardiovascular Diseases (Kemerovo, Russia) were retrospectively
enrolled in the study. Patients with multivessel CAD were excluded from the study.
Angiographic imaging series of the radiopaque overlaid coronary arteries with stenotic
segments were selected by an interventional cardiologist. Thus, 8325 input images in
grayscale (one channel) of 512×512 pixels to 1000×1000 pixels were ultimately in-
cluded for further study. Of them, 7492 (90%) images were used for training, and 833
(10%) images were used for validation. Data were labelled using a free, open-source
version of SaaS (Software as a Service) solution – LabelBox. Typical data labelling of
the source images is shown in Fig. 1.

To analyse the source dataset, we estimated the size of the stenotic region computing
the area of the bounding box. Similarly to the Common Objects in Context (COCO)
dataset, we divided objects by their area into three types: small (area < 322), medium
(322 ≤ area ≤ 962), and large (area > 962) objects. A total of 2509 small objects
(30%), 5704 medium objects (69%), and 111 large objects (1%) were obtained in the
input data. Considering the unbalanced distribution of classes in much training data,
we suppose that the models may perform poorer on larger objects than on small and
medium ones.

To determine the stenosis location accurately, we evaluated the distribution of the
stenosis coordinates along the vessel in the input images. The coordinates of the centre
point of the bounding box around the stenotic lesion were normalised and assessed.
Based on this assessment, a distribution map of the coordinates of the stenosis centres
was generated and is shown in Fig. 2. The distribution of the coordinates highlights
two centres with relative coordinates (0.50; 0.20) and (0.27; 0.27) along the stenotic
vessel segment. The coordinates of the centres are evenly distributed without explicit
statistical outliers.
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(a) Patient 1 (b) Patient 2

Fig. 1. Data labeling of the source images.

Fig. 2. Distribution map of stenosis.

3 Methods

3.1 Models description

We applied machine learning algorithms to detect coronary artery stenosis on the CAG
imaging series. Machine learning has shown beneficial potential in computer vision
and image processing. We used SSD [9] and Faster-RCNN [10] object detectors from
the Tensorflow Detection Model Zoo [11] based on such models as MobileNet [12, 13],
ResNet [14, 15] and NASNet [16, 17]. Three models with various architectures, network
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complexity, and a number of weights were selected. The lightweight SSD MobileNet
V1 SSD detector enabling real real-time data processing was chosen as the reference
model. Faster-RCNN NASNet, with over 80 million weights, was the most complex
model selected for the study. A brief description of the models is presented in Table 1.
Characteristics of neural networks, including mAP, are reported based on their training
on the COCO dataset.

Table 1. Brief characteristics of the selected pre-trained models.

Model Inference time, ms mAP Weights, mln Size, Mb

SSD

MobileNet V1
56 32 4.2 44

Faster-RCNN

ResNet-50 V1
89 30 25.6 114

Faster-RCNN

NASNet
540 – 88.9 416

3.2 Models training

When training neural network models, their base configuration is similar to that used to
train on the COCO dataset. For the unambiguous comparison of the selected models,
the total number of training steps was set to 100 equal to 100000 iterations of learning.
Regarding the loss functions, Weighted Smooth L1 loss (see equation 3 in [18]) was
the localisation loss, and Weighted Focal Loss [19] was the classification loss. It should
be noted that the SSD-based model was trained using the Cosine decay with the warm-
up. This technique allowed gradually decreasing the learning rate (LR) depending on
the learning step. To train the networks, we used P2 (Nvidia Tesla K80 12 Gb, 1.87
TFLOPS) and P3 instances (Nvidia Tesla V100 16 Gb, 7.8 TFLOPS) from Amazon
Web Services. Table 2 summarises the main characteristics of the model training.

Serial changes in precision were tested on the validation set during the training
process. The mAP metric, as the metric of interest, with a predefined threshold value
for Intersection over Union equal to 0.5 (mAP@0.5) was used. Fig. 3 shows smooth
changes in the mAP on the validation set during the training process. As seen, all models
converge to a specific value of the mAP asymptotic accuracy.

4 Results

4.1 Comparative analysis

Table 3 reports the results of the comparative study of the three selected neural network
models. As we mentioned before, metrics of SSD MobileNet V1 were used as the refer-
ence. Faster-RCNN ResNet-50 V1 and Faster-RCNN NASNet models were compared
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Table 2. Model training settings.

Model
Input

size
Augmentation

Batch

size

LR

type
LR

SSD

MobileNet V1
640x640x3

Random horizontal flip

Random crop
4 Cosine decay 0.04

Faster-RCNN

ResNet-50 V1
600x600x3 Random horizontal flip 2 Constant LR 0.0003

Faster-RCNN

NASNet
1200x1200x3 Random horizontal flip 1 Constant LR 0.0003

Fig. 3. Changes in the mAP metric during the training process.

with it. Fig. 4 and 5 report the basic metrics of the model performance (mAP, training
time, and inference time). The graphs are sorted in a way to present the models with
superior metrics first.

The inference time was estimated using P3 instance (Nvidia Tesla V100 16 Gb, 7.8
TFLOPS) of Amazon Web Services. Based on the obtained results, the inference time
directly depends on the complexity of the model and the total number of its weights.
Thus, Faster-RCNN NASNet was the slowest in predictions. Its mean processing time
per one image was 880 milliseconds. The model based on the MobileNet backbone was
the fastest one with the inference time per one image of 43 milliseconds. Thus, it may
be used for predicting the location of stenosis in real-time.

Our results suggest that Faster-RCNN ResNet-50 V1 is the most accurate model.
The mean Average Precision of this model on the validation set is 0.92 with the in-
ference time of 98 milliseconds per image (≈ 10 frames per second). The fastest and
relatively lightweight SSD MobileNet V1 model has the mean Average Precision of
0.70 with the inference time of 43 milliseconds per image (≈ 23 frames per second).
Faster-RCNN NASNet has over a 3-fold advantage in the number of weights compared
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Table 3. Comparative study of the selected models

Model
Weights,

mln

Training

time, hours

Inference

time, ms
mAP@0.5

Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

SSD

MobileNet V1
4.2 1.0x 16 1.0x 43 1.0x 0.70 1.00x

Faster-RCNN

ResNet-50 V1
25.6 6.0x 28 1.8x 98 2.3x 0.92 1.33x

Faster-RCNN

NASNet
88.9 21.0x 147 9.5x 880 20.4x 0.84 1.22x

Fig. 4. Comparison of the mAP metric (a) and weights (b) of the models.

to Faster-RCNN ResNet-50 V1. However, the accuracy of Faster-RCNN ResNet-50 V1
is 12% higher than that of the Faster-RCNN NASNet model. Therefore, Faster-RCNN
ResNet-50 V1 seems to be an optimal solution, capable of processing data quickly with
a relatively high level of accuracy.

4.2 Models testing

The capabilities of the selected neural networks are presented using the data of two
patients with the referenced labeling, whose data were not used to train the models.
Fig. 6 shows the images with the red-marked area of stenosis. The models with the
best values of the loss function and mAP were used for testing. Table 4 reports the best
steps with the model optimal weights. The resultant predicting probability and location
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Fig. 5. Comparison of the training time (a) and inference time (b) of the models.

of stenosis are shown in Fig. 7. Additionally, Intersection over Union (IoU) and Dice
Similarity Coefficient (DSC) metrics were used to assess the localization performance.

Table 4. Best steps with optimal model weights

Model Best step

SSD MobileNet V1 24

Faster-RCNN ResNet-50 V1 84

Faster-RCNN NASNet 95

The comparative study proves that the models may accurately detect the location
of stenosis. However, there were several false positives, while testing Faster-RCNN
NASNet. In both cases, this model detected the location of the false stenotic segment
in the right coronary artery and the anterior descending artery (two segments) besides
the reference with a probability of over 90% (see Fig. 7c). However SSD MobileNet
V1 erroneously predicted the absence of stenosis of the first patient. In addition, the
efficiency of the detector based on the ResNet architecture, Faster-RCNN ResNet-50
V1, should be noted. The average DSC metric on the test data for this model was 0.85.

5 Conclusion

We trained three well-known and promising detectors based on different neural net-
work architectures (MobileNet, ResNet-50, NASNet) to locate the single-vessel dis-
ease. Faster-RCNN ResNet-50 V1 has an optimal accuracy-to-speed ratio. This model
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Fig. 6. Example of the reference test data.

demonstrates the mean Average Precision (mAP@0.5 metric) of 0.92 at 10 frames per
second. The fastest and relatively lightweight SSD MobileNet V1 model has the mean
Average Precision of 0.70 at 23 frames per second. The ML-based approach proposed
in this study is of particular interest in detecting the location of multivessel coronary
artery disease. This approach ensures accurate detection of the stenosis location and
may provide additional characteristics of the stenotic segment, such as its length, diam-
eter, lateral branches, etc.

6 Acknowledgements

Data mining, data pre-processing and development of the ML-based approach to de-
tect stenosis were supported by a grant from the Russian Science Foundation, project
No. 18-75-10061 ”Research and implementation of the concept of robotic minimally
invasive prosthetics of the aortic valve”. The training of the developed models using
Amazon Web Services was funded by the Ministry of Science and Higher Education,
project No. FFSWW-2020-0014 “Development of the technology for robotic multi-
parametric tomography based on big data processing and machine learning methods for
studying promising composite materials”. The selection of the primary metrics suggest-
ing the model performance and their analysis was supported by the grant of the Russian
Foundation of Basic Research, project No. 19-07-00351/19 “Methods and intelligent
technologies for the scientific justification of strategic solutions on digital transforma-
tion”.

References

1. GBD 2017 Causes of Death Collaborators: Global, regional, and national age-sex-specific
mortality for 282 causes of death in 195 countries and territories, 1980-2017: a system-



Automatic coronary stenosis detection in X-ray angiography... 9

(a) SSD MobileNet V1

(b) Faster-RCNN ResNet-50 V1

(c) Faster-RCNN NASNet

Fig. 7. Example of new data prediction.



10 V. Danilov et al.

atic analysis for the Global Burden of Disease Study 2017. Lancet (London, England)
392(10159), 1736–1788 (nov 2018). https://doi.org/10.1016/S0140-6736(18)32203-7

2. Antczak, K., Liberadzki, Ł.: Stenosis Detection with Deep Convolutional
Neural Networks. MATEC Web of Conferences 210, 04001 (oct 2018).
https://doi.org/10.1051/matecconf/201821004001

3. Chi, Y., Huang, W., Zhou, J., Toe, K.K., Zhang, J.M., Wong, P., Lim, S., Tan, R.S.,
Zhong, L.: Stenosis detection and quantification on cardiac CTCA using panoramic MIP
of coronary arteries. In: 2017 39th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC). pp. 4191–4194. IEEE (jul 2017).
https://doi.org/10.1109/EMBC.2017.8037780

4. Kang, D., Dey, D., Slomka, P.J., Arsanjani, R., Nakazato, R., Ko, H., Berman, D.S., Li, D.,
Kuo, C.C.J.: Structured learning algorithm for detection of nonobstructive and obstructive
coronary plaque lesions from computed tomography angiography. Journal of Medical Imag-
ing 2(1), 014003 (mar 2015). https://doi.org/10.1117/1.jmi.2.1.014003

5. Kang, D., Slomka, P.J., Nakazato, R., Arsanjani, R., Cheng, V.Y., Min, J.K., Li, D., Berman,
D.S., Jay Kuo, C.C., Dey, D.: Automated knowledge-based detection of nonobstructive and
obstructive arterial lesions from coronary CT angiography. Medical Physics 40(4), 041912
(apr 2013). https://doi.org/10.1118/1.4794480

6. Toledano, M., Lindenbaum, M., Lessick, J., Dragu, R., Ghersin, E., Engel, A.: Learning to
Detect Coronary Artery Stenosis from Multi-Detector CT imaging. Tech. rep., Technion -
Israel Institute of Technology, Haifa (2010)

7. de Vos, B.D., Wolterink, J.M., Leiner, T., de Jong, P.A., Lessmann, N., Išgum, I.: Direct Au-
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