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Abstract. Current neural network-based algorithms for object detection require
a huge amount of training data. Creation and annotation of specific datasets for
real-life applications require significant human and time resources that are not al-
ways available. This issue substantially prevents the successful deployment of AI
algorithms in industrial tasks. One possible solutions is a synthesis of train im-
ages by rendering 3D models of target objects, which allows effortless automatic
annotation. However, direct use of synthetic training datasets does not usually
result in an increase of the algorithms’ quality on test data due to differences in
data domains. In this paper, we propose the adversarial architecture and training
method for a CNN-based detector, which allows the effective use of synthesized
images in case of a lack of labeled real-world data. The method was successfully
tested on real data and applied for the development of unmanned aerial vehicle
(UAV) detection and localization system.
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1 Introduction

Object detection is one of the key tasks of computer vision. The main purpose of de-
tection is to locate, identify, and localize all objects of certain classes in an image. The
well-established approach is using convolutional neural networks of various architec-
tures (CNNs). Currently, a number of detectors have achieved the ability to work in
real-time with fairly high accuracy.

While excellent performance has been achieved on large public datasets, real-world
object detection still faces great difficulties. One reason for this is the lack of sufficient
annotated real-world data to train detection algorithm for a specific task. Another rea-
son is the difference between filming conditions at the training and the execution stages.
View angles peculiarities, object appearance, background, illumination, image quality
determine as so-called “domain” of data. The development of domain-invariant recog-
nition methods or image domain transfer methods is a complicated scientific task. Man-
ual target dataset creation and annotation is an expensive and time-consuming problem,
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which researchers try to bypass in different ways. In particular, the design of a domain-
invariant object detection algorithm is an important and prospective task.

In this paper, the domain adaptation problem is investigated in relation to the ob-
ject detection task for mini-UAVs (drones). The source domain is the data obtained by
rendering 3D models of the object (artificial data), the target domain is a limited num-
ber of real-world images. Our main achievement is the application of domain transfer
by adversarial training technique between synthetic and real data, which allowed us
to achieve high detection accuracy provided an extremely limited amount of real data.
Such results are not achievable by conventional training methods as we demonstrated
in experiments.

The drone detection algorithm is a key component for the development of a pas-
sive indoor drone positioning system (where there is no signal from satellite navigation
systems available) using a set of stationary surveillance cameras [1]. Compared to our
previous work [2], this article describes the more complicated task of detection, which
required the development of new, more precise, and complex methods. The increased
task complexity was caused, firstly, by longer distance to the object, which led to a
lower target object size on images (also in relation to frame size) of the new camera set.
Secondly, we had to detect the DJI Mavic 2 Pro drone, which is of smaller size and less
contrast to the background.

2 Related Works

The idea of automatic object detection on images has been around for a long time.
The first successful attempts were based on detection of low-level image features, for
example, the Canny edge detector [3] or correlation algorithms for comparison between
objects and a template. Modern image analysis methods based on neural networks have
significantly outperformed classical algorithms in terms of accuracy. Neural network
architectures for detection are divided into three main types:

1. One-stage methods – You Only Look Once (YOLO) [4,5,6,7], Single-shot Multi-
box Detector (SSD) [8,9] and etc. The main idea is that the image is divided into
regions and features are extracted in each one. Then the network predicts bound-
ing boxes and probabilities for each region. Repeated candidates are discarded by
the non-maximum suppression algorithm. The methods are characterized by a high
FPS.

2. Two-stage methods – region-based CNN algorithms and analogs [10,11,12]. In the
first stage features extracted from an image are fed into Region Proposal Network,
and in the second stage a class is predicted and the bounding boxes are addition-
ally regressed in candidate regions (after their alignment). The algorithms achieve
higher accuracy than single-stage algorithms but have slightly lower performance.

3. Cascaded methods – Cascade R-CNN [13] and others. There are characterized by
learning a sequence of detectors with increasing thresholds. More complex cascade
architecture that adapts errors from other levels helps to boost quality significantly,
but a model contains more parameters and becomes computationally more sophis-
ticated.
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Domain adaptive methods have been developed last years. They have made it pos-
sible to expand the neural network algorithm’s applicability and partially solve the lack
of annotated data problems for applied tasks.

The domain adaptation concept based on adversarial training was proposed in [14]
to reduce the difference between semantically identical neural network representation
but visually disparate data from different domains. A network was trained to solve two
problems simultaneously: the target task is the classifying objects, and the side task
is the classifying the domain. In this case, the first problem solution was stimulated,
and the side problem was penalized. Due to this, the data representation invariance was
achieved. This approach was successfully applied to a wide range of other problems.

The A-Fast-RCNN detector [15] was able to detect occlusion and deformation by
training on images generated by the GAN. Domain Adaptive Faster R-CNN [16] im-
proved the detection object quality on different types of images by applying an adver-
sarial domain adaptation to both levels the image and the instance. The paper [17] deals
with detection invariant to view angle, object scale, and weather conditions by means
of adversarial training. Siamese-GAN [18] is suitable for analyzing invariant features
for both annotated and non-annotated images coming from two different domains. Cy-
CADA [19] is a unified cyclic-serial network with an adversarial loss function to pro-
vide the domain invariance. Also are known works are devoted to detector training on
data from alternative sources, such as images obtained by 3D models [20,21] or from
artificially generated data [22]. In this work, we present adversarial training method and
architecture for object detection.The proposed method is compared with other existing
detection methods (fine-tune, augmentation, etc.) and shows better results.

3 Data Preparation

Fig. 1. 3D drone model render.

Neural networks require lot of annotated training samples to achieve outstanding accu-
racy. Those algorithms have large number of tunable parameters that determines their
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high flexibility. Therefore, a large number of annotated images are required to train
these CNN-based algorithms. In case of detection, annotation indicates the object class
and its coordinates (the bounding box) on the image. To avoid time- and resource-
consuming manual data labelling, artificial creation of training and testing images was
applied. Images were created by rendering the 3D model of target objects.

During the data creation process, in the 3D modeling system the drone model was
drawn on a homogeneous background. Additionally, the object mask was drawn. Then
the image and mask were randomly transformed by rotation, scaling, shifting color
channels, reflection, perspective transformation, blurring, adding salt and pepper noise.
After that, the object image by its mask was placed on background images. Large col-
lection of arbitrary images was used for backgrounds. Local smoothing with a Gaussian
kernel were performed at the object borders in order to make such pasting look natural.
Distracting objects from the Coil 100 dataset [23] were added to each image to increase
the discriminating ability of a detection algorithm.

Fig. 2. Generated image examples with a random background.

The drone was flown and surveyed from 6 high-resolution video cameras in the test
hangar to prepare the test samples and expand the training samples (Fig. 3). Data from
all 6 cameras were annotated by hand.

Fig. 3. Example of real target image. The drone at the bottom center is in a test hangar.
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4 Adversarial detector training method

Faster R-CNN architecture was used as the base detection algorithm [12] because it
shows a high-level accuracy and has efficient implementations capable of working in
real-time. The input of the algorithm takes a three-channel image. This image is fed into
a CNN, which outputs a feature map. This image is also fed into RPN, where we get
ROIs, which may contain the object being detected. Then the ROI Pooling layer con-
verts the feature vector of ROI into a fixed-length feature vector. At the final stage, the
bounding boxes are regressed and objects contained in regions of interest are classified.

The problem of most algorithms is underperformance on real data, while training on
artificial images. The unlimited synthetic data was available because of 3D rendering.
The updated algorithm main goal is training on synthetic data effectively, and then show
the good performance on real data. Object artifacts in synthetic images are perceived by
the detection algorithm as highly informative features. The domain adaptation method
was applied using adversarial training, following the approaches [14,17] to overcome
this problem. Feature vectors encoded by the neural network in the object area contain
information that most relevant for minimizing the loss function on the training sample,
which is determined by the principle of backpropagation. It is clear that there is no
guarantee that this representation will contain high-level invariant object features, rather
than low-level object features on a particular sample of images (in particular, artifacts
of pasting renders of 3D model on images). This is what seems to make it difficult to
apply an algorithm trained on synthetic images to real data.

The following approach was applied in order to train the network to create more
invariant object representations. Special domain classification branch (head) was added
after backbone, in parallel with detection branch. The network was trained to perform
object detection and data domain classification simultaneously (synthetic or real-world)
based on the attributes computed by the backbone. The new domain classification head
was used for network to “forget” the domain. The correct domain classification was
penalized by gradient propagation of the respective loss function with the reverse sign.
In other words, the network learned to create object representations invariant to the
image domain. The modified detection algorithm architecture (Faster R-CNN+AT) is
presented in the Figure 4.

Fig. 4. Proposed Faster R-CNN+AT architecture. The domain classification branch predicts image
domain: synthetic or real-world image.
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The main role in training of the proposed network is a special loss function. It
provides a mathematical formulation to compare predicted and ground-truth and signif-
icantly effects on training time and reaching a required accuracy. The minimizing loss
function is set as follows:

min
fO,fT

LO(fO(fT (YT )), YO)− γLN (fN (fT (YT )), YN ),

min
fN

LN (fN (fT (X)), YN ),
(1)

where O - object detection task, N – domain classification task, T – feature ex-
traction, fO,N,T – task modules, respectively, YO,N – training samples for the task,
respectively, LO,N – losses functions, respectively, γ – adversarial coefficient.

l1,smooth(x) =

{
|x|, if |x| > a
x2

|a| if |x| < a
(2)

Smoothed l1 (2) is taken as a loss function for the detection task. Often softmax loss
is used in classification tasks, but it causes gradient explosions in adversarial training
according to [15]. It is replaced by negative entropy function. This helps the model to
make “uncertain” predictions about the image domain.

So, the final loss function looks like:

min
fO,fT

LO(fO(fT (YT )), YO) + γLne(fN (fT (YT ))),

min
fN

LN (fN (fT (X)), YN )
(3)

Training this model is similar to training GANs [24]. The algorithm is shown in
Algo. 1.

Algorithm 1 Faster R-CNN+AT with adversarial training for a detection task.
INPUT: pre-trained fT , fO, fN
k - iterations for dumping fN weights.
1: procedure TRAINING FASTER R-CNN+AT(fT , fO, fN , k)
2: for epoch in range(epochs) do
3: Sample a mini-batch of n examples [X1, · · · , Xn]
4: Update fT (wT ) and fO(wO) with gradients:

5: ∇wT ,wO
1
n

n∑
i=0

LO(fO(fT (Y
i
T )), YO) + γLne(fN (fT (Y

i
T )))

6: while predictions from fN have training accuracy 6 0.9 do
7: Update fN (wN ) with gradients:
8: ∇wN

1
n
Lne(fN (fT (Y

i
T )))

9: end while
10: Restart fN for every k iterations and repeat the Procedure again.
11: end for
12: end procedure
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5 Results

The accuracy of the proposed algorithm (Faster R-CNN+AT) has been tested on dif-
ferent datasets to demonstrate its advantage over the base Faster R-CNN, provided dif-
ferent ratios of synthetic and real images. Synthetic data were generated by rendering
and automatically labeled. The real data were annotated manually. Data from 5 cam-
eras (800 images) and synthetic data was involved in the training phase. Data from the
6th camera (124 images) was used for testing, which did not participate in the training
phase. Obtained accuracy (precision and recall) at fixed cutoff thresholds by probabil-
ity, as well as standard average metrics (average precision and mean average precision)
in Tab. 1.

Two main conclusions can be inferred from the experiments results (Tab. 1).

1. The results demonstrate that the proposed method provides the most effective way
(among other approaches) to use synthetic data along with real data than the amount
of real data is fixed. Although the use of pure synthetic data is inefficient (first row
in Tab. 1), the amount of real data is insufficient to train detector solely on real
images (second row in Tab. 1), adversarial training achieves perfect results (last
row).

2. The developed method outperforms the base one due to the adversarial learning
application. The advantage is observed regardless of what real-world and synthetic
images ratio was used. It is determined not only by the complexity of the neural
model (the feature extraction network is identical) but by the learning principle.

3. Experiments prove that the proposed method is more effective than the widespread
fine-tuning technique, the results of which are shown in the penultimate row of table
1. Fine-tuning is training the model first exclusively on a large available collection
of relatively relevant data (in our case, synthetic), then further training on target data
(in our case, real). This allows one to get better results than simple data mixing, but
still less accurate than the results of the proposed Faster R-CNN+AT method.

6 Conclusion

The CNN-based object detection training algorithm and architecture based on the ad-
versarial technique is proposed. By its application, we solved the problem of the lack
of annotated target training data. The training algorithm enforces the detector’s encoder
subnet to generate domain-invariant image features. The proposed algorithm has the
ability to train detectors mainly on synthetic images (obtained by 3D objects rendering)
and a limited number of real-world data but shows high accuracy on target real images.
We have shown the superiority of the proposed training scheme for training object de-
tectors in a set of experiments using different real and synthesized image ratios in the
training set. The method could be applied to arbitrary detector architectures.
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Table 1. Accuracy comparison between the proposed detection model (Faster R-CNN+AT) and
the base model (Faster R-CNN) at real and synthetic images combined in different ratios at train-
ing set.

Adversarial
Training

Synthetic
images

Real-world
images

Precision Recall AP@0,5 AP@0,75 mAP

7 2400 0 0.0286 0.2054 0.0093 0 0.0025
7 0 800 0.2430 1 0.7222 0.3400 0.3544
7 800 800 0.4299 0.8214 0.6781 0.3359 0.3455
3 800 800 0.9912 1 0.9998 0.9530 0.8365
7 1600 800 0.5077 0.900 0.8272 0.4486 0.4261
3 1600 800 1 1 1 0.9703 0.8341
7 2400 800 0.4633 0.9099 0.8224 0.4526 0.4412
71 2400 800 0.7092 0.8929 0.7947 0.4651 0.4471
3 2400 800 1 1 1 0.9633 0.8178

1 Fine-tuning on real-world data based on weights of network trained on synthetic data.
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