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Abstract. The covid-19 pandemic has quickly spread all over the world, over-
whelming public healthcare systems in many countries. In this situation demand
for automatic assistance systems, to facilitate and accelerate a doctor’s job has
rapidly increased. Antibody tests were introduced for diagnosing covid-19, but
physicians still need tools for quantification of disease severity, since treatment
choice strongly depends on it. To estimate the severity of the disease physicians
use computer tomography scans. It provides physicians with information about
lung lesions and their types and they use this information to determine proper
treatment. In this paper we made an attempt to build a system that uses pa-
tients’ computer tomography scans for lung and lesion segmentation and for seg-
mentation of specific types of lesions (i.e. pulmonary consolidation and “crazy-
paving”). Models for lung, lesions, consolidation, and “crazy-paving” segmenta-
tion performed with 0.96, 0.65, 0.48, 0.45 Dice coefficients respectively. Also it
was shown that removing images with inaccurate ground-truth from the training
subset can improve the quality of models trained on it.

Keywords: Covid-19, CT, Lesion segmentation, Lung segmentation, Deep learn-
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1 Introduction

Covid-19 is an infectious disease caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) that has a considerable mortality rate. Quick spread of this
disease caused a pandemic, which overwhelmed healthcare systems in a large number
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of countries. As of 1 July 2020, 10.5M cases were confirmed worldwide and 512 thou-
sands of patients died, so the average mortality rate was about 5%. In Russia it was
1.5% (9.5 thousands deaths for 654 thousands cases).

Early diagnosis can reduce the time and intensity of medical treatment. This can
be achieved by the use of computer tomography (CT). CT is a radiography in which
a three-dimensional image of a body structure is constructed by computer from a se-
ries of plane cross-sectional images made along an axis. CT provides physicians with
information about the lesions in lungs. Then they can calculate the percentage of lung
opacity and identify the type of the lesion so they can select appropriate treatment for
the patient and monitor the course of the disease.

Computed tomography (CT) is considered to be a primary tool for giving diagnosis
of covid-19 and evaluation of the disease progression. CT is a radiography in which a
three-dimensional image of a body structure is constructed by computer from a series
of plane cross-sectional images made along an axis. CT provides radiologists with in-
formation about disease features, or radiographic findings. These features are examined
in order to identify their type and volume. Then this information is used for selection of
appropriate treatment for the patient and monitoring the course of the disease.

The primary CT findings of covid-19 have been reported in [10]. They include pul-
monary consolidation, “ground-glass” opacity and “crazy-paving” pattern. Pulmonary
consolidation is a region of normally compressible lung tissue filled with liquid instead
of air. “Ground-glass” opacity is a descriptive term referring to an area of increased
attenuation in the lung on CT scans with preserved bronchial and vascular markings.
“Crazy-paving” pattern refers to the appearance of “ground-glass” opacity with super-
imposed interlobular septal thickening and intralobular septal thickening. The lack of
sufficient method for lesion volume estimation and an enormous amount of CT scans
for analysis increased demand for supervising systems.

The aim of this study was to create a solution for segmentation of lungs and ab-
normal regions of lungs and for detecting regions with pulmonary consolidation and
“crazy-paving” pattern.

2 Related work

As covid-19 has quickly been spreading, computer vision scientists started to search for
solutions that could help physicians diagnose their patients. There were several areas to
research.

Before the mass use of antibody tests some scientists would try to find out if a
patient had covid-19, using only their CT scans. Linda Wang [9] introduced COVID-
Net, a neural network architecture that could classify if a person was ill and distinguish
covid-19 from non-covid-19 pneumonia. Xuehai He [2] used CRNet [5] to detect covid-
19. Xiaolong Qi [6] estimated how much time the patient would spend in a hospital
using only their CT.

But those studies could not be applied for tracking patients’ condition. To achieve
that, some scientists concentrated on a segmentation task, detecting lungs and areas
with lesions. This information could then be used for measuring the percentage of lung
opacity to quantify severity of the disease. Segmentation could be performed on 2D
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horizontal slices of CT or on full 3D scans. Lu Huang [3] used U-net [7] architecture on
horizontal slides of CT scans. Shuo Jin [4] used 3D Unet++ [11] on CTs with a different
slice thickness. Fei Shan [8] proposed 3D-model VB-Net for segmentation of lesions,
lung lobes and lung segments, training the model with human-in-the-loop strategy.

3 Dataset

The dataset was provided by Third Opinion Platform [1]. It contained 529 studies of pa-
tients with and without covid-19. Studies came in dicom format, clipping to the window
(according to window height and window width dicom parameters) was not performed.

Fig. 1: Examples of horizontal slices of CT.

10-20 horizontal slices from each study were assessed giving us 10454 images. Radiol-
ogists assessed areas with lungs, regions of pulmonary consolidation and regions with
“ground-glass” opacity, particularly with “crazy-paving”.

Fig. 2: Examples of horizontal slices of CT.

The dataset was split into training and testing subsets, containing 85% and 15% studies
respectively.
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Table 1: Dataset statistics.
Class Number of images with the class Number of studies with the class
lung 7873 528
lesion 5303 464
“ground-glass” 4990 461
consolidation 489 287
“crazy-paving” 1691 114

Radiologists used an assessment tool to draw polygons around regions of interest.
As they tend to draw areas with smoothed boundaries, while models for segmentation
calculate more precise masks, it is not expected to get results close to ideal according
to quality metrics.

4 Metrics

For model evaluation three metrics were used: mean AP over test studies, IoU and Dice
coefficient.

Model’s recall is calculated as the number of true positive pixels divided by the
number of all positive pixels. Model’s precision is calculated as the number of true
positive pixels divided by the number of pixels, predicted as positive. AP is calculated
as an area under precision-recall curve, where each point on the curve plot represents
precision and recall of results with a threshold corresponding to the point.

IoU measures how much ground truth and predicted areas overlap:

IoU =
TP

FN + TP + FP
(1)

Dice coefficient is often used to evaluate the quality of segmentation of medical images:

Dice =
2TP

FN + 2TP + FP
(2)

TP is the number of true positive pixels, FN – number of false negative pixels, FP –
number of false positive pixels.

5 Proposed method

Due to the fact that only 20% horizontal slices from each CT were assessed, it was
necessary to use a neural network for 2D segmentation of images. In this work U-net
[7] was used. It takes horizontal slices of lung CT and returns probabilities of belonging
to a certain class for each pixel.

At first, image normalization is performed on each slice image:

Inorm =
Iorig − µ

σ
(3)
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where mu is the mean of the image and sigma is its standard deviation. It was done to
unify information from different X-ray machines, as due to different settings they can
produce information in different ranges of values. Then random spatial transformations
(horizontal flipping, shifting, scaling, rotating) were applied on every slice to augment
images.

Segmentation of lungs and regions with lesions. The first task was to segment lesions,
so it could be possible to calculate the percentage of lung opacity. Diseased areas and
lungs are segmented on each horizontal slice.

Several losses were used to train U-net. For training with binary cross entropy loss
and Dice loss models predicted two masks: probability of lung in the pixel and proba-
bility of affected lung (either pulmonary consolidation or “ground-glass” opacity). An-
other model was trained using softmax cross entropy loss. It predicted 3 classes: back-
ground, healthy lung and affected lung, so the mask with background was added and
lung class was replaced by healthy lung.

In the table 2 results for lung segmentation and lesion segmentation are shown.

Table 2: Results for segmentation of lungs and lesions.

Experiment
mAP
(lung)

IoU
(lung)

Dice
(lung)

mAP
(lesion)

IoU
(lesion)

Dice
(lesion)

BCE loss 0.99591 0.94131 0.9694 0.784 0.51041 0.63645
Dice loss 0.99494 0.94038 0.96898 0.78404 0.52256 0.65046
Softmax CE loss 0.992 0.93689 0.96713 0.78494 0.50343 0.62957

The best result for lesion class by all metrics was shown by the model that was trained
with Dice loss. Models with BCE loss and Dice loss showed similar results for lung
class.

Segmentation of regions with pulmonary consolidation and “crazy-paving”. The
second task was to identify different types of pathologies. Experiments showed that
the use of samplers was necessary in this task, as the majority of images did not con-
tain consolidation or “crazy-paving”, so training was unstable as the model received an
enormous amount of negative examples.

Several models were trained. The first one (U4) predicted four binary masks for the
following classes: lungs, consolidation, “ground-glass” opacity, and “crazy-paving”.
During training batch size was divisible by 4. In every four elements of batch the first
element contained image with consolidation, the second — “crazy-paving”, the third
— “ground-glass” opacity and the fourth contained image with healthy lungs with 95%
probability and image without lungs (i.e. slices from the top or the bottom of CT) with
5% probability.

The second model (C) predicted two binary masks: mask for lung and for consolida-
tion probabilities. Sampler was used so each sample in a batch during training contained
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consolidation with 95% probability, lungs without consolidation with 2.5% probability
and no lungs with 2.5% probability. The third model (CP) was similar to the second,
but made predictions for “crazy-paving”.

All three models were trained with binary cross entropy loss, Dice loss, and softmax
cross entropy loss. For training with CE loss, the model was supposed to predicted the
background class and unaffected lung class instead of the lung class.

Table 3: Results for consolidation segmentation.
Experiment mAP IoU Dice
U4 BCE 0.51862 0.42743 0.48593
U4 Softmax CE 0.5064 0.40548 0.47363
C BCE 0.54077 0.2652 0.33648
C Dice 0.49091 0.25771 0.32907
C Softmax 0.52354 0.24553 0.31573

Table 4: Results for “crazy-paving” segmentation.
Experiment mAP IoU Dice
U4 BCE 0.3785 0.42743 0.45657
U4 Softmax CE 0.36422 0.42337 0.44795
CP BCE 0.386 0.2231 0.25564
CP Dice 0.3333 0.17061 0.20176
CP Softmax 0.3724 0.1869 0.21889

Tables 3, 4 show results for consolidation and “crazy-paving”.
The best result was shown by the united model with four classes for prediction with

binary cross entropy loss.

6 Analysis of results

For U4 BCE model confusion matrices for train and test subsets were calculated.
As figure 4 shows, on both train and test subsets the model confuses lesion classes

and healthy lungs. This can be explained by the fact that some assessors tend to draw
inaccurate masks, while models produce precise result.
Also figure 4 shows, that on both train and test subsets the model significantly confuses
“ground-glass” opacities that are not “crazy-paving” and the “crazy-paving”. It also
confuses consolidation and “ground-glass”. This could be explained by the presence of
ambiguous examples in the dataset and/or noisy assessment, examples are presented on
figure 5. To check the latter hypothesis three models (U4 BCE, C BCE, C Dice) were
applied to the train dataset. Images from the train dataset were blocklisted if IoU of
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Fig. 3: Examples of U4 model’s work. Red color is used for consolidation, blue for
“crazy-paving”, green for “ground-glass”. On the left there is an original image, in the
middle ground truth marking. On the right result of U4 BCE model’s work.
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Fig. 4: Confusion matrices of U4 BCE model for train and test subsets. B refers to
background, L to healthy lungs, G to “ground-glass”, CP to “crazy-paving”, and C to
consolidation.

Table 5: Results for consolidation segmentation after dataset reduction.
Experiment mAP IoU Dice
C BCE 0.54077 0.2652 0.33648
C BCE (*) 0.54998 0.30107 0.37059
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Fig. 5: Examples of inaccurate assessment.

consolidation class was lower than 0.2 in any of those models. Then new model C BCE
(*) was trained on a new dataset.
As results show even rough cleaning of the dataset could improve the result of training.

Training of a “crazy-paving” model and a united model was not performed, because
after dataset reduction too few examples of “crazy-paving” remained.

7 Conclusion

In this study we presented a solution for segmentation of lungs, lesions, pulmonary con-
solidation and “crazy-paving” with reasonable quality. Experiments showed that binary
cross entropy loss works better for training models that could distinguish different types
of pathologies, but gives slightly inferior results than the model trained with Dice loss
for segmentation of general classes such as lungs and lesions. Then it was shown that
usage of noisy data during training can decrease the quality of a model and discarding
such data from the training subset can improve the quality of a model.
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